EuP Preparatory Studies "Imaging Equipment" (Lot 4)

Final Report on Task 5 "Definition of Base Cases"

Compiled by Fraunhofer IZM and PE Europe

Contractor: Fraunhofer Institute for Reliability and Microintegration, IZM, Berlin Department Environmental Engineering Dr. Lutz Stobbe Gustav-Meyer-Allee 25, Bld. 17/2 13355 Berlin, Germany

Contact:Tel: +49 - (0)30 - 46403 - 139Fax:+49 - (0)30 - 46403 - 131Email:lutz.stobbe@izm.fraunhofer.de

Berlin, 12th November 2007

Content

Introduction	4
5. Definition of Base-Case	5
5.1. Product-specific Inputs	7
5.1.1. Base Case V1: EP-Copier/MFD monochrome	7
5.1.2. Base Case V2: EP-Copier/MFD colour	8
5.1.3. Base Case V3: EP-Printer/SFD monochrome	9
5.1.4. Base Case V4: EP-Printer/SFD colour	10
5.1.5. Base Case V5: IJ-Printer/MFD Personal	11
5.1.6. Base Case V6: IJ-Printer/MFD Workgroup	12
5.2. Base-Case Environmental Impact Assessment	13
5.2.1. Base Case V1: EP-Copier/MFD monochrome	13
5.2.1.1. Overview of assessment results for Base Case V1	13
5.2.1.2. Assessment results according to the consideration of paper	14
5.2.1.3. Assessment of single impact categories related to life cycle phases	17
5.2.2. Base Case V2: EP-Copier/MFD Colour	21
5.2.2.1. Overview of assessment results for Base Case V2	21
5.2.2.2. Assessment results according to the consideration of paper	22
5.2.2.3. Assessment of single impact categories related to life cycle phases	24
5.2.3. Base Case V3: EP-Printer/SFD Monochrome	27
5.2.3.1. Overview of assessment results for Base Case V3	27
5.2.3.2. Assessment results according to the consideration of paper	28
5.2.3.3. Assessment of single impact categories related to life cycle phases	30
5.2.4. Base Case V4: EP-Printer/SFD colour	33
5.2.4.1. Overview of assessment results for Base Case V4	33
5.2.4.2. Assessment results according to the consideration of paper	34
5.2.4.3. Assessment of single impact categories related to life cycle phases	36
5.2.5. Base Case V5: IJ-Printer/MFD personal	39
5.2.5.1. Overview of assessment results for Base Case V5	39
5.2.5.2. Assessment of ink	40
5.2.5.3. Assessment results according to the consideration of paper	41
5.2.5.4. Assessment of single impact categories related to life cycle phases	43
5.2.6. Base Case V6: IJ-Printer/MFD workgroup	46
5.2.6.1. Overview of assessment results for Base Case V6	46
5.2.6.2. Assessment results according to the consideration of paper	47
5.2.6.3. Assessment of single impact categories related to life cycle phases	49
5.3. Base-Case Life Cycle Costs	50
5.3.1. Input data requirements	50
5.3.1.1. Market data allocation	50
5.3.1.2. Product prices and maintenance costs	51
5.3.1.3. Auxiliary material costs	53
5.3.2. LCC analysis for base case V1	54
5.3.3. LCC analysis for base case V2	55
5.3.4. LCC analysis for base case V3	56
5.3.5. LCC analysis for base case V4	57
5.3.6. LCC analysis for base case V5	59
5.3.7. LCC analysis for base case V6	60

T5 page 2

5.3.8. LCC Summary	61
5.4. EU Totals	
5.4.1. Aggregated EU totals for base case V1	64
5.4.2. Aggregated EU totals for base case V2	65
5.4.3. Aggregated EU totals for base case V3	
5.4.4. Aggregated EU totals for base case V4	67
5.4.5. Aggregated EU totals for base case V5	
5.4.6. Aggregated EU totals for base case V6	69
5.4.7. Comparative analysis of all base case assessments	
5.4.8. Conclusions	77

Introduction

This is the final report on Task 5 "Definition of Base-Cases" for the EuP Preparatory Studies on Imaging Equipment (Lot 4). The findings presented in this report are reflecting the research conducted by the IZM consortium as well as important feedback by industry and other stakeholders. The statements and recommendations presented in the final report however are not to be perceived as the opinion of the European Commission.

We like to acknowledge the fruitful collaboration and trustful working relationship with various industry partners, non-industry stakeholders and the European Commission throughout the study. We like to thank all stakeholders for their contribution and critical reviews of our reports.

12th November 2007

5. Definition of Base-Case

Introduction

The objective of the Task 5 is the environmental and economical assessment of imaging equipment. The product-specific inputs for this assessment are base cases that have been selected and discussed in the Task 4 report. Following the MEEuP methodology we apply the VHK EcoReport tool for the base case analysis. In chapter 5.1 the main input data are given for each base case. The particular data are referenced in the Task 4 report. Chapter 5.2 provides the detailed eco-assessment of the base case as well as the analysis of specific eco-design aspects such as energy efficiency and material issues. A life cycle cost (LCC) analysis is provided in chapter 5.3. The final chapter summarizes total environmental impacts on EU-25. During the following analysis we will indicate already some improvement potentials or necessities for eco-design. These aspects will not be comprehensively discussed in this report. They provide however a first input for the analysis of best available technologies (Task 6) and respective improvement potentials (Task 7).

The definition of six bases cases shown in the Table 1 below reflects the results of the preceding task reports as well as the availability of product data for an assessment. These base cases represent considerably large market segments with an expected environmental impact in the European Union. However, they are not covering the full scope of the imaging equipment market.

Base Case	Code	Technology	Function	Image	Speed	Format	Weight	Year	Price
V1	EPCMM	EP-Copier	MFD	mono	26 ipm	A3	68 kg	2005	4.000 €
V2	EPCMC	EP-Copier	MFD	color	26 ipm	A3	143 kg	2005	8.000 €
V2	EPPSM	EP-Printer	SFD	mono	32 ipm	A4	23 kg	2005	900€
V4	EPPSC	EP-Printer	SFD	color	32 ipm	A4	43 kg	2005	1.500 €
V5	IJPMP	IJ-Printer	MFD	color	20 ipm	A4	9 kg	2005	200 €
V6	IJPMW	IJ-Printer	MFD	color	20 ipm	A4	9 kg	2005	200€

 Table 1: Lot 4 Base Cases

The base cases are averaged product examples. They have been specified by considering the principle marking technology (EP and IJ), functional spectrum (SFD and MFD), main performance data (colour and speed) and typical application environment (home and workgroup). The focus is set on average office devices for image handling up to paper format A3. These are mass manufactured products with a typical sales price of under $10,000 \in$ But even within this limited spectrum of products¹ it is difficult to set the boundaries for a generalization of the assessment's results.

¹ Please note that other marking technologies, larger paper formats, specific image quality and further specifications are not considered.

If we take the example of the 32 ipm monochrome EP-Printer/SFD (Base Case V3) the legitimate question it to what other products does the assessment results apply. Do they apply to a similar monochrome EP-Printer/SFD which is twice or even three times as fast? Such a 64 ipm or 96 ipm machine will probably have a different engine, fixing and power supply unit design. It will have larger trays and sorter options, which means more motors and mechanical parts. We can assume that the electronics and digital interfaces are more complex in order to provide extended functional performance. We also have to consider the use and the image creation volume that is determined by the application environment. That could be a small or large office workgroup (frequency of use is different) as well as very fast EP Printers (> 58 ipm). In terms of energy consumption over lifetime, all these factors will result in a different material composition and mass (which influences the ecoimpact of the manufacturing phase) as well as in different energy consumption values and patterns (which influences the eco-impact of the use phase). Finally, we could assume that in terms of ecodesign, the higher speed and complexity of the faster machines may result in different improvement strategies. In consequence, the MEEuP methodology - that means the eco-assessment of a specific product example which is economically representatively for the market – leads to a product specific assessment result, which is applied over a larger market segment. We have to consider that the boundaries of the chosen market segment are not equal with the boundaries of environmental impacts or resulting eco-design strategies. A generalization of the base case's assessment results and their application to specific product segment has to be made very consciously.

5.1. Product-specific Inputs

5.1.1. Base Case V1: EP-Copier/MFD monochrome

Table 2: Material and life cycle specific inputs for the Base Case V1

Tabl	e . Life Cycle Impact (per unit)	of Base_	Case_V	1_EP-Co	opier_	MFD)-mono						
Nr	Life cycle Impact per product:								Da	ite A	uthor		
0	Base_Case_V1_EP-Copier	_MFD-m	ono							0 0	1		
Li	fe Cycle phases>		F	PRODUCT	ION	-	DISTRI-	USE	Diama	EN	ND-OF-LIFE*	Terel	TOTAL
R	esources Use and Emissions		Material	Manuf.	lot	ai	BUTION		Dispos	ai	Recyci.	lotal	
м	aterials	unit						1					
1 B 2 T	ulk Plastics	g a			1	3228 5406			925	59 34	3968 1622	13228	0
3 F	erro	g			3	9141			195	57	37184	39141	0
4 N	on-ferro	g				1834			9	92 0	1742	1834	0
6 E	ectronics	g				2485			184	48	637	2485	0
7 M	isc.	g			6	6048			172	13	5745 50899	6048	0
	nai weight	9			0	0141			172	10	00000	00141	v
Pos	USE PHASE							U	ınit				Subtotals
nr	Description												
211	Product Life in years						6	years					
	Electricity							ſ					
212	On-mode: Consumption per ho	ur, cycle,	setting,	etc.			250	kWh		25	60		
213	On-mode: No. Of hours, cycles	, settings,	etc. / ye	ar			1	#					
214	Standby-mode: Consumption p	er hour						kWh		0			
215	Standby-mode: No. Of hours / y	/ear						#					
216	Off-mode: Consumption per ho	ur						kWh		0			
217	Off-mode: No. Of hours / year							#					
		тот	AL over	Produc	t Life		1,50	MWh (=	000 kWh)				65
	Heat												
218	Avg. Heat Power Output						0	kW					
219	No. Of hours / year						0	hrs.					
220	Type and efficiency (Click & sel	ect)						•		85	i-not appli	cable	
		тот	AL over	Produc	t Life		0,00	GJ					
	Consumables (excl, spare parts	<u>s)</u>								m	aterial		
221	Water						0	m ³ /year		83	-Water pe	r m3	
222	Auxilliary material 1 (Click & se	lect)					439	kg/ year		57	-Office pa	per	
223	Auxilliary material 2 (Click & se	lect)					1,758	kg/ year		79	-Toner		
224	Auxilliary material 3 (Click & se	lect)					0	kg/ year		85	-None		
Pos	DISPOSAL & RECYCLING							u	init				Subtotals
nr	Description												
	Substances released during Pr	oduct Life	and Lar	ndfill									
227	Refrigerant in the product (Clic	k & select)				0	g		1-	none		
228	Percentage of fugitive & dumpe	ed refriger	ant				0%						
229	Mercury (Hg) in the product						0	g Hg					
230	Percentage of fugitive & dumpe	ed mercur	у				0%						
	Disposal: Environmental Costs	perkg fin	al produ	ct									
231	Landfill (fraction products not	recovered	l) in g en	n %			3407		5%	>			88-fixed
232	Incineration (plastics & PWB ne	ot re-used	/recycled	d)			13681	g		T			91-fixed
233	Plastics: Re-use & Recycling ("	cost"-side	e)				5590	g					92-fixed
	Pouso Posycling Ponofit						in a	% (of plastics				
22.4	Re-use, Recycling Denent	Recycling	(nlosec	odit%)			ייי y סדס		11 action				
234	Plastice: Materiale Pocyaling (n		(piease	eun %)			513		2%	ľ			4
235	Plastics: Thermal Recycling (p	ease edit?	6 only)				5218 13044		28%	2			4 70
200	Electronics: PWB Easy to Disc	seemblo 2	(Click®	salact)			13044 607	v	70% 'ES	1			12
237	Metals & TV Glass & Mice (05%)	Recycling	(CIICK&:	aeiect)			03/ 15222		10	1			98 fixed
230	110.013 G 14 Glass & WISC. (95%	o recyclin(J/				40022						iixed

5.1.2. Base Case V2: EP-Copier/MFD colour

Table 3: Material and life cycle specific inputs Base Case V2

Та	able	e . Life Cycle Impact (per unit)) of Base (Case V2	- MFD	- Copi	ier Co	olor					
Nr		Life cycle Impact per product:								Date	Author		
0		Base Case V2 - MFD - Cop	oier Color							0	0		
	Lif	e Cycle phases>		F	PRODUCT			DISTRI-	USE		END-OF-LIF	E*	TOTAL
	Re	sources Use and Emissions		Material	Manuf.	То	tal	BUTION		Disposal	Recycl.	Total	
	М	aterials	unit										
1	Bu	Ik Plastics	g			1	26262			18383	7878	26262	0
3	Fe	erro	g			-	75416			3771	5227	75416	0
4	No	on-ferro	g				7636			382	7254	7636	0
5		oating ectronics	g				2460			1738	0	2460	0
7	Mi	sc.	g			1	14250			712	13537	14250	0
	То	tal weight	g			14	13446			37182	106264	143446	0
							1			4			Subtotala
Po	s								un	τ			Subtotals
	44	Product Life in years					_	6	vooro				
2		Float in gears						0	years				
		Electricity											
2	12	On-mode: Consumption per ho	our, cycle,	setting,	etc.			370	kWh	1	370		
2	13	On-mode: No. Of hours, cycles	, settings,	etc. / ye	ar			1	#				
2	14	Standby-mode: Consumption p	per hour					0	kWh	0	0		
2	15	Standby-mode: No. Of hours / y	year						#				
2	16	Off-mode: Consumption per ho	bur					0	kWh	0	ס		
2	17	Off-mode: No. Of hours / year							#				
			тот	TAL over	Produc	ct Life		2,22	MWh (=00	0 kWh)			65
		Heat											
2	18	Avg. Heat Power Output						0	kW				
2	19	No. Of hours / year						0	hrs.				
2	20	Type and efficiency (Click & se	lect)						•		35-not app	licable	
			тот	TAL over	Produc	ct Life		0.00	GJ				
		Consumables (excl. spare parts	s)					,			material		
2	21	Water						0	m ³ /vear	1	33-Water i	per m3	
2	22	Auxilliary material 1 (Click & se	elect)					439	kg/vear		57-Office I	naper	
2	23	Auxilliary material 2 (Click & se	ect)					2 636	kg/ year		79-Toner	Jupei	
2	24	Auxilliary material 3 (Click & se	alect)					2,000	kg/year		R5-Nono		
	24	Auximary material 5 (ones & Se	1000)					0	ky/ year		J-NONE		
Po	s	DISPOSAL & RECYCLING							uni	it			Subtotals
nr		Description											
		Substances released during Pr	oduct Life	and Lar	ndfill								
2	27	Refrigerant in the product (Clic	k & select	.)				0	g		I-none		
2	28	Percentage of fugitive & dump	ed refriger	ant				0%	-				
2	29	Mercury (Hg) in the product	0.1					0	g Ha				
2	30	Percentage of fugitive & dump	ed mercur	v				0%	5 5				
								070					
		Disposal: Environmental Costs	s perkg fin	al produ	<u>ct</u>								
2	31	Landini (traction products not	recovered	i) in g en	1 %			7172		5%			88-fixed
2	32	Incineration (plastics & PWB n	ot re-used	/recycled	d)			31301	g				91-fixed
2	33	Plastics: Re-use & Recycling ("	'cost"-side	e)				13105	g	placti			92-fixed
		Re-use. Recycling Benefit						ina	% 01	fraction			
2	34	Plastics: Re-use. Closed Loop	Recycling	(please	edit%)			3		2%			4
2	35	Plastics: Materials Recycling (r	olease edit	t% onlv1				12232		28%			-
2	36	Plastics: Thermal Recycling (pl	lease edit?	% only)				30579		70%			72
2	37	Electronics: PWR Easy to Disa	ssemble ?	Click®	select)			700	VE	s. 0,0			00
2	30	Motale & TV Glass & Miss (050		(UIIUK&)	301001)			02402	TE	5			6140-1 20
2	30	WELDIS & IV GIDSS & WISC. (95%	% Recycling	y)				93403					tixed

5.1.3. Base Case V3: EP-Printer/SFD monochrome

Table 4: Material and life cycle specific inputs Base Case V3

Tabl	e . Life Cycle Impact (per unit) of Base C	ase_V3	EP-Pr	inter-	SFD-	mono					
Nr	Life cycle Impact per product:								Date	Author		
0	Base Case_V3_EP-Printer	r-SFD-mon	10						0	vhk		
Li	ife Cycle phases>		F	RODUC	TION		DISTRI-	USE		END-OF-LIF	E*	TOTAL
R	esources Use and Emissions		Material	Manuf.	Tot	al	BUTION		Disposal	Recycl.	Total	
M	laterials	unit										
1 B	ulk Plastics	g				4613			3690	923	4613	0
2 3 F	ecPlastics erro	g				5307 7290			4245	1061 6925	5307	0
4 N	on-ferro	g				807			40	767	807	0
5 C	oating	g				0			0	0	0	0
7 1	lisc.	g				4265			213	4052	4265	0
T	otal weight	g			2	3104			9015	14089	23104	0
												Outstatele
Pos	USE PHASE							uni	τ			Subtotals
nr	Product Life in years						c	VACTO				
211							0	years				
	Electricity											
212	On-mode: Consumption per he	our, cycle, s	setting,	etc.			270	kWh	:	270		
213	On-mode: No. Of hours, cycles	s, settings, e	etc. / ye	ar			1	#				
214	Standby-mode: Consumption	per hour					0	kWh		0		
215	Standby-mode: No. Of hours /	year					0	#				
216	Off-mode: Consumption per he	our					0	kWh		D		
217	Off-mode: No. Of hours / year						0	#				
		тот	AL over	Produc	ct Life		1,62	MWh (=00	0 kWh)			65
	<u>Heat</u>											
218	Avg. Heat Power Output						0	kW				
219	No. Of hours / year						0	hrs.				
220	Type and efficiency (Click & se	elect)							•	85-not app	licable	
		тот	AL over	Produc	ct Life		0,00	GJ				
	Consumables (excl, spare part	ts)								material		
221	Water						0	m ³ /year		83-Water	per m3	
222	Auxilliary material 1 (Click & se	elect)					666	kq/ year		57-Office	paper	
223	Auxilliary material 2 (Click & se	elect)					2,662	kg/ year		79-Toner		
224	Auxilliary material 3 (Click & se	elect)					0	ka/ vear		85-None		
	· · ·							0,				
Pos	DISPOSAL & RECYCLING							uni	t			Subtotals
nr	Description											
	Substances released during P	roduct Life	and Lar	ndfill								
227	Refrigerant in the product (Clic	ck & select)					0	g		1-none		
228	Percentage of fugitive & dump	ed refrigera	ant				0%					
229	Mercury (Hg) in the product						0	g Hg				
230	Percentage of fugitive & dump	ed mercury	,				0%					
	Disposal: Environmental Cost	s perka fina	l produ	ct								
221	Landfill (fraction products not	t recovered)) in a er	<u></u> 1 %			1155		5%			88-fived
201	Incineration (plantice & DWP p		, g c	- ,°			1155	-	5 /6			
232	Plastics: Re-use & Recycling ("cost"-side	, ecycle()	.,			0297 1094	y a				91-lixed
233			,				1904	9 % of	plastics			32-11Xeu
	Re-use, Recycling Benefit						in g		fraction			
234	Plastics: Re-use, Closed Loop	Recycling ((please	edit%)			198		2%			4
235	Plastics: Materials Recycling (please edit?	% only)				1786		18%			4
236	Plastics: Thermal Recycling (p	lease edit%	only)				7936		80%			72
237	Electronics: PWB Easy to Disa	assemble ?	(Click&	select)			362	YE	s			98
238	Metals & TV Glass & Misc. (959	% Recycling)				11838					fixed

5.1.4. Base Case V4: EP-Printer/SFD colour

Table 5: Material and life cycle specific inputs Base Case V4

Та	able	e . Life Cycle Impact (per unit)	of Base (Case_V4	LEP-P	rinter-	SFD-	color					
Nr	Ī	Life cycle Impact per product:								Date	Author		
0		Base Case_V4_EP-Printer	-SFD-colo	or						C	0		
	Lif	e Cycle phases>		F	PRODUC	TION		DISTRI-	USE		END-OF-LIF	E*	TOTAL
	Re	sources Use and Emissions		Material	Manuf.	To	tal	BUTION		Disposa	Recycl.	Total	
	M	aterials	unit										
1	Bu	Ik Plastics	g				14998			11999	3000	14998	0
3	B Fe	erro	g				2424 15901			795	485	2424	0
4	1 No	on-ferro	g				1619			81	1538	1619	0
		pating	g				2			1173	2 260	1522	0
	Mi	sc.	g				6625			331	6294	6625	0
	То	tal weight	g			4	43103			16318	26785	43103	0
Po)S	USE PHASE							un	It			Subtotals
nr		Description Product Life in years						6					
2	11	Floduct Life in years						6	years				
		Electricity											
2	12	On-mode: Consumption per ho	our, cycle,	setting,	etc.			360	kWh	-	360		
2	13	On-mode: No. Of hours, cycles	, settings,	etc. / ye	ar			1	#				
2	14	Standby-mode: Consumption p	er hour					0	kWh		0		
2	15	Standby-mode: No. Of hours / y	year					0	#				
2	16	Off-mode: Consumption per ho	our					0	kWh		0		
2	17	Off-mode: No. Of hours / year						0	#				
			тот	TAL over	Produc	ct Life		2,16	MWh (=00	00 kWh)			65
		Heat											
2	18	Avg. Heat Power Output						0	kW				
2	19	No. Of hours / year						0	hrs.				
2	20	Type and efficiency (Click & sel	lect)						•	•	85-not app	licable	
			тот	TAL over	Produ	ct Life		0.00	GJ				
		Consumables (excl. spare parts	s)					-,			material		
2	21	Water	<u>-</u>					0	m ³ /vear		83-Water r	oer m3	
	22	Auxilliary material 1 (Click & se	lect)					666	ka/year		57-Office r	apor	
2	22	Auxilliary material 2 (Click & se						2 004	kg/year		70 Tonor	Japer	
	23	Auxiliary material 2 (Click & se						3,994	kg/year		95 Nene		
	.24	Auximaly material 5 (Click & Se	iect)					0	kg/ year		oo-wone		
Po	s	DISPOSAL & RECYCLING							un	it			Subtotals
nr		Description											
		Substances released during Pr	oduct Life	and Lar	ndfill								
2	27	Refrigerant in the product (Clic	k & select	:)				0	g	t	1-none		
2	28	Percentage of fugitive & dump	ed refriger	ant				0%	-	t	-		
2	29	Mercury (Ha) in the product						0	a Ha				
2	30	Percentage of fugitive & dump	ed mercur	v				0%	5				
		r crocinago or ragiare a damp	a merour	,				070					
		Disposal: Environmental Costs	perkg fin	al produ	<u>ct</u>								
2	31	Landfill (fraction products not	recovered	i) in g en	1 %			2155		5%			88-fixed
2	32	Incineration (plastics & PWB ne	ot re-used	/recycled	d)			14298	g				91-fixed
2	33	Plastics: Re-use & Recycling ("	cost"-side	e)				3484	g				92-fixed
		Re-use Recycling Renefit						in a	% of	plastics			
	34	Plastice: Reuse Closed Loop	Recycling	Inlesso	odit%			y 240					4
2	.34	Plastics: Materiale Pocycling (r		(picase	Suit 76)			348		∠70 100/			4
4	36	Plastics: Thermal Recycling (p	ease edit	% only)				12020		10% 20%			4 70
		Electronice: DW/D Ecourte Di			ooloo4)			13930		00%			12
2	37	Electronics: PWB Easy to Disa	ssemple ?	(UICK&	select)			360	YE	3			98
2	38	wetals & IV Glass & Misc. (95%	% Recycling	g)				23712					fixed

5.1.5. Base Case V5: IJ-Printer/MFD Personal

Table 6: Material and life cycle specific inputs Base Case V5

Та	able	e . Life Cycle Impact (per unit)	of Base (Case V5	_IJ-Prir	nter-N	IFD-P	ersonal					
N		Life cycle Impact per product:								Date	Author		
0		Base Case V5_IJ-Printer-M	IFD-Pers	onal						0	0		
	Lif	fe Cycle phases>			PRODUCT	TION		DISTRI-	USE		END-OF-LIF	E *	TOTAL
	Re	esources Use and Emissions		Material	Manuf.	То	tal	BUTION		Disposal	Recycl.	Total	
	M	aterials	unit										
	1 Bu	ulk Plastics	g				4453			4008	445	4453	0
	2 16 3 Fe	ecPlastics	g a				489			440	49	489	0
	4 No	on-ferro	g				293			15	279	293	0
		pating	g				0			0	0	0	0
	7 Mi	isc.	g				1712			86	1627	1712	0
	То	tal weight	g				9355			4981	4374	9355	0
													0.14.4.1
Po	os	USE PHASE							unit				Subtotals
nr		Description Product Life, in years											
2	211	<u>Product Life</u> in years						4	years				
		Electricity											
2	212	On-mode: Consumption per ho	ur, cycle,	setting,	etc.			18,28	kWh	1	8,28		
2	213	On-mode: No. Of hours, cycles,	, settings,	etc. / yea	ar			1	#				
2	214	Standby-mode: Consumption p	er hour					0	kWh	0			
2	215	Standby-mode: No. Of hours / y	/ear					0	#				
2	216	Off-mode: Consumption per ho	ur					0	kWh	0			
2	217	Off-mode: No. Of hours / year						0	#				
			тот	AL over	Produc	t Life		0,07	MWh (=000	kWh)			65
		Heat											
2	218	Avg. Heat Power Output						0	kW				
2	219	No. Of hours / year						0	hrs.				
2	220	Type and efficiency (Click & sel	ect)						•	• 8	5-not appl	icable	
			тот	AL over	Produc	t Life		0.00	GJ				
		Consumables (excl. spare parts	5)					ŕ		n n	naterial		
2	221	Water	-					0	m ³ /vear	8	3-Water p	er m3	
2	22	Auxilliary material 1 (Click & se	lect)					52	ko/vear	5	7-Office n	aper	
2	23	Auxilliary material 2 (Click & se	lect)					0,2	ka/vear	8	5-None		
	24	Auxilliary material 3 (Click & se	lect)					0	ka/vear	8	5-None		
			,					•	itg, your	0	o none		
Р	os	DISPOSAL & RECYCLING							uni	t l			Subtotals
nr		Description											
		Substances released during Pr	oduct Life	and Lar	ndfill								
2	227	Refrigerant in the product (Clic	k & select)	-			0	g	1	-none		
2	228	Percentage of fugitive & dumpe	ed refriger	ant				0%	-				
2	229	Mercury (Hg) in the product	0.00					0	g Hg				
2	230	Percentage of fugitive & dumper	ed mercury	v				0%					
		UISPOSAI: Environmental Costs	perkg fina	aiprodu	<u>ct</u>								
2	231	Lanutin (traction products not	recovered	i) in g en	1 %			468		5%			88-fixed
2	232	Incineration (plastics & PWB no	ot re-used	/recycled	d)			4590	g				91-fixed
2	233	Plastics: Re-use & Recycling ("	cost"-side	*)				494	g	Jactica			92-fixed
		Re-use, Recvclina Benefit						in a	-% of p	raction			
-	234	Plastics: Re-use. Closed Loon	Recycling	(please	edit%)			90		2%			4
	35	Plastics: Materials Recycling (n	lease edit	% only)				305		8%			4
	236	Plastics: Thermal Recycling (pl	ease edit%	% onlv)				4448		90%			+ 72
	337	Electronics: PWR Easy to Disa	ssemble ?	(Click&	select)			1/10	VEG	5070			0.9
		Motals & TV Glace & Mice (050)	& Recycling	(UNURO)	551661)			2022	163	·			50 fived
4	:38	INICIAIS & IV GIDSS & IVIISC. (95%		<i>1)</i>				3922					rixed

5.1.6. Base Case V6: IJ-Printer/MFD Workgroup

Table 7: Material and life cycle specific inputs Base Case V6

Tabl	le . Life Cycle Impact (per unit) of Base (Case V6	_IJ-Prir	nter-M	IFD-V	/orkgrou	р				
Nr	Life cycle Impact per product:								Date	Author		
0	Base Case V6_IJ-Printer-N	/IFD-Work	kgroup						0	0		
L	ife Cycle phases>			PRODUC	TION		DISTRI-	USE		END-OF-LIFE	*	TOTAL
R	esources Use and Emissions		Material	Manuf.	Τơ	tal	BUTION		Disposal	Recycl.	Total	
N	laterials	unit										
1 B	Bulk Plastics	g				4453			4008	445	4453	0
2 3 F	echastics	g				489			193	49 1736	489	0
4 N	lon-ferro	g				293			29	264	293	0
5 C	Coating	g				0 478			336	0	0 478	0
7 N	lisc.	g				1712			171	1541	1712	0
Т	otal weight	g				9355			5177	4177	9355	0
Bee								unit				Subtotals
Pos								um				Subiolais
211	Product Life in years						4	vears	_			
211	Electricity							years				
040	<u>Electricity</u>			-1-			04.00	1.) A/I-		4 00		
212	On-mode: Consumption per ho	our, cycle, s	setting,	elC.			21,99	KVVN	2	1,99		
213	On-mode: No. Of nours, cycles	, settings,	etc. / ye	ar			1	#				
214	Standby-mode: Consumption p	ber hour					0	kWh	0			
215	Standby-mode: No. Of hours /	year					0	#				
216	Off-mode: Consumption per ho	our					0	kWh	0			
217	Off-mode: No. Of hours / year						0	#				
		тот	AL over	Produc	t Life		0,09	MWh (=000	kWh)			65
	<u>Heat</u>											
218	Avg. Heat Power Output						0	kW				
219	No. Of hours / year						0	hrs.				
220	Type and efficiency (Click & se	lect)							8	5-not appl	icable	
		тот	AL over	Produc	t Life		0,00	GJ				
	Consumables (excl, spare part	<u>s)</u>							n	naterial		
221	Water						0	m ³ /year	8	3-Water p	er m3	
222	Auxilliary material 1 (Click & se	elect)					19,5	kg/ year	5	7-Office p	aper	
223	Auxilliary material 2 (Click & se	elect)					0	kg/ year	8	5-None		
224	Auxilliary material 3 (Click & se	elect)					0	kg/ year	8	5-None		
Pos	DISPOSAL & RECYCLING							unit	:			Subtotals
nr	Description											
	Substances released during Pr	oduct Life	and Lar	ndfill								
227	Refrigerant in the product (Clic	k & select)				0	g	1	-none		
228	Percentage of fugitive & dump	ed refriger	ant				0%					
229	Mercury (Hg) in the product						0	g Hg				
230	Percentage of fugitive & dump	ed mercury	y				0%					
	Disposal: Environmental Costs	s perka fina	al produ	ct								
231	Landfill (fraction products not	recovered	l) in g en	1 %			935		10%			88-fixed
222	Incineration (plastics & PWP n	ot re-used	- /recycle/	ч)			4590	a				91-fived
233	Plastics: Re-use & Recycling ('	cost"-side		-,			494	a				92-fixed
200			,					% of p	lastics			02 IIAGU
	Re-use, Recycling Benefit						in g	f	raction			
234	Plastics: Re-use, Closed Loop	Recycling	(please	edit%)			99		2%			4
235	Plastics: Materials Recycling (olease edit	% only)				395		8%			4
236	Plastics: Thermal Recycling (p	lease edit%	6 only)				4448		90%			72
237	Electronics: PWB Easy to Disa	ssemble ?	(Click&	select)			142	YES				98
238	Metals & TV Glass & Misc. (95%	6 Recycling	g)				3922					fixed

5.2. Base-Case Environmental Impact Assessment

5.2.1. Base Case V1: EP-Copier/MFD monochrome

5.2.1.1. Overview of assessment results for Base Case V1

Table 8 shows the environmental impact assessment results for the Base Case V1 (EP-Copier/MFD monochrome) deriving from the MEEuP EcoReport result table. If we take the total energy consumption (GER) as a reference for the environmental impact the results indicate that the use phase contributes most significantly to the overall environmental impact. The reason for this tremendous impact is simply explained in the fact that Table 8 shows assessment results which include office paper. According to our use phase assumptions that have been discussed in Section 4.3.1., the Base Case V1 has 6 year lifetime with a paper output of 87,880 pages per year.

Та	ble . Life Cycle Impact (per unit) of Base_	Case_V1	1_EP-C	opier_MFD)-mono (ii	ncl. Paper)				
Nia									A		
INF	Life cycle impact per product:							Date	Autnor		
0	Base_Case_V1_EP-Copie	r_MFD-m	ono (inc	I. Pape	er)			0	0		
-											
		-		DODUCT		DIOTO	1105			-+	TOTAL
	Life Cycle phases>		P	Monut	Tatal	DISTRI-	USE	Dispessel	Deevel	Tatal	TOTAL
	Resources Use and Emissions		Material	manur.	Total	BUTION		Disposal	Recyci.	Total	
	Materials	unit									
1	Bulk Plastics	g			13228			9259	3968	13228	
2	TecPlastics	g			5406			3784	1622	5406	
3	Ferro	g			39141			1957	37184	39141	
4	Non-ferro	g			1834			92	1742	1834	
5	Coating	g			0			0	0	0	
6	Electronics	g			2485			1848	637	2485	
7	Misc.	g			6048			302	5745	6048	
	Total weight	g			68141			17243	50899	68141	
									see note!		
	Other Resources & Waste		5004		0050	540	404700	debet	credit		
8	Total Energy (GER)	MJ	5361	1498	6859	510	121708	1190	1024	165	12924
40	of which, electricity (in primary MJ)	IVIJ	1009	007	2307	1	31362	0	95	-95	3365
10	Water (process)	111	1243	424	12/0	0	201002	0	120	-01	20200
12	Water (cooling)	a	2095	424	02427	272	42095	4105	129	2000	4020
12	Waste, hor-naz./ incinerated	y a	1666	4317	93437	2/2	190/0/	12691	290	13595	29039
13	Waste, Hazardous/ Incinerated	9	1000	5	1071	J	1295	13001	30	15505	1055
	Emissions (Air)										
14	Greenhouse Gases in GWP100	ka CO2 ea	307	85	392	32	2186	89	60	28	263
15	Ozone Depletion emissions	ma R-11 er		00		nec	ligible	00	00		
16	Acidification emissions	n SO2 en	1959	382	23/11	95	17395	182	132	50	1088
17	Volatile Organic Compounds (VOC)	g 002 04.	15	4	19	7	539	4	2	2	56
18	Persistent Organic Pollutants (POP)	9 na i-Tea	992	- - 0	992	2	253	29	1	28	127
19	Heavy Metals	ma Niea.	499	1	500	14	703	323	. 9	313	153
	PAHs	ma Niea.	1304	4	1308	18	78	0_0	9	-9	139
20	Particulate Matter (PM, dust)	a	246	68	314	1156	4537	1632	6	1626	763
									-		
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	810	1	811	0	229	97	42	55	109
22	Eutrophication	g PO4	19	2	21	0	13931	6	1	4	1395
23	Persistent Organic Pollutants (POP)	ng i-Teq				neg	gligible				

Table 8: Eco-assessment results from MEEuP EcoReport for Base Case V1 (incl. paper)

In order to show the magnitude of paper consumption on the environmental impact, Table 9 below shows the same assessment results excluding paper.

Та	ble . Life Cycle Impact (per unit)	of Base_	Case_V1	I_EP-C	opier_MFD)-mono (e:	xcl. Paper)				
Nr	Life cycle Impact per product:							Date	Author		
0	Base_Case_V1_EP-Copie	r_MFD-m	ono (exe	cl. Pape	ər)			0	0		
	Life Cycle phases>		Р	RODUCT	ION	DISTRI-	USE	E	END-OF-LIFI	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit									
1	Bulk Plastics	g			13228			9259	3968	13228	0
2	TecPlastics	g			5406			3784	1622	5406	0
3	Ferro	g			39141			1957	37184	39141	0
4	Non-ferro	g			1834			92	1742	1834	0
5	Coating	g			0			0	0	0	0
6	Electronics	g			2485			1848	637	2485	0
7	Misc.	g			6048			302	5745	6048	0
	Total weight	g			68141			17243	50899	68141	0
	Other Resources & Waste	MI	5261	1409	6950	510	16249	debet	see note! credit	165	22002
0	of which electricity (in primary MI)	MI	1550	907	2367	510	10340	1190	1024	-05	23003
9 10	Water (process)	ltr	12/3	27	2307	1	1102	0	90	-95	2201
11	Water (process)	ltr	3095	424	3520	0	42895	0	129	-129	46286
12	Waste non-baz / landfill	a	89120	4317	93437	272	20864	4195	295	3900	118474
13	Waste, hazardous/ incinerated	a	1666	5	1671	5	402	13681	96	13585	15664
	Emissions (Air)	0		I	-	- 1		11			
14	Greenhouse Gases in GWP100	kg CO2 eq.	307	85	392	32	712	89	60	28	1164
15	Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
16	Acidification, emissions	g SO2 eq.	1959	382	2341	95	4167	182	132	50	6653
17	Volatile Organic Compounds (VOC)	g	15	4	19	7	7	4	2	2	35
18	Persistent Organic Pollutants (POP)	ng i-Teq	992	0	992	2	142	29	1	28	1164
19	Heavy Metals	mg Nieq.	499	1	500	14	412	323	9	313	1240
	PAHs	mg Nieq.	1304	4	1308	18	44	0	9	-9	1361
20	Particulate Matter (PM, dust)	g	246	68	314	1156	164	1632	6	1626	3259
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	810	1	811	0	120	97	42	55	986
22	Eutrophication	g PO4	19	2	21	0	2	6	1	4	27
23	Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

Table 9: Eco-assessment results from MEEuP EcoReport for Base Case V1 (excl. paper)

5.2.1.2. Assessment results according to the consideration of paper

The comparison of the use phase figures of Table 8 (incl. paper) and Table 9 (excl. paper) is very interesting. Taking again the Total Energy (GER) as the general eco-indicator, we can indicate the tremendous impact of paper consumption. From the use phase impact of 121,708 MJ the absolutely largest portion of 105,360 MJ is related to paper consumption alone. The remaining 16,348 MJ are the impact of energy and toner consumption. Figure 1 below shows this comparison again graphically. The environmental impact of paper is not only reflected by the eco-indicator Total Energy. All resource and emission impact categories are clearly affected by paper consumption. The impact category Eutrophication (gr. PO₄) and the water categories are displaying this impact even more (see Figure 2 and Figure 3 further below for details).

T5 page 14

In conclusion we will indicate in all following product assessments the impact of paper separately. The use of paper is an environmentally very relevant factor. Paper should be used efficiently and environmental burdens reduced by effective recycling. But the overall paper use does not depend on a single imaging equipment design. We will therefore separate paper from the environmental assessment of the product cases and focus on other material and design issues. Design options to reduce the use of paper (e.g. duplex units) and other consumables will be named and discussed in Task 7.

Figure 1: Total energy impact comparison including auxiliaries for Base Case V1

T5 page 15

Figure 2: Distribution of resources related impacts for Base Case V1

Figure 3: Distribution of emissions to air for Base Case V1

5.2.1.3. Assessment of single impact categories related to life cycle phases

The following assessment of single eco-impacts related to the life cycle phase "Manufacturing", "Distribution", "Use", and "End-of-life" excludes the aspect of paper. For the Base Case V1 the energy consumption related to materials and manufacturing processes accumulates to roughly one third of total (6,858 MJ) with two thirds (16,348 MJ) related to the energy consumption in the use phase. By taking the impact category Total Energy (GER) as general eco-indicator the "Use" phase has the single highest impact followed by the "Manufacturing" phase. The "Distribution" and "End-of-life" phases have a very minor impact (see Figure 1). The 1:3 eco-impact ratio of the "Manufacturing" to the "Use" phase correlates with the resources-oriented impact categories "Total Energy", "Greenhouse Gases", and "Acidification". The eco-impact categories which are indicating toxicity such as POP, Heavy Metals, and PAHs, as well as Volatile Organic Compounds (VOC) show a 50% or higher impact ratio with regards to the manufacturing phase. The auxiliary material "Toner" does not show a particular large impact. A detailed comparison of the single eco-impact categories related to resources and emissions are shown in the Figure 2 and Figure 3 above.

As a matter of fact the MEEuP EcoReport allows only a limited analysis of the manufacturing phase. The reason for this statement is that the data input is mainly materials². An allocation of materials to functional modules or components of the product is missing. In preparation of the product assessments (Tasks 4 and 5) we have asked industry partners to provide bill of materials (BOMs) related to functional modules such as the scanning or fixing unit in order to overcome the gap. That proved to be a difficult and expensive task for the industry. Therefore, we only received a limited amount of product data with actual material allocations to functional modules (thanks to all contributing partners). These specific BOMs indicated some very general material-component allocations. The chassis (e.g. frame, screws) and most mechanical parts (e.g. rollers, clutch) are Ferro-metals such as galvanized steel. The electro-mechanics (e.g. stepper motors, wires) are a mix of Ferro and Non-Ferro Metals with copper as dominant material mass. The Aluminum content varies in the individual products. Plastics are used in the full spectrum of Bulk and Tec Plastics for housing functionality (e.g. covers, trays, doors, cartridges) and small mechanical parts (e.g. spacer, gear wheel, blends, buttons). Depending on the particular function and technical requirements (e.g. thermal and mechanical stability) manufacturers have usually the option to utilize different Bulk and Tec Plastics. The decision for one or another plastic is then influenced by costs and aesthetic design (e.g. colour, surface appearance) requirements. Bulk Plastics PS and ABS, as well as Tec Plastics PC are the most commonly used materials. Glass (input category miscellaneous) is mainly found in the scanner lamp and plate. LCDs, ICs and populated electronic boards are listed under the

² Material related input categories are Bulk plastics, Tec Plastics, Ferro-metals, Non-Ferro, Coating and Miscellaneous. Only the input category Electronics is allocating components.

various electronics input categories. In the case of motors (e.g. small stepper motors) some allocations have been made to the electronics category 44-big caps & coils. In conclusion, a detailed material-component analysis is not possible based on the results of the EcoReport.

Details regarding the environmental impacts of various materials for the Base Case V1 are provided in Table 10 on the following page. In this table the material inputs are listed by category (e.g. Bulk Plastics, 5-PS) and their eco-impact weighted through a colour code. Materials causing more than 50% of the total impact in the respective category are indicated with red colour. Materials or components causing 30% to 50% of the total impact in the respective category are indicated impact in the respective category are indicated with orange colour. Materials or components causing 10% to 30% of the total impact in the respective category are indicated with orange colour.

This colour scheme indicates that considerable eco-impacts are related to the utilization of two materials: Galvanized Steel (21-St sheet) and Polystyrene (5-PS). According to the aggregated material input for the Base Case V1 (see table in Section 4.1.1.3), galvanized steel amounts to almost 36 kg and 56% of total product weight³. Steel is used for frame structures, rollers and other mechanical parts. Again, the high weight ratio (56%) influences the fact that Galvanized Steel shows up in the impact category "Non hazardous waste". According to the MEEuP methodology this "Non hazardous waste" category reflects the waste generation during ore extraction and metal processing. Ferro-metals on the other hand have a high recycling potential, which makes its use a little less problematic from an environmental point of view. Nevertheless, the emissions to air related to Galvanized Steel in the Base Case V1 are considerable. The concentration of steel in the product dominates the impact category POP (94%), GWP (33%), and VOC (33%).

Polystyrene (PS)⁴ is the second largest material fraction by weight. PS amounts to 7.5 kg or roughly 12% of total product mass. Although Polystyrene shows up under the impact categories "Energy Feedstock" and "Cooling Water" due to its relatively high mass proportion in the product, this Bulk Plastic is not so much resources critical than others. The environmental impact of PS is much stronger related to the high PAHs (polycyclic aromatic hydrocarbons) concentration, which is an indicator for toxicity, measured in Ni equivalents. In the Base Case V1 Polystyrene amounts to 70% of total PAHs. As a general observation, all plastics materials that have a high mass ratio in the product (e.g. PC and ABS) are indicated in the VHK EcoReport assessment.

³ We subtracted the 4 kg of packaging material from the 68 kg of total product weight.

⁴ Please note that VHK EcoReport does not provide an input category for PPE or PPS. Both plastics have been allocated in the spreadsheet to the input PS.

Colour	Coding																	
Red: Pro	cess cat	ises more than	50% of	f total i	mpact i	n the re	spectiv	/e imp	act cat	egory.								
Orange	Process	causes betwee	n 30%	and 50	% of to	tal imp	act in t	he resi	pective	impac	t categ	orv.						
Yellow:	Processe	es between 10%	i and 3	0% of 1	total im	pact in	the res	pectiv	e impa	ct cate	gory.							
Nr: 0 Pro	vduct:	Base_Case_V1_EP-	.Copier_MI	-D-mono					·)ate: (0.01.00	A	uthor:	0			
Product	EXIRACIO	8		Energy		Wate	_	Was	fe			Emis	ssions to A				to Wat	er
co mp nr one	vght cat.	material	GER	electr	feedst	water proces)	water (cool)	haz. r Waste	10n-haz. Waste	GWP	AD	VOC	РОР	MH	PAH	M	Metal	EUP
	D L		ſW	ſW	ſW	ţ,	ltr.	D	D	kg CO2eq	g SO2eq	bm	ng i-Teq m	g Ni eq m	g Ni eq	<u>т</u>	mg n g/20eq	ng PO4 eq
1	50.423 1-BIKF	ola 1-LDPE	11 70	2 00	7.75	0.45	677	0.67	6.65	0.29	1 12	0.07	000	00.0	0.02	0 14	0000	4 00
2	71.599 1-BlkF	Pla 2-HDPE	51.42	6.60	36,33	2.28	20.82	3.65	25.75	1.21	4.09	0.11	0.00	00.00	0.23	0.58	0,00	20.02
3	49,376 1-BIKF	ola 4-PP	18,13	1,81	13,15	1,20	9,98	1,10	7,02	0,49	1,40	0,00	00'00	00'00	0,10	0,19	0,00	41,04
4 0 7	614,38 1-BIKF	ola 5-PS	660,40	27,56	361,91	37,31	1347,75	5,22	166,27	21,26 0.65	131,15	0,00	0,00	0,00	920,15 14.64	11,42	0,00	422,55
6 0 1	727.58 1-BIKF	Pla 7-HI-PS	159.33	8.07	84.88	9.50	42,00 321.33	1,11	51.91	5.01	33.57	00.0	0.00	0000	105.04	3.11	0,00	102.86
7 0 2	575,42 1-BlkF	Pla 10-ABS	244,72	17,90	117,88	23,95	424,94	25,75	236,75	8,55	45,77	0,00	0,00	0,00	4,66	7,47	5,00	1622,11
8 3	95,956 2-Tec	Pla 11-PA 6	47,32	5,99	15,41	6,34	86,71	7,52	69,80	3,39	15,46	0,00	00'0	0,00	0,16	2,14	19,41	741,34
0 0	4900,9 2-Tec	Pie12-PC	572,47 3 82	72,83	186,19 1 16	68,61 0.52	558,70	49,01	865,27 11 02	26,43	124,62	0,00	0,00	0000	1,78	32,84 0.41	0,80	2470,15 261 82
1 0 0 0 8 7	1,3298 2-Tech	Pla16-Flex PUR	3,02 8,50	1.52	3.24	5.69	24,24	2.63	44,63	0,10	2.61	0,00	0,00	00,00	1.64	0,67	0,00	462.41
12 0	0 2-Tec	Ple 0	00'0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	1 2-Tec	Pla 19-Aramid fibre	0,26	0,08	0,04	0,21	1,06	0,03	1,21	0,01	0,11	0,00	0,00	0,00	0,00	0,03	0,18	12,29
15 0 3 2 2	549.18 3-Ferr	10 21-St sheet galv. 0 22-St tube/profile	1215,08 43.34	81,43 11.66	2,65	000	0,00	0000	2041.09	3.51	200,/8 9.16	4,87 0.30	30.59	120,08 6.59	2,47 0.08	2.56	4 00	2329,00 97 71
16 0	11,216 3-Ferr	0 24-Ferrite	0,57	0,04	00'00	0,44	0,00	0,00	28,96	0,05	0,13	0,00	0,44	0,40	0,00	0,05	0,03	0,88
17 0 0 6 8	27 039 4-Non	To 25-Stainless 18/8 co	52,29 120 78	8,17	3,41	63,83	0.00	0,00	842,78 2457 99	5,23 6 49	47,21	0,11	6,49 3 13	124,99 2.28	0,02	6,67 10.61	72,79 21 96	1961,94 3 10
19 0	14,256 4-Non	I-fe 28-Cu winding wire	2,03	0,00	0,00	0,00	0,00	0,01	285,69	0,11	4,33	0,00	0,06	0,81	0,08	0,04	0,09	2,26
20 0 5.	28,556 4-Non	1-fe 29-Cu wire	61,60	0,00	0,00	0,00	0,00	0,13	10577,46	3,28	154,39	0,01	1,98	29,10	2,84	1,50	49,73	81,67
22 0 2	66667 4-Non	He 30-CU tube/sneet	33,69 0.10	0,00	00.0	00.0	0000	0.0	5302,39 8.11	00.0	41,42 0.09	00.0	0,07	21,89	3,54 0.01	00.0	0.02	40,94 0.04
23 0	34,896 6-Elec	ctrd 42-LCD per m2 scrn	124,34	79,21	0,00	1,57	23,38	0,03	1,81	6,43	2,07	0,01	0,01	0,03	0,00	0,02	0,01	0,00
24 0 2 0 2	56,197 6-Elec	ctrd 44-big caps & coils	213,18	0,00	0,00	19,28 6 06	30,59	10,90	334,02	12,05	78,88 46.05	0,07	1,20	4,26	113,83	19,81	41,28	3,97
20 0 A	1,9248 0-Ele(-trd A6-IC's ave 5% Si	76.87	26.00 26.00	000	00'0	0.00	10,1	20,20	0,9Z	13.57	0,00	0.24	0,49 0.17	0.07	1,19	18 21	104 58
27 0 3	5,5758 6-Elec	atro 47-IC's avg., 1% Si	31,10	23,95	0,11	21,75	3,68	22,93	62,20	2,09	29,04	00'0	0,35	6,58	0,10	0,86	0,34	152,85
28 0 1.	42,622 6-Elec	ctrd 48-SMD/ LED's avg.	423,42	411,54	0,00	131,99	0,00	18,64	403,75	23,82	231,11	1,07	2,14	60,15	0,65	7,25	2,10	313,13
20 20 20 20 20	16,425 6-Elet	ctro 49-PWB 1/2 lay 3.75	32,72	11,52	0,99	19,80	8,94	201,/9 Fee 2e	305,66 1210.46	1,31	24,89	0,27	0,32	4,21	0,42 2.06	0,59	1,/2 27.66	429,20
310	52 546 6-Fler	Tro 52-Solder SnAn4Cu	14.63	12.12	0.00	4.39	00.00	0.28	14.25	0.73	4 03	0000	0.08	0.21	0.12	000	0000	0.38
32 0 1	793,42 7-Mist	C. 54-Glass for lamps	29,10	23,19	00'00	15,28	0,00	0,48	24,26	1,49	5,39	0,01	0,14	0,32	0,00	0,12	0,07	0,64
33 0 4	201,67 7-Mist	c. 56-Cardboard	117,65	8,39	67,23	29,61	0,00	0,19	219,82	2,95	4,37	0,00	0,06	0,14	0,02	0,05	0,05	361,60
34 0 5 35 0 1	2,5267 /-MIS 140.33 6-Fler	c. 57-Office paper trd 98-controller board	2,10 891 14	0,31	3.47	4,00 596.80	0,00 120.46	0,02	3,55 1915.36	0,03 58 76	0,26 498 74	0,01 7.36	0,00	0,01 83.80	0,00	0,09 25.54	0,00 380 10	2//,/8 5361 99
·) • • • •	:	200	2.624.		200	5				200	- 255	• • •	5	

Table 10: Detailed impact assessment of input materials of Base case V1

EuP Preparatory Study Lot 4 (IE)

T5 page 19

Electronics are also indicated in the MEEuP EcoReport assessment. Electronic components (actives and passives) as well as their packaging and system integration (chip-board interconnection, multilayer boards) demands precious materials and resource intensive manufacturing processes. This aspect is reflected in the assessment results. The quality of the data is difficult to evaluate because the assessment of environmental burdens in relation to the functional value-add of advanced microelectronics and micro-electromechanical systems (MEMS) is very difficult. Against that background, we only conclude that electronics have an environmental impact and should be therefore carefully designed and integrated.

Whereas Table 10 provides data on the level of individual entries the following figure compares the impacts / indicators for the manufacturing stage aggregated per material category: Although electronics are of minor total weight (first column), it dominates 9 indicators out of 16, among them Total Energy (GER) and Global Warming Potential. For three indicators electronics contribute even by more than 75% to the total indicator value, among them hazardous waste. This aggregated data leads to the conclusion, that electronics are a very relevant factor for impacts at the manufacturing stage.

Figure 4: Weight of Material Classes versus Impacts / Indicator Values at Manufacturing Stage for Base Case V1

5.2.2. Base Case V2: EP-Copier/MFD Colour

5.2.2.1. Overview of assessment results for Base Case V2

Table 11 shows the MEEuP EcoReport environmental impact assessment results for the Base Case V2 (EP-Copier/MFD colour). If we take the total energy consumption (GER) as a reference for the environmental impact, the results indicate that the use phase contributes most significantly to the overall environmental impact. Similar to the previous product case the consideration of paper use⁵ does have an overall effect on the results.

Table 11: Eco-assessment results from MEEuP EcoRepor	ort for Base (Case V2 (incl.	paper)
--	----------------	----------------	--------

Та	ble Life Cycle Impact (per unit) of Base C	Case V2	- MFD ·	- Copier Co	olor (with	paper)				
Nr	Life cycle Impact per product:							Date	Author		
0	Base Case V2 - MFD - Co	oier Color	(with pa	aper)				0	0		
	Life Cycle phases>		P	RODUCT	TION	DISTRI-	USE	E	END-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Metaziala										
1	Rulk Plastics				26262			18383	7878	26262	0
2	TecPlastics	9			17422			12196	5227	17422	0
3	Ferro	9			75416			3771	71646	75416	0
4	Non-ferro	a			7636			382	7254	7636	0
5	Coating	a			0			0	0	0	0
6	Electronics	a			2460			1738	722	2460	0
7	Misc.	q			14250			712	13537	14250	0
	Total weight	g			143446			37182	106264	143446	0
	Other Resources & Waste		10601	2151	40750	997	420502	debet	see note! credit	442	444654
8	I otal Energy (GER)	MJ	10601	3151	13752	887	129602	2682	2270	412	144654
10	or which, electricity (in primary NJ)	IVIJ Itr	2376	1790	4166	2	39172	0	133	-133	43207
10	Water (process)	lu	6962	904	7757	0	202192	0	100	-100	204007
12	Water (cooling)	a	250571	94/18	260010	454	210052	8835	200 //33	9402	478027
13	Waste, horring2./ landing Waste, hazardous/ incinerated	9	230371	6	200015	4,74	1489	31301	124	31177	35421
	Emissions (Air)	19	2.00					0.001	.2.	•••••	
14	Greenhouse Gases in GWP100	kg CO2 eq.	585	177	761	54	2530	199	133	67	3412
15	Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
16	Acidification, emissions	g SO2 eq.	4450	780	5231	164	19414	411	241	170	24979
17	Volatile Organic Compounds (VOC)	g	22	5	26	13	543	8	3	5	587
18	Persistent Organic Pollutants (POP)	ng i-Teq	1967	0	1967	3	326	62	1	61	2357
19	Heavy Metals	mg Nieq.	1234	1	1235	23	908	726	11	715	2881
	PAHs	mg Nieq.	1914	4	1919	30	99	0	11	-11	2036
20	Particulate Matter (PM, dust)	g	483	131	614	2106	4618	3687	11	3677	11015
	Emissions (Water)	1									
21	Heavy Metals	mg Hg/20	1210	1	1211	1	287	218	48	170	1669
22	Eutrophication	g PO4	46	3	48	0	13932	12	2	11	13991
23	Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

In order to show again the magnitude of paper consumption on the environmental impact, Table 12 below shows the same assessment results excluding paper.

⁵ According to our use phase assumptions that have been discussed in task 4.3.2, the Base Case V2 has 6 year lifetime with a paper output of 87,880 pages per year.

Table 12: Eco-assessment results from MEEuP EcoReport for Base Case V2 (excl. paper)

Table . Life Cycle Impact (per unit) of Base C	Case V2	- MFD -	Copier Co	olor (excl.	Paper)				
Nr Life cycle Impact per product:							Date	Author		
0 Base Case V2 - MFD - Co	oier Color	(excl. P	aper)				0	0		
Life Cycle phases>		P	RODUCT	ION	DISTRI-	USE	E	ND-OF-LIF	E*	TOTAL
Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
Materials	unit		r							
1 Bulk Plastics	g			26262			18383	7878	26262	0
2 TecPlastics	g			17422			12196	5227	17422	0
3 Ferro	g			75416			3771	71646	75416	0
4 Non-ferro	g			7636			382	7254	7636	0
5 Coating	g			0			0	0	0	0
6 Electronics	g			2460			1738	722	2460	0
/ MISC.	g			14250			/12	13537	14250	0
Total weight	g			143446			37182	106264	143446	0
							استنا	see note!		
Other Resources & Waste	1	40004	0454	10750			debet	credit		
8 Total Energy (GER)	IVIJ	10601	3151	13/52	887	24242	2682	2270	412	39294
9 of which, electricity (in primary IVJ)	IVIJ	2370	1790	4166	2	23386	0	100	-133	2/421
10 Water (process)	ITT Ite	1880	44	1924	0	1632	0	108	-108	3447
12 Water (cooling)	10	0003	094	//5/	0	63526	0005	200	-286	70997
12 Waste, hon-maz./ landilli	g	250571	9446	260019	454	32129	00000	433	0402	301004
13 Waste, hazardous/ incinerated	g	2739	6	2/45	9	599	31301	124	31177	34530
Emissions (Air)										
14 Greenhouse Gases in GWP100	ka CO2 ea	585	177	761	54	1056	199	133	67	1938
15 Ozone Depletion, emissions	ma R-11 ec				neq	ligible				
16 Acidification, emissions	a SO2 ea.	4450	780	5231	164	6187	411	241	170	11752
17 Volatile Organic Compounds (VOC)	a	22	5	26	13	10	8	3	5	54
18 Persistent Organic Pollutants (POP)	ng i-Teg	1967	0	1967	3	215	62	1	61	2246
19 Heavy Metals	ma Niea.	1234	1	1235	23	618	726	11	715	2591
PAHs	mg Nieg.	1914	4	1919	30	65	0	11	-11	2002
20 Particulate Matter (PM, dust)	a	483	131	614	2106	245	3687	11	3677	6642
		,,								
Emissions (Water)										
21 Heavy Metals	mg Hg/20	1210	1	1211	1	178	218	48	170	1560
22 Eutrophication	g PO4	46	3	48	0	3	12	2	11	62
23 Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

5.2.2.2. Assessment results according to the consideration of paper

The comparison of Table 11 (incl. paper) and Table 12 (excl. paper) indicates that from the use phase impact of 129,602 MJ the absolutely largest portion of 105,360 MJ is related to paper consumption alone. The remaining 24,242 MJ are the impact of energy and toner consumption. Figure 5 below shows this comparison again graphically. In comparison to the Base Case V1 shows the Base Case V2 similar dimensions in the individual impact categories (see Figure 6 and Figure 7). If we exclude paper from the assessment, it becomes obvious that the overall environmental impact correlates directly with the product weight (material mass) in the manufacturing phase and with energy consumption in the use phase.

Figure 5: Total energy impact comparison including auxiliaries for Base Case V2

Figure 6: Distribution of resources related impacts for Base Case V2

Figure 7: Distribution of emissions to air for Base Case V2

5.2.2.3. Assessment of single impact categories related to life cycle phases

The following assessment of single eco-impacts related to the life cycle phase "Manufacturing", "Distribution", "Use", and "End-of-life" excludes the aspect of paper. By taking the impact category Total Energy as general eco-indicator, the "use" phase with 24,242 MJ has the single highest impact followed by the "manufacturing" phase with 13,752 MJ. The "Distribution" and "End-of-life" phases have again a very minor impact (see Figure 5). In terms of "Greenhouse Gases", and "Acidification" shows the Base Case V2 a roughly 40:60 eco-impact ratio between the "manufacturing" and "use" phase. The eco-impact categories which are indicating toxicity such as POP, Heavy Metals, and PAHs, as well as Volatile Organic Compounds (VOC) show a much higher impact ratio with regards to the manufacturing phase. The auxiliary material "Toner" does not show a particular large impact.

Regarding data acquisition, data quality and methodological aspects of the assessment, see also Section 5.2.1.3

Details regarding the environmental impacts of various materials for the Base Case V2 are provided in Table 13 on the following page. In this table the material inputs are listed by category (e.g. Bulk Plastics, 5-PS) and their eco-impact weighted through a colour code. Materials causing

more than 50% of the total impact in the respective category are indicated with red colour. Materials or components causing 30% to 50% of the total impact in the respective category are indicated with orange colour. Materials or components causing 10% to 30% of the total impact in the respective category are indicated with yellow colour. Everything else is marked in grey.

Galvanized Steel (21-St sheet) has again a considerable eco-impact because it amount 72 kg or 51% of total mass. This impact is very similar in its proportions when compared to the first base case. The Base Case V2 on the other hand has a higher amount of stainless steel (3 kg) and also copper wiring (4 kg) even when taking the factor two in total weight between the two product cases into account. Both materials show particular environmental impacts in the waste and emissions categories. In terms of other Ferro and non-Ferro metals shows the comparison of both base cases similar proportions according to their total material mass.

Concerning the impact of plastics, PC is with 15 kg the single largest fraction followed by PS (10 kg) and ABS (7 kg). The eco-impact of PC and ABS is caused by the higher resource consumption, however regarding emissions and particular toxicity their impact is relatively small. The Base Case V2 has with 6 kg a considerable amount of EPS, which was very little used in the Base Case V1. The eco-impact of PS and EPS is related to the high PAHs (polycyclic aromatic hydrocarbons) concentration.

What is interesting to notice is the fact that the mass of Electronics in Base Case V2 is with 2.5 kg almost identical (in total) to the Base Case V1. But, if we compare the single "Electronics" input categories we can detect differences, which have an impact on the assessment results. In the Base Case V1 most electronic components have been allocated to the category 44-big caps & coils, whereas in the Base Case V2 the same electronic components have been allocated to the category 49-PWB (in sense of a populated PWB). The actual effects of this different component allocations in the single impact categories are however minimal.

0 Produ		Base Case V2 - MFI	0 - Copier Co	lor							Date:	00.01.00		Author:		0		
TFRIAL S FX1	TRACTION &	PRODIICTION														,		
Product			Ξ	nergy		Wate	ar	Wa	ste			Emi	issions to	Air			to W	later
co mp w <u>c</u>	ght cat.	. material	GER	electr	feedst (water (proces)	water (cool)	haz. Waste	non-haz. Waste	GWP	AD	VOC	POP	MH	РАН	Md	Metal	EUP
Ξ.	Б		ſW	ſW	ſW	臣	ltr.	D	б	kg C02eq	g S02eq	bm	ng i-Teq	mg Ni eq	mg Ni eq	5	mg lg/20eq n	ng P04 e
0 298.7	T7665 1.Blkp	Diad 4.1 DDF	23 24	3 98	15.40	09.0	13 44	1 33	13.20	0.57	000	0.15	0.00	0 00	0.04	10.07	0 00	26
0 1980.	53695 1-BIKP	Plas 2-HDPE	151.63	19.47	107.15	6.73	61.40	10.77	75.94	3.58	12.07	0.32	0.00	00.00	0.68	1.70	00.00	59.0
16	9,0009 1-BIKP	plas 4-PP	12.28	1.23	8.91	0,81	6.76	0,75	4.76	0.33	0.95	0,00	0,00	00.00	0,06	0.13	0,00	27.8
1021	4,8291 1-BIKF	Plas 5-PS	885,93	36,98	485,51	50,05	1808,02	7,01	223,05	28,51	175,95	0,00	0,00	0,00	1234,39	15,32	0,00	566,8
5 0 6184,	,68689 1-BIKF	plas 6-EPS	517,41	20,90	295,69	35,25	1088,50	5,75	234,10	16,71	112,15	0,00	0,00	0,00	376,30	11,13	0,00	770.
5 0 94,51	133896 1-BIKF	Plas 8-PVC	5,35	1,05	2,17	1,04	5,86	0,47	6,34	0,20	1,42	0,00	00'0	0,00	0,00	0,27	0,27	29,6
7 0 7319,	,27016 1-BIKF	Plas 10-ABS	695,48	50,87	335,00	68,07	1207,68	73,19	672,84	24,30	130,06	0,00	0,00	0,00	13,23	21,23	14,20	4609,
S 0 880,0	020719 2-Tec	5Pla 11-PA 6	105,17	13,31	34,24	14,08	192,72	16,72	155,12	7,53	34,36	0,01	00'00	0,00	0,36	4,75	43,14	1647,
9 0 1499	0,2594 2-Tec	SPIa 12-PC	1751,01	222,76	569,48	209,86	1708,89	149,90	2646,59	80,84	381,17	0,00	0,00	0,00	5,44	100,43 4 2r	2,46	7555,
0 002 0	1436/1 2-160	CHIA 14-EPOXY	102 20	17.20	20,00	1,/1 E0 7E	20,4C	10 61	00,00 APE 20	1 16	20.05		00.0		20.44	7 33	12 02	2472 5
0 466.4	132134 2-1eu	Pla 16-Flex PUR	48.73	8.73	18.56	32.65	139.01	15,11	255.99	2.09	14.98	0.00	0.00	0.00	9.41	3.84	1.56	2652.2
3 0 7258	8,3738 3-Ferr	ro 21-St sheet galv.	2468,00	165,39	5,39	0,00	0,00	0,00	124962,34	205,23	541,88	9,90	1887,30	257,30	5,03	196,52	257,70	4730,
1 0 5,981	114795 3-Ferr	ro 24-Ferrite	0,30	0,02	0,00	0,24	0,00	0,00	15,44	0,03	0,07	0,00	0,23	0,21	00'0	0,02	0,01	0,4
5 0 2822,	10803 3-Ferr	ro 25-Stainless 18/8 coil	175,09	27,35	11,42	213,73	23,80	0,00	2822,11	17,51	158,10	0,38	21,73	418,53	0,08	22,33	243,74	6569,
5 0 1587,	,14805 4-Non	1-fe 26-AI sheet/extrusion	305,72	0,00	00'00	0,00	0,00	0,00	6221,62	16,42	106,82	0,10	7,92	5,77	153,22	26,85	55,58	7,8
7 0 179,3	33333 4-Non	n-fe 27-AI diecast	9,89	0,00	0,00	0,00	0,00	0,00	134,50	0,64	2,80	0,01	6,01	0,15	3,17	0,73	1,16	0,5
391	0,9319 4-Non	1-fe 28-Cu winding wire	558,17	0,00	0,00	0,00	0,00	3,12	78375,08	28,81	1188,28	0,12	15,53	221,04	21,63	11,83	25,30	618,
0 954,5	00905 4-Non	1-fe 29-Cu Wire	111,26 E1 13	0,00	0,00	00.0	00,00	0,00	19102,85 8046 13	5,32	Z/8,83 62 86	10,0	3,5/	33.22	5,14 6 38	1 17	37,80	14/ °
1 0 82,33	33333 6-Elec	tro 42-LCD per m2 scrn	293,37	186,90	0,00	3,71	55,16	0,08	4,28	15,18	4,87	0,03	0,02	0,06	0,01	0,05	0,02	0.0
0	0 6-Elec	ctro 44-big caps & coils	00'0	0,00	00'0	0,00	0,00	00'0	0,00	0,00	00'0	0,00	00'0	0,00	00'00	0,00	0,00	0,0
3 0 165,8	382796 6-Elec	ctro 45-slots / ext. ports	31,03	9,84	00'0	12,38	42,36	2,84	51,04	1,66	30,58	0,00	0,23	6,30	0,32	2,15	5,28	1073,2
1 0 9,711	189337 6-Elec	ctro 46-IC's avg., 5% Si, Au	53,51	52,04	0,00	48,72	0,00	2,45	50,32	4,11	27,07	0,66	0,47	4,34	0,14	0,71	36,32	208,(
5 0 31,99	915816 6-Elec	ctro 47-IC's avg., 1% Si	27,97	21,54	0,10	19,56	3,31	20,62	55,93	1,88	26,11	0,00	0,31	5,92	0,09	0,77	0,31	137,4
S 0 274,3	313167 6-Elec	ctro 48-SMD/ LED's avg.	814,40	791,55	0,00	253,86	0,00	35,85	776,56	45,81	444,52	2,05	4,11	115,68	1,24	13,94	4,04	602,2
7 0 706,5	504649 6-Elec	ctro 49-PWB 1/2 lay 3.75kg	198,57	106,35	6,03	120,13	54,26	1224,55	1854,82	7,93	151,02	1,64	1,91	25,54	2,52	3,59	10,42	2604,4
8 0 280,8	372833 6-Elec	ctro 50-PWB 6 lay 4.5 kg/m	103,13	41,05	2,40	136,24	21,57	531,35 of 40	1144,08	4,41	111,22	0,29	1,43	19,68	1,93	10,40	35,23	686,
0 0,134	223377 0-EIEC	CITO 51-PWB 5 Iay 2 Kg/m2	30.00	2,04	10.0	16.23	0.00	0.61	2C, 2 I	1 60	CC,1 CT 3	0,0	0.15	0.34	0,02	0,04	7,00	30
1011	6 6667 7-Misr	C. 04-01d55 101 Id111p5	340.67	24,02	194.67	85.75	000	0.56	636.52	8.54	12.65	0.01	0.15	0.42	0.05	0 13	0.16	1047 0
0 178.3	368057 7_Misr	c. 57-Office paper	7 13	1 07	4.82	13.58	0 00	0.06	12 05	0 10	06.0	0.04	0.01	0.02	00.0	0.30	0.01	643

Table 13: Detailed impact assessment of input materials of Base case V2

Fraunhofer IZM and PE Europe

5.2.3. Base Case V3: EP-Printer/SFD Monochrome

5.2.3.1. Overview of assessment results for Base Case V3

Table 14 shows the MEEuP EcoReport environmental impact assessment results for the Base Case V3 (EP-Printer/SFD monochrome). If we take the total energy consumption (GER) as a reference for the environmental impact, the results indicate that the use phase contributes most significantly to the overall environmental impact. Similar to the previous product cases the consideration of paper use⁶ does have an overall effect on the results.

					~	/ • •	
Table 14: Eco	-assessment results	s from MEEuł	' EcoReport t	or Base (lase V3	(incl.)	naner)
LUDIC L II LICO			Leoneport	or buse c		(111010)	paper,

Та	ble . Life Cycle Impact (per unit)) of Base (Case_V3	_EP-Pr	inter-SFD-	mono (inc	:I. Paper)				
Nr	Life cycle Impact per product:							Date	Author		
0	Base Case_V3_EP-Printer	-SFD-mor	no (incl.	Paper)	1			0	vhk		
	Life Cycle phases>		Р	RODUCT	ION	DISTRI-	USE		END-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit									
1	Bulk Plastics	g			4613			3690	923	4613	0
2	TecPlastics	g			5307			4245	1061	5307	0
3	Ferro	g			7290			364	6925	7290	0
4	Non-ferro	g			807			40	767	807	0
5	Coating	g			0			0	0	0	0
6	Electronics	g			823			461	362	823	0
7	Misc.	g			4265			213	4052	4265	0
	Total weight	g			23104			9015	14089	23104	0
	Other Resources & Waste							debet	see note! credit		
8	Total Energy (GER)	MJ	2025	631	2656	205	177679	650	545	105	180644
9	of which, electricity (in primary MJ)	MJ	497	322	819	0	41001	0	49	-49	41771
10	Water (process)	ltr	525	13	538	0	305465	0	43	-43	305960
11	Water (cooling)	ltr	1504	172	1677	0	46678	0	49	-49	48306
12	Waste, non-haz./ landfill	g	26265	2025	28290	125	292456	1423	151	1272	322142
13	Waste, hazardous/ incinerated	g	1763	3	1766	2	1795	8298	52	8246	11809
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	102	36	138	14	3012	48	35	14	3177
15	Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
16	Acidification, emissions	g SO2 eq.	755	166	920	40	24590	98	74	25	25575
17	Volatile Organic Compounds (VOC)	g	3	2	5	2	816	2	1	1	824
18	Persistent Organic Pollutants (POP)	ng i-Teq	190	20	210	1	325	10	0	10	545
19	Heavy Metals	mg Nieq.	178	47	225	6	942	175	5	170	1344
	PAHs	mg Nieq.	170	2	172	8	86	0	5	-5	261
20	Particulate Matter (PM, dust)	g	90	31	121	387	6841	866	3	863	8212
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	311	0	311	0	294	54	24	30	635
22	Eutrophication	g PO4	13	1	13	0	21135	3	1	3	21151
23	Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

In order to show also in this case again the magnitude of paper consumption on the environmental impact, Table 15 below provides the same assessment results excluding paper.

⁶ According to our use phase assumptions that have been discussed in task 4.3.3, the Base Case V3 has 6 year lifetime with a paper output of 133,120 pages per year.

Table 15: Eco-assessment results from MEEuP EcoReport for Base Case V3 (excl. paper)

Та	ble . Life Cycle Impact (per unit)	of Base C	Case_V3	EP-Pr	inter-SFD-	mono (ex	cl. Paper)				
Nr	Life cycle Impact per product:							Date	Author		
0	Base Case_V3_EP-Printer	-SFD-mor	no (excl	. Papei	r)			0	vhk		
	Life Cycle phases>		F	RODUCT	TION	DISTRI-	USE	E	END-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit									
1	Bulk Plastics	g			4613			3690	923	4613	0
2	TecPlastics	g			5307			4245	1061	5307	0
3	Ferro	g			7290			364	6925	7290	0
4	Non-ferro	g			807			40	767	807	0
5	Coating	g			0			0	0	0	0
6	Electronics	g			823			461	362	823	0
7	Misc.	g			4265			213	4052	4265	0
	Total weight	g			23104			9015	14089	23104	0
	Other Resources & Waste							debet	see note! credit		
8	Total Energy (GER)	MJ	2025	631	2656	205	17839	650	545	105	20804
9	of which, electricity (in primary MJ)	MJ	497	322	819	0	17053	0	49	-49	17823
10	Water (process)	ltr	525	13	538	0	1199	0	43	-43	1694
11	Water (cooling)	ltr	1504	172	1677	0	46678	0	49	-49	48306
12	Waste, non-haz./ landfill	g	26265	2025	28290	125	22532	1423	151	1272	52218
13	Waste, hazardous/ incinerated	g	1763	3	1766	2	444	8298	52	8246	10458
	Emissions (Air)	1									
14	Greenhouse Gases in GWP100	kg CO2 eq.	102	36	138	14	776	48	35	14	941
15	Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
16	Acidification, emissions	g SO2 eq.	755	166	920	40	4523	98	74	25	5508
17	Volatile Organic Compounds (VOC)	g	3	2	5	2	7	2	1	1	16
18	Persistent Organic Pollutants (POP)	ng i-Teq	190	20	210	1	157	10	0	10	377
19	Heavy Metals	mg Nieq.	178	47	225	6	502	175	5	170	903
	PAHs	mg Nieq.	170	2	172	8	35	0	5	-5	210
20	Particulate Matter (PM, dust)	g	90	31	121	387	207	866	3	863	1577
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	311	0	311	0	129	54	24	30	470
22	Eutrophication	g PO4	13	1	13	0	2	3	1	3	18
23	Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

5.2.3.2. Assessment results according to the consideration of paper

The comparison of Table 14 (incl. paper) and Table 15 (excl. paper) indicates that from the use phase impact of 177,679 MJ the largest portion of 159,840 MJ is related to paper consumption alone. The remaining 17,839 MJ are the impacts of energy and toner consumption. Figure 8 below shows that according to the use pattern assumption 90% of the products total energy consumption in the use phase is related to paper. If we exclude paper from the assessment, it becomes obvious that the overall environmental impact correlates directly with the product weight (material mass) in the manufacturing phase and with energy consumption in the use phase (see also Figure 9 and Figure 10 further below for details).

Figure 8: Total energy impact comparison including auxiliaries for Base Case V3

Figure 9: Distribution of resources related impacts for Base Case V3

Figure 10: Distribution of emissions to air for Base Case V3

5.2.3.3. Assessment of single impact categories related to life cycle phases

The following assessment of single eco-impacts related to the life cycle phase "Manufacturing", "Distribution", "Use", and "End-of-life" excludes the aspect of paper. By taking the impact category Total Energy as general eco-indicator the "use" phase with 17,839 MJ has the single highest impact followed by the "Manufacturing" phase with 2,656 MJ. The "Distribution" and "End-of-life" phases have again a very minor impact. In terms of "Greenhouse Gases" and "Acidification" shows the Base Case V3 a similar eco-impact ratio between the "Manufacturing" (<15%) and "Use" phase (>85%). The eco-impact categories which are indicating toxicity such as POP, Heavy Metals, and PAHs, as well as Volatile Organic Compounds (VOC) show a much higher impact ratio with regards to the manufacturing phase. The auxiliary material "Toner" does not show a particular large impact.

Regarding data acquisition, data quality and methodological aspects of the assessment, see also Section 5.2.1.3

Details regarding the environmental impacts of various materials for the Base Case V3 are provided in Table 16. In this table the material inputs are listed by category (e.g. Bulk Plastics, 5-PS) and their eco-impact weighted through a colour code. The very even distribution of materials

of the Base Case V3 does not indicate particular environmental impacts. Although PC (4.2 kg) and ABS (2.9 kg) show-up in the assessment, their alternatives would indicate probably higher impacts in resources and emissions. Galvanized and stainless steel, copper wiring as well as Electronics have again a certain eco-impact because their total mass. In general this impact is very similar in their proportions compared to the other base cases. A direct comparison of Total Energy related to the manufacturing phase of the Base Case V1 (EP-Copier/MFD monochrome) and the Base Case V3 (EP-Printer/SFD monochrome) shows that the factor three difference in product mass (V1 68 kg and V3 23 kg) is roughly the same in terms of the energy related impact. This comparison indicates that even with different material distribution (compare percentages of material inputs by category) as well as different product complexity, the impact increases proportionally to the weight.

Colour coding															
ked: Process causes more th	1an 50% o	f total impa	ct in th	e respec	ctive in	npact cat	egory								
Drange: Process causes bety	ween 30%	and 50% o	f total j	impact i	n the r	espective	impa	ct cate	gory.						
Yellow: Processes between 1	10% and 3	30% of total	impac	t in the	respect	ive impa	ct cat	egory.							
Ir: 0 Product: Base Case V3 EP	P-Printer-SFD-	mono						Date: (00.01.00	Au	thor:	>	ž		
MATERIALS EXTRACTION & PRODUCTION															
Product		Energy	5	ater	Ň	aste			Emis	sions to Ai				to Wa	iter
r mp wght cat. material	GER	electr feeds	water t (proces	(cool)	haz. Waste	non-haz. Waste	GWP	AD	VOC	POP	MH	РАН	M	Metal	EUP
gui	ſW	ſW	ţţ.	ltr.	D	б	kg CO2eq	g SO2eq	бш	ng i- Teq	ig Ni eq m	ig Ni eq	9	mg Ig/20eq m	g PO4 eq
1 0 114.87 1-BikPlas 1-LDPE	8.94	1.53 5.5	0.3	4 5.17	0.51	5.08	0.22	0.86	0.06	0.00	0.00	0.02	0.11	0.00	3.06
2 0 366,87 1-BlkPlas 2-HDPE	28,09	3,61 19,8	1,2	6 11,37	2,00	14,07	0,66	2,24	0,06	0,00	0,00	0,13	0,32	0,00	10,94
3 0 43,433 1-BikPlas 3-LLDPE	3,21	0,44 2,0	0,1	0 5,04	0,15	1,33	0,08	0,26	0,00	0,00	0,00	0,00	0,06	0,00	1,70
4 0 82,183 1-BikPlas 4-PP	5,97	0,60 4,3	3 0,3	9 3,29	0,36	2,31	0,16	0,46	0,00	0,00	0,00	0,03	0,06	0,00	13,52
5 0 851,84 1-BlkPlas 5-PS	73,88	3,08 40,4	1,1	7 150,77	0,58	18,60	2,38	14,67	0,00	0,00	0,00	102,94	1,28	0,00	47,27
6 0 3,7333 1-BikPlas 6-EPS	0,31	0,01 0,1	0,0	2 0,66	0,00	10,14	0,01	0,07	00'0	0,00	0,00	0,23	0,01	0,00	0,47
8 0 4,0667 1-BikPlas 9-5AN	0,36	0,02 0,1	0.0	2 0,66	0,02	0,13	0,01	0,06	0,0	00.00	0,00	00.0	0.01	t: 00 [°] 0	1,14
9 0 2954,5 1-BlkPlas 10-ABS	280,74	20,53 135,2	27,4	8 487,49	29,55	271,60	9,81	52,50	0,00	0,00	0,00	5,34	8,57	5,73	1860,87
0 0 626,39 2-TecPla; 11-PA 6	74,86	9,48 24,3	37 10,0	2 137,18	11,90	110,41	5,36	24,46	0,01	0,00	0,00	0,25	3,38	30,71	1172,77
1 0 4219,4 2-TecPla 12-PC	492,86	62,70 160,2	59,0	7 481,01	42,19	744,95	22,75	107,29	0,00	0,00	0,00	1,53	28,27	0,69	2126,64
2 0 47,95 2-TecPla 13-PMMA	5,28	0,63 2,0	1 0,4	7 1,25	0,074	5,02	0,29	2,09	0,00	0,00	0,0	0,00	0,24	0,13	99,16
3 0 38,316 2-16CPI8114-EPOXY	0,40	0,100,000	0°1 0°1	4 14,91 5 15,30	1 00	01,01	0,210	1,1				1 00	00.0		164,01
5 0 139.26 2-Techarla-Nglu For	14.55	2.61 5.5	9.7	5 41.50	4.51	76.42	0.62	4,47	0.00	00.00	0.0	2.81	1,15	0,46	791.79
6 0 184,13 2-TecPlat18-E-glass fibre	12,12	3,88 1,9	9 10,0	0 49,96	1,30	57,30	0,62	5,37	0,00	0,00	0,00	0,01	1,50	8,72	580,26
7 0 6506,7 3-Ferro 21-St sheet galv. 8 0 242 55 3-Ferro 22-St tribe/mrofile	221,23 3.61	14,83 0,4 0 97 -0 0	0,0	0,00	0,00	11201,34 170 18	18,40 0.29	48,5/ 0.76	0,89	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23,06 0.55	0,45	1/,62	23,10	424,04 8 15
9 0 3,4667 3-Ferro 23-Cast iron	0.03	0.00	0.0	0 0,01	00'0	1,09	0,00	0,01	00.0	0.02	0,01	0,00	0.05	0,00	0,09
0 0 108,99 3-Ferro 24-Ferrite	5,51	0,37 0,0	1 4,2	9 0,00	0,00	281,45	0,46	1,22	0,02	4,25	3,92	0,00	0,44	0,26	8,57
1 0 458,03 3-Ferro 25-Stainless 18/8 coil	il 28,42	4,44 1,8	34,6	9 3,86	0,00	458,03	2,84	25,66	0,06	3,53	57,93	0,01	3,62	39,56	1066,27
2 0 213,01 4-Non-fe 26-AI sheet/extrusion	or 41,03	0*00 00*0	0,0	0,00	0,00	834,99	2,20	14,34	0,01	1,06	0,77	20,56	3,60	7,46	1,05
23 0 388,64 4-Non-fe 28-Cu winding wire	55,47	0,00 0,0	0,0	0,00	0,31	7788,38	2,86	118,08	0,01	1,54 2	21,97	2,15	1,10	2,51	61,48
4 U 45,533 4-Non-reiz/-AI diecast	11 20				0,00	34,23 1922 35	0,10	28.06		0.36	1,04 5,29	0.52	0.27	0,5U	14.84
06 0 29,366 4-Non-fel 30-Cu tube/sheet	1,50	0,00 00,0	0,0	00'0	0,00	235,34	0,08	1,84	0,00	0,30	0.97	0,16	0,04	1,11	1,82
27 0 2,6667 4-Non-fe 31-CuZn38 cast	0,10	0,00 00,0	0,0 0,0	00'0 0	00'0	8,11	0,00	0,09	0,00	0,07	0,15	0,01	0,00	0,02	0,04
28 0 31,867 4-Non-fe 32-ZnAI4 cast	0,90	0,00 0,0	0,0 0,0	7 0,00	0,02	48,85	0,04	0,20	0,00	1,91	0,07	0,03	0,04	0,01	0,02
29 0 113,73 6-Electro 44-big caps & coils	43,59	0,00 0,0	0 3,9	4 6,25	2,23	68,30	2,46	16,13	0,01	0,25	0,87	23,27	4,05	8,44	0,81
00 0 87,417 6-Electro 45-slots / ext. ports	16,35	5,18 0,0	00 6,5	3 22,32	1,49	26,90	0,88	16,12 47 75	0,00	0,12	3,32	0,17	1,13	2,78	565,56 126,70
0 0,000 0-Electrol 40-IC 5 8Vg.; 0% 5I, AC	8 00	6 16 0 0	13 55 13 55	9 0,00	5 90	15,33	0.54	7 46		60 0	1 69	0.03	0,20	0.04	39.29
2 0 45,021 6-Electro 48-SMD/ LED's avg.	133,66	129,91 0,0	0 41,6	0,00	5,88	127,45	7,52	72,95	0,34	0,67	18,99	0,20	2,29	0,66	98,84
4 0 65,509 6-Electro 49-PWB 1/2 lay 3.75kg	g 18,41	9,86 0,5	11,1	4 5,03	113,54	171,98	0,74	14,00	0,15	0,18	2,37	0,23	0,33	0,97	241,49
5 0 97,312 6-Electro 50-PWB 6 lay 4.5 kg/m	щ 35,73	14,22 0,8	3 47,2	0 7,47	184,09	396,38	1,53	38,53	0,10	0,50	6,82	0,67	3,60	12,21	237,71

Table 16: Detailed im	nact assessment of in	nut materials of	Base Case V3
Table 10. Detaneu ini	pace assessment of m	put mater and or	Dust Cust 15

T5 page 32

5.2.4. Base Case V4: EP-Printer/SFD colour

5.2.4.1. Overview of assessment results for Base Case V4

Table 17 shows the MEEuP EcoReport environmental impact assessment results for the Base Case V4 (EP-Printer/SFD colour). If we take the total energy consumption (GER) as a reference for the environmental impact, the results indicate that the use phase contributes most significantly to the overall environmental impact. Similar to the previous product cases the consideration of paper use⁷ does have an overall effect on the results.

Table 17. Ec	n-assessment	results from	MEEnP	EcoReport	for Base	Case V4	(incl.	naner)
Table 17. EC	0-assessment	results from	within .	L'UNCPUIT.	IUI Dasc		(mei-	paper)

Та	ble . Life Cycle Impact (per unit)) of Base (Case_V4	_EP-Pr	inter-SFD-	color (incl	l. Paper)				
Nr	Life cycle Impact per product:							Date	Author		
0	Base Case_V4_EP-Printer	-SFD-colo	or (incl. I	Paper)				0	0		
	Life Cycle phases>		P	RODUCT	TION	DISTRI-	USE	E	END-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit									
1	Bulk Plastics	g			14998			11999	3000	14998	0
2	TecPlastics	g			2424			1939	485	2424	0
3	Ferro	g			15901			795	15106	15901	0
4	Non-ferro	g			1619			81	1538	1619	0
5	Coating	g			2			0	2	2	0
6	Electronics	g			1533			1173	360	1533	0
7	Misc.	g			6625			331	6294	6625	0
	Total weight	g			43103			16318	26785	43103	0
	Other Resources & Waste	1						debet	see note! credit		
8	Total Energy (GER)	MJ	3525	1103	4628	345	183770	1132	990	142	188884
9	of which, electricity (in primary MJ)	MJ	782	601	1383	1	46694	0	55	-55	48023
10	Water (process)	ltr	865	17	882	0	305876	0	46	-46	306712
11	Water (cooling)	ltr	2788	299	3087	0	62464	0	81	-81	65470
12	Waste, non-haz./ landfill	g	54462	3829	58291	193	300594	2653	172	2481	361559
13	Waste, hazardous/ incinerated	g	1306	3	1309	4	1938	14298	55	14243	17494
	Emissions (Air)	1									1
14	Greenhouse Gases in GWP100	kg CO2 eq.	176	63	239	22	3276	84	64	20	3557
15	Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
16	Acidification, emissions	g SO2 eq.	1285	280	1565	65	26123	171	113	59	27813
17	Volatile Organic Compounds (VOC)	g	8	3	11	5	818	3	1	2	835
18	Persistent Organic Pollutants (POP)	ng i-Teq	415	44	459	1	386	19	0	18	865
19	Heavy Metals	mg Nieq.	373	104	477	10	1146	306	5	300	1933
	PAHs	mg Ni eq.	1008	2	1010	12	106	0	5	-5	1123
20	Particulate Matter (PM, dust)	g	140	48	189	739	6929	1509	4	1505	9361
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	460	0	460	0	340	93	24	69	870
22	Eutrophication	g PO4	31	1	32	0	21136	5	1	5	21172
23	Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

In order to show also in this case again the magnitude of paper consumption on the environmental impact, Table 18 below provides the same assessment results excluding paper.

⁷ According to our use phase assumptions that have been discussed in task 4.3.4, the Base Case V4 has 6 year lifetime with a paper output of 133,120 pages per year.

Table 18: Eco-assessment results from MEEuP EcoReport for Base Case V4 (excl. paper)

Т	able . Life Cycle Impact (per unit	of Base C	Case_V4	_EP-Pr	inter-SFD-	color (exc	I. Paper)				
Ni	Life cycle Impact per product:							Date	Author		
0	Base Case_V4_EP-Printer	-SFD-colo	or (excl.	Paper)	I			0	0		
	Life Cycle phases>		F	RODUCT	ION	DISTRI-	USE	I	END-OF-LIFE	E *	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit			4 4000			11000	2000	4 4000	
		g			14998			11999	3000	14998	0
		g			2424			1939	485	2424	0
	Non form	g			15901			795	15100	15901	0
		g			1019			01	1536	1019	0
	Electronico	g			1522			1172	260	1522	0
	Mice	g			1555			1173	6204	1000	0
	Total weight	g			42402			16219	0294	42402	0
		y			43103			10310	20705	43103	U
									coo notol		
	Other Resources & Waste							dobot	crodit		
,	Total Energy (GER)	MI	3525	1103	4628	345	23030	1132	990	142	29044
	of which electricity (in primary MI)	MI	782	601	1383	1	23330	0	55	-55	24075
1	Water (process)	ltr	865	17	882	0	1610	0	46	-35	240/5
1	Water (cooling)	ltr	2788	299	3087	0	62464	0	81	-81	65470
1:	Waste non-haz / landfill	a	54462	3829	58291	193	30670	2653	172	2481	91635
1:	Waste hazardous/ incinerated	a a	1306	3	1309	4	587	14298	55	14243	16143
		9		0		•		1.200	00		
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	176	63	239	22	1040	84	64	20	1321
1	Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
10	Acidification, emissions	g SO2 eq.	1285	280	1565	65	6057	171	113	59	7746
17	Volatile Organic Compounds (VOC)	g	8	3	11	5	10	3	1	2	27
18	Persistent Organic Pollutants (POP)	ng i-Teq	415	44	459	1	218	19	0	18	696
19	Heavy Metals	mg Ni eq.	373	104	477	10	705	306	5	300	1492
	PAHs	mg Nieq.	1008	2	1010	12	55	0	5	-5	1072
20	Particulate Matter (PM, dust)	g	140	48	189	739	294	1509	4	1505	2726
	Emissions (Water)										•
2	Heavy Metals	mg Hg/20	460	0	460	0	175	93	24	69	705
2	2 Eutrophication	g PO4	31	1	32	0	3	5	1	5	40
2	Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

5.2.4.2. Assessment results according to the consideration of paper

The comparison of Table 17 (incl. paper) and Table 18 (excl. paper) indicates that from the use phase impact of 183,770 MJ the largest portion of 159,840 MJ is related to paper consumption alone. The remaining 23,930 MJ are the impact of energy and toner consumption. Figure 11 below shows that according to the use pattern assumptions 87% of the products total energy consumption in the use phase is related to paper. If we exclude paper from the assessment, it becomes obvious that the overall environmental impact correlates directly with the product weight (material mass) in the manufacturing phase and with energy consumption in the use phase. Further details of the assessment are shown in Figure 12 and Figure 13 below.

Figure 11: Total energy impact comparison including auxiliaries for Base Case V4

Figure 12: Distribution of resources related impacts for Base Case V4

Figure 13: Distribution of emissions to air for Base Case V4

5.2.4.3. Assessment of single impact categories related to life cycle phases

The following assessment of single eco-impacts related to the life cycle phase "Manufacturing", "Distribution", "Use", and "End-of-life" excludes the aspect of paper. By taking the impact category Total Energy as general eco-indicator the "Use" phase with 23,930 MJ has the single highest impact followed by the "manufacturing" phase with 4,628 MJ. The comparison of the manufacturing phase's Total Energy impact between the monochrome EP-printer (Base Case V3) and the colour EP-Printer (Base Case V4) shows that the impact increases almost proportionally to the respective product weight. The "Distribution" and "End-of-life" phases have again a very minor impact. In terms of "Greenhouse Gases" and "Acidification" shows the Base Case V4 an eco-impact ratio of 20:80 between the "Manufacturing" and "Use" phase. The eco-impact categories which are indicating toxicity such as POP, Heavy Metals, and PAHs, as well as Volatile Organic Compounds (VOC) show a much higher impact ratio with regards to the manufacturing phase. The auxiliary material "Toner" does not show a particular large impact and correlates with the mass (kg/a) of assumed consumption.

Regarding data acquisition, data quality and methodological aspects of the assessment, see also Section 5.2.1.3
Details regarding the environmental impacts of various materials for the Base Case V4 are provided in Table 19. In this table the material inputs are listed by category and their eco-impact weighted through a colour code. Bulk Plastics such as 5-PS and 10-ABS as well as Ferro Metal 21-St sheet galv. are contributing most significantly to the overall impact due to the relatively high mass volume. Non-Ferro such as 25-stainless steel and 29-Cu wire as well as Electronics (46-ICs, 48-SMD/LED and 49-PWBs) is also significant according to the MEEuP EcoReport assessment.

Coloui	r coding	b 0																
Red: P	rocess c	auses more than	50% c	of total	limpac	ct in the	respect	tive imp	oact cate	gory.								
Orang	e: Proce	sss causes betwee	en 30%	and 5	50% of	total in	npact ir	the res	pective	impac	t catego	ry.						
Yellow	7: Proces	sses between 10%	% and	30% o	f total	impact	in the r	espectiv	e impac	ct cate	gory.							
Nr: 0 Pi	roduct:	Base Case V4 E	P-Printe	er-SFD-o	color						Date: (0.01.00	A	uthor:	0			
Prod	uct			Energy		Wat	er	Was	ste			Emissi	ons to Ai				to Wa	ter
L CO	wght cat	t. material	GER	electr	feedst	water (proces)	water (cool)	haz. Waste	non-haz. Waste	GWP	AD	VOC	Рор	WH	РАН	M	Metal	EUP
	ing		ſW	ſW	ſW	ltr.	ltr.	б	б	kg C02eq	g S02eq	бш	ng i- r Teq	ng Ni n eq	ng Ni eq	g	mg r g/20eq	ng PO4 eq
•	1182,2 1-BIK	Plast 1-LDPE	91,97	15,73	60,93	3,55	53,20	5,26	52,23	2.24	8.80	0.58	0.00	00'0	0,16	1.09	0.00	31,47
2 0	60,975 1-BIK	Plast 2-HDPE	4,67	0,60	3,30	0,21	1,89	0,33	2,34	0,11	0,37	0,01	0,00	00'0	0,02	0,05	00'0	1,82
3	1224,9 1-BIK	Plast 4-PP	89,04	8,89	64,58	5,88	48,99	5,42	34,46	2,42	6,87	0,02	0,00	0,00	0,47	0,92	0,00	201,56
4 1	6575,7 1-BIK	Plast 5-PS	570,31	23,80	312,54	32,22	1163,90	4,51	143,59	18,36	113,26	0'0	0,00	0,00	794,63	9'86 9'80	0,00	364,91
0 C	200,55 1-BIK	Plast 6-EPS Plast 7_HLPS	30.44	0,68	9,59	1,14	35,30	0,19	9,59	0,54	3,64	80	00'0	0000	70.07	0,36	00'0	24,99 19.65
0 2	226,2 1-BIKF	Plast 8-PVC	12,81	2,51	5,19	2,49	14,02	1,13	15,18	0,49	3,39	00'0	00'0	00'0	0,01	0,66	0,64	71,03
0	506,98 1-Blk	Plast 9-SAN	45,32	1,94	23,91	3,09	82,64	2,08	16,00	1,52	7,09	0,00	0,00	0,00	0,20	0,86	0,00	142,46
0 6	4690,6 1-Blk	Plast 10-ABS	445,70	32,60	214,69	43,62	773,95	46,91	431,20	15,58	83,35	0,00	0,00	0,00	8,48	13,60	9,10	2954,35
9	1258,7 2-Tec	cPlas 11-PA 6	150,43	19,04	48,98	20,14	275,66	23,92	221,88	10,78	49,14	0,01	0,00	0,00	0,51	6,80	61,70	2356,69
0 0 F	1129,1 2-lec	CPlas 12-PC	131,89	16,/8	42,89	15,81	128,/1	11,29	199,34	6,09	28,/1	00'0	00'0	0,0	0,41	6.56	0,19	569,07
13 0	3 2-1e0 20.85 2-Tec	cPlas 15-PimMA cPlas 15-Rigid PUR	0,33	0,04	0,13	0,03	0,08 6.28	0,00	8.91	0,09	0,13	00'0	0.0	00'0	0,00	0,15	06.0	66.42
14 0	12,43 2-Tec	cPlas 16-Flex PUR	1.30	0.23	0.49	0.87	3.70	0.40	6.82	0.06	0.40	00.0	00.0	00.0	0.25	0.10	0.04	70.67
15 0	14655 3-Fen	rro 21-St sheet galv.	498,26	33,39	1,09	00'0	0,00	00'0	25228,51	41,43	109,40	2,00	381,02	51,95	1,01	39,68	52,03	955,05
17 0	25,65 3-Fer 171.91 3-Fer	Tro 22-St tube/profile	1.72	0,12	-0,01	0,00	0,03	00'0	54.21	0,04	0,09	0,02	1.03	0.34	00'0	0,03 2.41	0.16	4.51
18 0	219,01 3-Fen	rro 24-Ferrite	11,08	0.75	0,02	8,61	0,00	0,00	565,55	0,93	2,44	0.04	8,54	7,87	0,00	0,89	0.52	17,22
19 0	829,99 3-Fen	rro 25-Stainless 18/8 ct	d 51,49	8,04	3,36	62,86	7,00	00'0	829,99	5,15	46,50	0,11	6,39	123,09	0,02	6,57	71,68	1932,15
20 0	448,38 4-Nor	n-fer 26-AI sheet/extrus	i 86,37	0,00	0,00	0,00	00'0	00'0	1757,65	4,64	30,18	0,03	2,24	1,63	43,28	7,58	15,70	2,22
21 0	18,665 4-Nor	n-fer 27-AI diecast	1,03	00'00	00'0	00'0	00'0	00'0	14,00	0,07	0,29	0,00	0,63	0,02	0,33 1.65	0,08	0,12	0,02
33 0	531.83 4-Non	n-fer 29_CLI wire	61 QR	000	000	000	000	0.13	10642 90	3 30	155.35	000	1 90	20,02	2,00	151	50.04	82.18
24 0	291,15 4-Non	n-fer 30-Cu tube/sheet	14,83	00'0	00'0	00'0	00'0	00'0	2333,31	0,79	18,23	00'0	3,00	9,63	1,56	0,42	10,96	18,02
25 0	22,834 4-Nor	n-fer 31-CuZn38 cast	0,88	0,00	0,00	0,00	0,00	0,01	69,48	0,04	0,80	0,00	0,58	1,30	0,08	0,03	0,20	0,35
26 0	8,8 4-Nor	n-fer 32-ZnAl4 cast	0,25	0,00	0,00	0,02	0,00	0,00	13,49	0,01	0,06	0,00	0,53	0,02	0,01	0,01	0,00	0,01
27 0	2,19 5-Cos	ating 40-Cu/Ni/Cr plating	6,04	5,66	00'0	0,41	3,81	0,13	43,80	0,27	3,67	0,01	0,87	42,38	0,01	0,12	0,34	208,06
28 78	0,015 5-Cot	ating 41-Au/Pt/Pd	3,38	3,04	0,0	0,0	0,0	0,39	2812,57	0,27	0,01	0,0	0,00	0,0	0,0	0,0	0,0	0,00
0 00	13,35 0-CIE	ctrol 4z-LCU per mz scr	100.00	31,07	nn'n	100	8,33	10'0	0,/3	10'7	0,03	10'0	00'0	10'0	00'00	10'0	00'0	00'0
0 0	511/,59 6-Elec	ctrof 44-big caps & colls	198,39	0,00	00'0	11,94	28,4/	10,15	310,83	11,22	13,40	00'0	1,12	3,96	05,93	18,43	38,42	3,69
2 0	10 800 6.Fler	CITOT 40-STOLS / CAL PULL	10,01 4	0,20 106 15	0000	00 28	00.00	00 7	102 64	00'n	55.22	0,00	0.07	0,00	1 20	1,14	74.00	00'01C
33 0	19,934 6-Elec	ctror 47-IC's avg., 1% Si	17,43	13,42	0,06	12,19	2,06	12,85	34,85	1,17	16,27	00'0	0,20	3,69	0,06	0,48	0,19	85,64
34 0	78,43 6-Elet	ctron 48-SMD/ LED's avg.	232,85	226,31	0,00	72,58	00'0	10,25	222,03	13,10	127,09	0,59	1,18	33,08	0,35	3,99	1,16	172,19
35 0	605,13 6-Ele(ctror 49-PWB 1/2 lay 3.75	170,07	91,09	5,16	102,89	46,47	1048,84	1588,67	6,79	129,35	1,41	1,64	21,87	2,16	3,07	8,92	2230,76

Fraunhofer IZM and PE Europe

5.2.5. Base Case V5: IJ-Printer/MFD personal

5.2.5.1. Overview of assessment results for Base Case V5

Table 20 shows the MEEuP EcoReport environmental impact assessment results for the Base Case V5 (IJ-Printer/MFD personal). If we take the total energy consumption (GER) as a reference for the environmental impact, the results indicate that both, the use phase and the manufacturing phase contribute significantly to the overall environmental impact. Similar to the previous product cases the consideration of paper use⁸ does have an overall effect on the results.

Table 20. Eco	-assessment results	from MEEuF	P EcoReport f	or Base	Case V5	(incl. r	naner)
TADIC 20. LU	-assessment results		LUCKEPUIT	UI Dase	Case v S	(mui)	paper)

Та	ble . Life Cycle Impact (per unit)) of Base C	Case V5_	_IJ-MFC)-Personal	(incl. Pap	per)				
Nr	Life cycle Impact per product:							Date	Author		
0	Base Case V5_IJ-MFD-Pe	rsonal (ind	cl. Pape	r)				0	0		
	Life Cycle phases>		P	RODUCT	ION	DISTRI-	USE		END-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Meteriala										
					4452			4000	445	4452	0
1		g			4453			4008	445	4453	0
2		g			489			440	49	489	0
3		g			1929			96	1832	1929	0
4	Conting	g			293			15	219	293	0
5	Electronico	g			479			226	142	470	0
7	Mico	y a			4/0			330	142	4/0	0
'	Total weight	y a			0255			4091	1027	0255	0
		9			9300			4301	4374	9355	0
									see notel		
	Other Resources & Waste							dobot	crodit		
8	Total Energy (GER)	MI	1162	275	1/37	01	1614	3/1/	275	60	3211
0	of which electricity (in primary MI)	MI	/16	144	560	51	898	0	18	-18	1440
10	Water (process)	ltr	205	5	211	0	1637	0	16	-16	1832
11	Water (process)	ltr	958	76	1034	0	2058	0	14	-10	3078
12	Wate non-haz / landfill	a	55417	851	56269	70	2858	575	55	520	59717
13	Waste, hazardous/ incinerated	a	385	1	387	1	29	4590	20	4570	4987
		9	000			•			20		
	Emissions (Air)										
14	Greenhouse Gases in GWP100	kg CO2 eq.	57	16	73	7	46	26	19	7	132
15	Ozone Depletion, emissions	mg R-11 ec				neg	ligible	1			
16	Acidification, emissions	g SO2 eq.	320	71	392	19	306	52	35	16	733
17	Volatile Organic Compounds (VOC)	g	2	1	3	1	5	1	0	0	8
18	Persistent Organic Pollutants (POP)	ng i-Teq	54	6	59	0	6	4	0	4	70
19	Heavy Metals	mg Nieq.	49	13	62	4	16	93	2	91	172
	PAHs	mg Nieq.	277	1	278	4	5	0	2	-2	285
20	Particulate Matter (PM, dust)	g	28	13	42	99	39	445	1	444	624
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	107	0	107	0	7	29	9	19	133
22	Eutrophication	g PO4	5	0	5	0	110	2	0	1	117
23	Persistent Organic Pollutants (POP)	ng i-Teq		I		neg	ligible		1		

In order to show also in this case again the magnitude of paper consumption on the environmental impact, Table 21 below provides the same assessment results excluding paper.

⁸ According to our use phase assumptions that have been discussed in task 4.3.5, the Base Case V5 has 4 year lifetime with a paper output of 1,040 pages per year.

Table 21: Eco-assessment	results from	MEEuP	EcoReport	for Base	Case V5	(excl. paper)
able 21. Leo assessment	i courto ii om	TILLUL .	Leoneport	IOI Dube	Cube 12	(CACh puper)

Та	ble . Life Cycle Impact (per unit) of Base (Case V5	_IJ-MFC	0-color (ex	cl. Paper)					
Nr	Life cycle Impact per product:							Date	Author		
0	Base Case V5_IJ-MFD-col	or (excl. F	Paper)					0	0		
	Life Cycle phases>		F	PRODUCT	ION	DISTRI-	USE		END-OF-LIFI	*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Meteriala										
1	Rulk Plastics				4453			4008	115	4453	0
2	TecPlastics	9			4433			4000	443	4433	0
3	Ferro	9			1929			96	1832	1929	0
4	Non-ferro	a			293			15	279	293	0
5	Coating	a			0			0	0	0	0
6	Electronics	a			478			336	142	478	0
7	Misc.	a			1712			86	1627	1712	0
	Total weight	g			9355			4981	4374	9355	0
									see note!		
	Other Resources & Waste							debet	credit		
8	Total Energy (GER)	MJ	1162	275	1437	91	782	344	275	69	2379
9	of which, electricity (in primary MJ)	MJ	416	144	560	0	773	0	18	-18	1315
10	Water (process)	ltr	205	5	211	0	53	0	16	-16	248
11	Water (cooling)	ltr	958	76	1034	0	2058	0	14	-14	3078
12	Waste, non-haz./ landfill	g	55417	851	56269	70	1453	575	55	520	58312
13	Waste, hazardous/ incinerated	g	385	1	387	1	22	4590	20	4570	4980
	Emissions (Air)					_					
14	Greenhouse Gases in GWP100	kg CO2 eq.	57	16	73	7	34	26	19	7	120
15	Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
16	Acidification, emissions	g SO2 eq.	320	71	392	19	202	52	35	16	629
17	Volatile Organic Compounds (VOC)	g	2	1	3	1	0	1	0	0	4
18	Persistent Organic Pollutants (POP)	ng i-Teq	54	6	59	0	6	4	0	4	69
19	Heavy Metals	mg Nieq.	49	13	62	4	14	93	2	91	170
~	PAHs Destington Martine (DM start)	mg Nieq.	277	1	278	4	4	0	2	-2	284
20	Particulate Matter (PM, dust)	g	28	13	42	99	5	445	1	444	590
	Emissions (Water)										
21	Heavy Metals	mg Hg/20	107	0	107	0	6	29	9	19	132
22	Eutrophication	g PO4	5	0	5	0	0	2	0	1	7
23	Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

5.2.5.2. Assessment of ink

For the base cases V5 and V6 the ink is the key auxiliary material. However, environmental data on ink is not available as the detailed composition is confidential and proprietary. One outdated study "Life Cycle Assessment of an Inkjet Print Cartridge"⁹ claimed to have considered also ink and ink manufacturing, but this aspect is not mentioned as a significant one in the conclusions of the study. According to industry sources ink is modeled for the Japanese Eco-Leaf declarations as "water", which consequently results in a negligible impact. Actually water-based inks consist of 60-80% water typically. Ingredients are the pigments, humectants, surfactants and stabilizers. "The black carbon powder used in regular [black] ink is refined from pure oil and the liquid used in cartridges

⁹ D. Pollock, R. Coulon: Life Cycle Assessment of an Inkjet Print Cartridge, Proceedings of the 1996 IEEE International Symposium on Electronics and the Environment, 6-8 May 1996, pages 154 – 160; another more recent study provided an LCA for inkjet printers (J. Ord, T. DiCorcia: Life Cycle Inventory for an Inkjet Printer, December 2005, http://www.engin.umich.edu/labs/EAST/me589/gallery/f05/inkjet.pdf), but excluded explicitly the ink

is boiled down from a volume six times larger."¹⁰ Compared to other uses of fossil fuels in the printer life cycle (plastics and energy consumption) the resource consumption for the ink can be neglected. Although different feedback asked for a better covering of these impacts, unfortunately a statement regarding the impacts of the manufacturing processes of the ink as such is not possible in this study.

5.2.5.3. Assessment results according to the consideration of paper

The comparison of Table 20 (incl. paper) and Table 21 (excl. paper) indicates that approx. half of the use phase impact of 1,614 MJ is related to paper consumption alone (832 MJ). The remaining 782 MJ is the impact of energy consumption. This correlation is also shown in Figure 14. If we exclude paper from the assessment, it becomes obvious that the overall environmental impact correlates directly with the product weight (material mass) in the manufacturing phase and with energy consumption in the use phase. Further details of the assessment are shown in Figure 15 and Figure 16 below.

Figure 14: Total energy impact comparison including auxiliaries for Base Case V5

¹⁰ Press release: Invention: From old tyres to printer ink, NewScientist.com news service, Barry Fox, 18:20 26 July 2005, http://technology.newscientist.com/article/dn7734.html, accessed on August 22, 2007

Figure 15: Distribution of resources related impacts for Base Case V5

Figure 16: Distribution of emissions to air for Base Case V5

5.2.5.4. Assessment of single impact categories related to life cycle phases

The following assessment of single eco-impacts related to the life cycle phase "Manufacturing", "Distribution", "Use", and "End-of-life" excludes the aspect of paper. By taking the impact category Total Energy as general eco-indicator the "Manufacturing" phase with 1,437 MJ has the single highest impact followed by the "Use" phase with 782 MJ. The "Distribution" and "End-of-life" phases have a very minor impact. In terms of "Greenhouse Gases" and "Acidification" the Base Case V5 shows an eco-impact ratio of 2:1 between the "Manufacturing" and "Use" phase. The eco-impact categories which are indicating toxicity such as POP, Heavy Metals, and PAHs, as well as Volatile Organic Compounds (VOC), show an even higher impact ratio with regards to the manufacturing phase.

Regarding data acquisition, data quality and methodological aspects of the assessment, see also Section 5.2.1.3

Details regarding the environmental impacts of various materials for the Base Case V5 are provided in Table 22. In this table the material inputs are listed by category and their eco-impact weighted through a colour code. Due to the generally higher relative environmental relevancy of the manufacturing stage compared to the previous Base Cases V1-V4 the assessments identify a larger number of relatively relevant material entries: Bulk Plastics such as 7-HI-PS, 5-PS and 10-ABS as well as Ferro Metal 21-St sheet galv. and electronic parts (42-LCD, 46-IC's avg. 5% Si, 49-PWB 1/2 lay, 98-controller board) are contributing most significantly to the overall impact. In the category hazardous waste the gold platings in the printing units are the most relevant aspect.

		nibo	5																
Red	: Pro	cess	is causes n	nore th	an 50'	% of 1	total ir	npact i	n the	respec	ctive	impac	t categ	gory.					
Ora	nge:	Proc	ess cause	es betv	veen 3	30% a	nd 50'	, of tc	otal in	npact i	n the	respe	ctive i	mpac	t cate	egory			
Yell	.wo	Proce	esses bet	ween 1	0% ai	nd 30	% of t	otal im	pact	in the	respe	ctive i	mpact	t cate	gory.				
Nr: 0 PRODU	Produc	÷	Base Case	V5_LJ-MFD	-Person	al						Date: (00.01.00	Ā	uthor:	0			
Le l	oduct				Energy		Wat	er	Was	ste			Emissi	ons to Ai				to Wa	ter
3 E 1	wght	cat.	material	GER	electr	feedst	water (proces)	water (cool)	haz. Waste	non-haz. Waste	GWP	AD	VOC	POP	MH	РАН	Md	Metal	EUP
	ju g			ſW	ſW	Ŵ	łt.	ţ,	6	D	kg CO2eq	g S02eq	Ê	ngi- Teq	ng Ni eq	mg Ni eq	-	mg - Ig/20eq	ng P04 eq
-	97,063	1-BikPlas	d 1-LDPE	7,55	1,29	5,00	0,29	4,37	0,43	4,29	0,18	0,72	0,05	00'0	00'0	0,01	60'0	00'0	2,58
2	40,845	1-BikPlas	# 2-HDPE	3,13	0,40	2,21	0,14	1,27	0,22	1,57	20'0	0,25	0,01	00'0	00'0	0,01	0,04	00'0	1,22
	76,207	1-BikPlas	4 4 PP	5,54 EE 57	78	4,02 36,48	0,37 3.76	3,05 135,87	0,34	2,14 16.76	0,15	13.22	8 8	8 8	000	0,03	0,06	8 8	12,54 42.60
* *	51	1-DikPlas	16-EPS	4.27	0.17	2.44	0,29	8.98	20'0	1.93	0.14	0.92	000	30	0.0	3.10	- 60'0	800	6,36
9	2334,5	1-BikPlas	# 7-HI-PS	215,31	10,90	114,69	12,84	434,22	1,49	70,15	6,77	45,37	00'0	00'0	00'0	141,95	4,20	00'0	139,00
~	41,243	1-BikPlas	# 8-PVC	2,33	0,46	0,95	0,45	2,56	0,21	2,77	60'0	0,62	00'0	00'0	00'0	00'0	0,12	0,12	12,95
0 0 0 0	2,6675	1-BikPlas	# 9-SAN	0,24 98.99	7.24	0,13 47.68	0,02 9.69	0,43 171 89	10.42	0,08	346	18 51	88	88	8 8	0,00	8 6	000	0,75 656.13
, e	211.75	2-TecPla:	s11-PA 6	25,31	3,20	8,24	3,39	46,37	4,02	37,33	1,81	8,27	000	800	000	60 ['] 0	1,14	10,38	396,46
5	84,941	2-TecPla:	s12-PC	9,92	1,26	3,23	1,19	9,68	0,85	15,00	0,46	2,16	00'0	00'0	00'0	0'03	0,57	0,01	42,81
12	16,648	2-TecPla	s13-PMMA	1,83	0,22	02'0	0,16	0,43	0,02	1,74	0,10	0,73	00'0	00	000	000	80'0	0,05	34,43
3	5,87	2-TecPla	a14-Epoxy	0.8	0,14	0,25	0,11	2,25	0,11	2,39	0,04	0,26	000	88	000	8	80	00	56,64 120,01
- 4 - 4	116 35	2-TecPla	416.Flev PIID	10,04	0'00 2.18	4 63	814	34.67	9.77 3.77	10'14 63.85	0,10	374				0/0	97'n	20'L	120,37 661 50
16	15,655	2-TecPla:	s18-E-glass fib	ri 1,03	0,33	0,17	0,85	4,25	0,11	4,87	0'02	0,46	00'0	00'0	00'0	00'0	0,13	0,74	49,33
4	0,0375	2-TecPla.	s19-Aramid fib.	0,01	00'0	00'0	0,01	0,04	00'0	0'02	00'0	00'0	00'0	00'0	00'0	00'0	00'0	0,01	0,46
- 	1863,1	3-Ferro	21-St sheet g	al 63,34	4,24	0,14	0'00	000	80	3207,28	5,27	13,91	0,25	48,44	6 <mark>.60</mark>	0,13	5,04	6,61	121,41
20	27,443	3-Ferro	24-rerrite	1201	0.27	0,11	2.08	0,23	800	30,23 27,44	0.17	1.54	000	0.21	4.07	000	0.22	2.37	2,33 63,88
24	67,182	4-Non-fe	r 26-Al sheet/e:	x 12,94	00'0	00'0	00'0	00'0	00'0	263,35	0,70	4,52	00'0	0,34	0,24	6,49	1,14	2,35	0,33
2	36	4-Non-fe	r 28-Cu windin	g 5,14	00'0	00'0	00'0	00'0	0'03	721,44	0,27	10,94	00'0	0,14	2,03	0,20	0,11	0,23	5,70
33	145,53	4-Non-fe	29-Cu wire	16,96	00'0	000	000	000	000	2912,32	0,90	42,51	80	0,54	8 <mark>01</mark>	0,78	0,41	13,69 1 66	22,49
52	0,7011	4-Non-fe	r 31-CuZn38 ca	10,03	00'0	00'0	00'0	00'0	000	2,13	00'0	0,02	00'0	0,02	0.04	00'0	800	0.01	0,01
26	0,035	5-Coating	3 40-CuMi/Cr pl	a 0,10	60'0	00'0	0,01	0'08	00'0	02'0	00'0	90'0	00'0	0,01	0,68	00'0	00'0	0,01	3,33
2 22	0,249	5-Coating	g 41-Au/Pt/Pd	56,10	50,43	00'0	000	000	6,49	46687,50	4,42	60'0	000	000	000	000	000	000	000
87 82	90 494	6-Electro	rd42-LCU per m	12 204./0			0,04	43/10	1 77	2,00	13,70	4,4U 12,83	2010			18 57	40'0	20'N	0.65
8	28,178	6-Electro	46-slots / ext.	5,27	1,67	00'0	2,10	7,20	0,48	8,67	0,28	5,19	00'0	0 04	1,07	0'02	0,37	06'0	182,30
31 0	2,6925	6-Electro	r 46-IC's avg., 5	14,83	14,43	00'0	13,51	00'0	0,68	13,95	1,14	7,50	0,18	0,13	1,20	0,04	0,20	10,07	57,84
33	4,1933	6-Electro	r 47-IC's avg., 1	9, 3,67	2,82	0,01	2,56	0,43	2,70	7,33	0,25	3,42	00'0	0,04	0,78	0,01	0,10	0,04	18,02
33	13,797	6-Electro	148-SMD/ LED*	s 40,96	39,81	00'0	12,77	0,00	1,80	39,06	2,30	22,36	0,10	0,21	5,82	0'08	0/20	0,20	30,29
34	107,42	6-Electro	1/2 13/2 13/2 13/2 13/2 13/2 13/2 13/2 1	V 30,19	16,17	0.05	18,26	8,25	186,18 55 42	282,01	1,21	22,96 44 E0	0 <mark>,25</mark>	0,29	3,88	82,0	0,55	1,58	395,99 74 67
38 39	7.1759	6-creculu R-Electro	151-PWB 6 lav 2	3,50	2,39	0.08	2.89	0.74	30,54	16,75	0.15	1.57	200	0.02	z,u3	0.02	so'-	2,34	20.42
37 0	5,0918	6-Electro	52-Solder Sn	4 1,19	66'0	00'0	0,36	00'0	0,02	1,16	90'0	0,33	00'0	0,01	0,02	0,01	0,01	00'0	0'03
38	650,2	7-Misc.	54-Glass for I	al 10,55	8,41	00'0	5,54	00'0	0,17	8,80	0,54	1,95	00'0	0,05	0,11	00'0	0,04	0'03	0,23
33	901,04	7-Misc.	56-Cardboard	25,23	1,80	14,42	6,35	000	0,04	47,14	0,63	0,94	00'0	0,01	0,03	00'0	0'01	0,01	77,54
€ 8	161,11	/-Misc. 6-Flectro	54-Office pape	el 5,44 h 90.46	70.78	4,35	12,2/ 60.58	12 23		10,88 194.42	80'0	0,81 50.62	0,05 0 75	0 74	0'02	00'0	2,0 2,59	10'0 38 58	851,99 544.27
B			0	1.162	416	253	205	958	385	55.417	57	320	2	54	65	277	28	107	4.710

Table 22: Detailed impact assessment	of input materials of Base Case V5
--------------------------------------	------------------------------------

Whereas Table 22 provides data on the level of individual entries the following Figure compares the impacts / indicators for the manufacturing stage aggregated per material category: Although electronics are of minor total weight (first column), it dominates 10 indicators out of 16, among them Total Energy (GER) and Global Warming Potential. For 4 indicators electronics contribute even by more than 75% to the total indicator value, among them hazardous waste.

This aggregated data leads to the conclusion, that electronics are a very relevant factor for impacts at the manufacturing stage.

Fraunhofer IZM and PE Europe

Figure 17: Weight of Material Classes versus Impacts / Indicator Values at Manufacturing Stage for Base Cases V5/V6

5.2.6. Base Case V6: IJ-Printer/MFD workgroup

5.2.6.1. Overview of assessment results for Base Case V6

Table 23 shows the MEEuP EcoReport environmental impact assessment results for the Base Case V6 (IJ-Printer/MFD workgroup). If we take the total energy consumption (GER) as a reference for the environmental impact, the results indicate that the use phase contributes most significantly to the overall environmental impact. Similar to the previous product cases the consideration of paper use¹¹ does have an overall effect on the results.

Table 23: Eco-assessm	ent results from	MEEuP EcoRe	port for Base Ca	se V6 (incl. paper
Tuble 201 Leo ubbebbil	tent results if on	millui Leone	portion Dube Ou	se vo (men puper

Та	ble Life Cycle Impact (per unit) of Base C	Case V6	_IJ-MFC)-Workgro	up (incl. F	Paper)				
Nr	Life cycle Impact per product:							Date	Author		
0	Base Case V6_IJ-MFD-We	orkgroup (incl. Pa	per)				0	0		
	Life Cycle phases>		F	RODUCT	ION	DISTRI-	USE		END-OF-LIF	E*	TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	Materials	unit									
1	Bulk Plastics	a			4453			4008	445	4453	0
2	TecPlastics	q			489			440	49	489	0
3	Ferro	q			1929			193	1736	1929	0
4	Non-ferro	g			293			29	264	293	0
5	Coating	g			0			0	0	0	0
6	Electronics	g			478			336	142	478	0
7	Misc.	g			1712			171	1541	1712	0
	Total weight	g			9355			5177	4177	9355	0
Q	Other Resources & Waste	IM I	1162	275	1427	01	4059	debet	see note! credit	101	E697
0	of which electricity (in primary MI)	MI	1102	275	1437	91	4000	3/0	2/3	-19	1039
10	Water (process)	ltr	205	5	211	0	6003	0	16	-10	6198
11	Water (process)	ltr	958	76	1034	0	2473	0	14	-14	3493
12	Waste non-haz / landfill	a	55417	851	56269	70	6902	1148	55	1093	64335
13	Waste, hazardous/ incinerated	a	385	1	387	1	52	4590	20	4570	5010
	Emissions (Air)	1.									
14	Greenhouse Gases in GWP100	kg CO2 eq.	57	16	73	7	85	28	19	9	173
15	Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
16	Acidification, emissions	g SO2 eq.	320	71	392	19	633	56	35	21	1065
17	Volatile Organic Compounds (VOC)	g	2	1	3	1	16	1	0	0	20
18	Persistent Organic Pollutants (POP)	ng i-Teq	54	6	59	0	10	8	0	8	77
19	Heavy Metals	mg Nieq.	49	13	62	4	25	102	2	100	191
	PAHs	mg Nieq.	277	1	278	4	6	0	2	-2	286
20	Particulate Matter (PM, dust)	g	28	13	42	99	135	487	1	486	762
	Emissions (Water)										1
21	Heavy Metals	mg Hg/20	107	0	107	0	10	31	9	22	139
22	Eutrophication	g PO4	5	0	5	0	413	2	0	2	419
23	Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

In order to show also in this case again the magnitude of paper consumption on the environmental impact, Table 24 below provides the same assessment results excluding paper.

¹¹ According to our use phase assumptions that have been discussed in task 4.3.6, the Base Case V6 has 4 year lifetime with a paper output of 3,900 pages per year.

Table 24: Eco-assessment results from MEEuP EcoReport for Base Case V6 (excl. paper)

Table . Life Cycle Impact (per uni	t) of Base (Case V6_	_IJ-MF	D-workgro	up (excl. F	Paper)				
Nr Life cycle Impact per product:							Date	Author		
0 Base Case V6_IJ-MFD-w	orkgroup (e	excl. Pa	per)				0	0		
Life Cycle phases>		P	RODUCT	ION	DISTRI-	USE	E	END-OF-LIF	E*	TOTAL
Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total	
	unit						4000	445		
1 BUIK Plastics	g			4453			4008	445	4453	0
2 Techastics	g			489			440	49	489	0
J Perro	g			1929			90	1032	1929	0
4 Non-leno	g			293			15	2/9	293	0
6 Electropics	g			479			226	142	479	0
7 Misc	9			1712			330	1627	1712	0
Total weight	9			0355			/081	/37/	9355	0
	9			3333			4301	4574	3333	•
								see note!		
Other Resources & Waste							debet	credit		
8 Total Energy (GER)	MJ	1162	275	1437	91	938	344	275	69	2535
9 of which, electricity (in primary MJ)	MJ	416	144	560	0	929	0	18	-18	1471
10 Water (process)	ltr	205	5	211	0	64	0	16	-16	258
11 Water (cooling)	ltr	958	76	1034	0	2473	0	14	-14	3493
12 Waste, non-haz./ landfill	g	55417	851	56269	70	1634	575	55	520	58492
13 Waste, hazardous/ incinerated	g	385	1	387	1	25	4590	20	4570	4983
Emissions (Air)										
14 Greenhouse Gases in GWP100	kg CO2 eq.	57	16	73	7	41	26	19	7	127
15 Ozone Depletion, emissions	mg R-11 ec				neg	ligible				
16 Acidification, emissions	g SO2 eq.	320	71	392	19	242	52	35	16	669
17 Volatile Organic Compounds (VOC)	g	2	1	3	1	0	1	0	0	4
18 Persistent Organic Pollutants (POP)	ng i-Teq	54	6	59	0	7	4	0	4	70
19 Heavy Metals	mg Nieq.	49	13	62	4	16	93	2	91	173
PAHs	mg Ni eq.	277	1	278	4	5	0	2	-2	285
20 Particulate Matter (PM, dust)	g	28	13	42	99	5	445	1	444	591
Emissions (Water)										
21 Heavy Metals	mg Hg/20	107	0	107	0	7	29	9	19	133
22 Eutrophication	g PO4	5	0	5	0	0	2	0	1	7
23 Persistent Organic Pollutants (POP)	ng i-Teq				neg	ligible				

Regarding the assessment of ink, see Section 5.2.5.2.

5.2.6.2. Assessment results according to the consideration of paper

The comparison of Table 23 (incl. paper) and Table 24 (excl. paper) indicates that from the use phase impact of 4,058 MJ the largest portion of 3,120 MJ is related to paper consumption alone. The remaining 938 MJ is the impact of energy consumption. Figure 18 below shows that according to the use pattern assumption more than 75% of the products total energy consumption in the use phase is related to paper. If we exclude paper from the assessment, it becomes obvious that the overall environmental impact correlates directly with the product weight (material mass) in the manufacturing phase and with energy consumption in the use phase. Further details of the assessment are shown in Figure 19 and Figure 20 below.

Figure 18: Total energy impact comparison including auxiliaries for Base Case V6

Figure 19: Distribution of resources related impacts for Base Case V6

Fraunhofer IZM and PE Europe

Figure 20: Distribution of emissions to air for Base Case V6

5.2.6.3. Assessment of single impact categories related to life cycle phases

The following assessment of single eco-impacts related to the life cycle phase "Manufacturing", "Distribution", "Use", and "End-of-life" excludes the aspect of paper. By taking the impact category Total Energy as general eco-indicator the "manufacturing" phase with 1.437 MJ has the single highest impact followed by the "use" phase with 938 MJ. The "Distribution" and "End-of-life" phases have a very minor impact. In terms of "Greenhouse Gases" and "Acidification" the Base Case V6 shows an eco-impact ratio of 65:35 between the "manufacturing" and "use" phase. The eco-impact categories which are indicating toxicity such as POP, Heavy Metals, and PAHs, as well as Volatile Organic Compounds (VOC), show an even higher impact ratio with regards to the manufacturing phase.

Regarding data acquisition, data quality and methodological aspects of the assessment, see also Section 5.2.1.3

Details regarding the environmental impacts of various materials for the Base Case V6 are the same as for Base Case V5 and are provided in Table 22. Relevancy of the various material categories is identical with Base Case V5 as well.

5.3. Base-Case Life Cycle Costs

5.3.1. Input data requirements

The base case life cycle cost calculation (LCC) requires following data input:

- Average Product life (data input see Task 3)
- EU annual sales for reference years 2005, 2010 and 2010 (data input see Task 2)
- EU stock or installed base for reference years 2005, 2010 and 2010 (data input see Task 2)
- Product price (average of the manufacturers listed prices and actual wholesale prices¹²)
- Electricity rate (we calculate the electricity costs based on 0.14 Euro per kWh)
- Auxiliary 1 is office paper in kg/year (5 gr A4 paper)
- Auxiliary 2 is toner in kg/year (0.02 gr to 0.03 gr per page)
- Auxiliary 3 is ink (0.07 gr per page)
- Repair and maintenance costs (Euro per unit)

5.3.1.1. Market data allocation

The MEEuP EcoReport requests data input regarding the European Union overall product stock and sales for the year 2005. Specific market data have been obtained and discussed in Section 2.2.2. The relevant allocation of these available market data to the base cases is shown in Table 25.

		2005 EU Stock	2005 EU Sales
Base Case	Product Segment	(in 1000 units)	(in 1000 units)
V1*	EP-Copier mono	5.970	1.019
V2*	EP-Copier color	381	137
V3*	EP-Printer mono	14.735	3.682
V4*	EP-Printer color	1.919	834
V5**	IJ-MFD Personal	68.412	12.330
V6***	IJ-MFD Workgroup	21.760	10.107
* In the case of V1	to V4 the EU total is ca	lculated based on ag	gregated market
data for SFDs and M	AFDs together		
** In the case of V5	5 the EU total is calcula	ted based on market	data for IJ-Printer
SFDs what should r	eflect personal use		
*** In the case of V	6 the EU total is calcul	ated based on aggreg	gated market data
for MFDs what sho	uld reflect workgroup u	se	

Table 25: EU stock and sales data of base cases for reference years 20
--

As a matter of fact, precise market data for the defined base cases could not be obtained. Regarding the base cases V1 to V4 the EU total will be calculated based on aggregated market data for SFDs

¹² Comparison of prices indicated that wholesale prices are 20 to 40 percent of the listed prices.

and MFDs together despite the distinction of both within the base cases. The general trend towards MFDs seems to allow the allocation of SFDs to the total. In the case of base case V5 the EU total is calculated based on market data for IJ-Printer SFDs in order to reflect personal use application. This approach seems feasible when allocating the InfoTrends data on the image creation volume regarding personal use environment to the assumed image creation volume of base case V5 (see Table 26). According to our calculation in Section 4.3.5 we assume an annual image volume of 1,040 pages per single device. If we now correlate the 1,040 pages per single device with the 71 billion images of total personal use, we receive a figure reflecting the stock of products in the EU. When comparing the resulting stock figure (68.2 million units) with the market data for IJ-SFDs (68.4 million units) the similarity is striking. However, if doing the same calculated value based on 3,900 pages/a and 8 billion images in workgroup environment.

Base Case	Product Segment	2005 EU Stock (in 1000 units)	Images in Personal environment (in 1000 images)	Images workgroup Environment (in 1000 impressions)
V1	EP-Copier mono	5.970		
V2	EP-Copier color	381		
	EP-Copier (total)	6.351	13.000.000	116.000.000
V3	EP-Printer mono	14.735		
V4	EP-Printer color	1.919		
	EP-Printer (total)	16.654	18.000.000	421.000.000
V5	IJ-Printer SFD	68.412		
V6	IJ-Printer MFD	21.760		
	IJ-Printer (total)	90.172	71.000.000	8.000.000

Table 26: EU stock and allocated image volume per application environment in 2005

In conclusion, the correlation of image volume figures from InfoTrends to actual market figures shows a very good match for base case V5 but is insufficient in the case of V6. Under the limitation of not available market figures, we take the pragmatic approach of allocating the stock and sales figures for IJ-SFDs to the base case V5 (personal use) and the actual market figures for IJ-MFDs to the base case V6 (workgroup use). There is a further consideration supporting this approach. If we calculate the stock figures of IJ-SFDs (68.4 million units) and IJ-MFDs (21.7 million units) in percentage of total stock (90.2 million units) we receive 75% to 25% ratio. This ratio between IJ-products applied in personal use and IJ-products applied workgroup use seems feasible.

5.3.1.2. Product prices and maintenance costs

The MEEuP EcoReport requests data input regarding average product sales prices as well as costs of auxiliary materials such as paper, toner and ink. Regarding the product price allocated to the single base cases we have averaged "listed prices" of manufacturers with "wholesale prices" of online distributors. Due to the fact that most devices have been introduced into the market in the year 2005, today's (2007) wholesale prices are considerably lower (up to 30%) than the original "list prices". A second aspect related particularly to the copier base cases V1 and V2 (this might also be relevant for V3 and V4) is the consideration of leasing business model. The product price is in the leasing case not fully transparent because the leasing costs usually include a certain amount of toner/paper consumption and maintenance over a limited time period. The duration of the leasing contract is usually 1 to 3 years and therefore less than the assumed lifetime of the product (6 years). Against that background the MEEuP EcoReport data input needs a pragmatic solution. The product price of each base case is a rough average of listed and wholesale price. The actual product price assumptions per base case are shown in Table 27 further below. References for prices, although asked for by the "Market Transformation Programme", will not be detailed in the report because they were mostly obtained from internet sources and are easily to be checked. The list prices provided by some manufacturers for their product case are treated confidential in order to prohibit the traceability of an individual product case.

Regarding costs for maintenance and repair we assume for base cases V1 to V4 an annual sum of 100 Euro, also in actual product cases no maintenance and repair costs occur. The cost factor has to be understood therefore in conjunction with the assumed product price. As indicated before, we assume a product price that is up to 30% lower than the actual list price. By adding 100 Euro annually for maintenance and repair in the base cases V1 to V4 we reflect existing maintenance in a possible leasing business model on the one hand and a somewhat high list price in a sales business model on the other hand. Regarding the inkjet base cases V5 and V6 no maintenance and repair costs are assumed.

Base Case	Product Segment	Sales Price (in €)	Maintenance* (in €)			
V1	EP-Copier mono	4.000	600			
V2	EP-Copier color	8.000	600			
V3	EP-Printer mono	900	600			
V4	EP-Printer color	1.500	600			
V5	IJ-MFD Personal	200	0			
V6	IJ-MFD Workgroup	200	0			
* Maintenance & repair costs are caluculated for base cases V1 to V4 according to						
a six year p	roduct life					

Table 27: Product	prices and annua	l maintenance costs
-------------------	------------------	---------------------

5.3.1.3. Auxiliary material costs

Regarding the costs for toner, ink and paper, MEEuP EcoReport requires a kilogram price (€kg). The required information were obtained partially form manufacturers and partially by own calculations based on an internet recherché.

Toner Costs: There are big differences between manufacturer prices, wholesale, and retail prices for toner and ink. Brand name toner and ink tend to be more expensive, a difference also exists between new and refilled cartridges¹³. The actual cost of the toner and ink itself (without the cartridge) is not fully transparent. Usually costs are only available for cartridges. Table 28 provides the cost assumptions for black and colour toner (single and averaged tri-colour). Regarding black toner in the base cases V1 and V3 we assume a kilogram price of 500 Euro. Regarding the colour machine base cases V2 and V4 it is necessary to average the black and colour toner consumption. In order to make a plausible input into the MEEuP EcoReport we assumed a mix of 80% black toner and 20% tri-colour toner resulting in a total kilogram price of 900 Euro.

Table 28: Toner cost assumptions

Toner	Price	Black	Yellow	Magenta	Cyan	Total	
Single Color	in €kg	500	2.500	2.000	3.000	8.000	
Average Color*	in €kg	400	500				
* Average color costs for base cases V2 and V4 are calculated on the assumption that 80% of the							
images are black and 20% color							

Ink costs: Regarding the costs for ink no particular kilogram prices could be provided by manufacturers. The ink content of cartridges is usually given in ml. We make the pragmatic assumption that 1 ml equals 1 gram of ink. Wholesale price for 1 ml black ink is approximately 1 Euro or less. For the purpose of the study we assume that black ink costs 1000 Euro/kg. Tricolour ink cartridge prices indicate that 1 ml colour ink costs approximately 2,3 Euro or less. For the purpose of the study we assume that tri-colour ink costs 2300 Euro/kg. The resulting inputs are shown in Table 29.

Table 29:	Ink	cost	assumptions
-----------	-----	------	-------------

Ink	Price	Black	Tri-color	Total		
Single Color	in €kg	1.000	2.300	3.300		
Average Color*	in €kg	700	690	1.390		
* Average color costs for base cases V5 and V6 are calculated based on						
the assumption thet	70% of image	es are black a	nd 30% color			

¹³ Further discussion to these points see Section 3.1.3.2 and 6.1.2.

Paper costs: A comparison of wholesale price for regular white and recycled office paper indicates an averaged kilogram price of 1.5 Euro.

5.3.2. LCC analysis for base case V1

Table 30 provides the input table for EU-totals and life cycle costs assessment for the base case V1.

Table 30: Base case	V1	inputs f	for l	EU-totals	and I	LCC
---------------------	----	----------	-------	-----------	-------	-----

Tab	Table . Inputs for EU-Totals & LCC					
	INPUTS FOR EU-Totals & economic Life Cycle Costs		unit			
nr	Description					
Α	Product Life	6	years			
в	Annual sales	1,02	mln. Units/year			
С	EU Stock	5,97	mln. Units			
D	Product price	4000	Euro/unit			
Е	Installation/acquisition costs (if any)		Euro/ unit			
F	Fuel rate (gas, oil, wood)		Euro/GJ			
G	Electricity rate	0,14	Euro/kWh			
н	Water rate		Euro/m3			
I	Aux. 1: Office paper	1,5	Euro/kg			
J	Aux. 2 :Toner	500	Euro/kg			
к	Aux. 3: None		Euro/kg			
L	Repair & maintenance costs	600	Euro/ unit			
м	Discount rate (interest minus inflation)	1,8%	%			
Ν	Present Worth Factor (PWF) (calculated automatically)	5,64	(years)			
o	Overall Improvement Ratio STOCK vs. NEW, Use Phase	1,00				

Table 31 shows the results of the MEEuP EcoReport LCC assessment for the base case V1.

Table 31: Life cycle costs assessment of base case V1

	Base_Case_V1_EP-Copier_MFD- mono (incl_Paper)	LCC new product	total annual consumer expenditure in EU25
	Item		
D	Product price	4000 €	4080 mln.€
Е	Installation/ acquisition costs (if any)	0 €	0 mln.€
F	Fuel (gas, oil, wood)	0 €	0 mln.€
F	Electricity	197 €	209 mln.€
G	Water	0 €	0 mln.€
н	Aux. 1: Office paper	3714 €	3931 mln.€
I.	Aux. 2 :Toner	4957 €	5248 mln.€
J	Aux. 3: None	0 €	0 mln.€
κ	Repair & maintenance costs	564 €	597 mln.€
	Total	13432 €	14065 mln.€

The total life cycle costs for a product (base case V1) manufactured in 2005 totals in $13,432 \in$ thereof more than one third for toner. The costs for paper over the life cycle are in the same range as the initial product price.

The total annual consumer expenditure for this base case is 14 billion € thereof 209 million Euro electricity costs.

5.3.3. LCC analysis for base case V2

Table 32 provides the input table for EU-totals and life cycle costs assessment for the base case V2.

Table . Inputs for EU-Totals & LCC INPUTS FOR EU-Totals & economic Life Cycle Costs unit Description Α Product Life 6 years в Annual sales 0,14 mln. Units/year EU Stock С 0,38 mln. Units D Product price 8000 Euro/unit Installation/acquisition costs (if any) Euro/ unit Е F Fuel rate (gas, oil, wood) Euro/GJ G Electricity rate 0.14 Euro/kWh н Water rate Euro/m3 Aux. 1: Office paper Euro/kg L. 1,5 Euro/kg Aux. 2 :Toner 900 Euro/kg κ Aux. 3: None Euro/ unit L Repair & maintenance costs 600 м Discount rate (interest minus inflation) 1,8% % Present Worth Factor (PWF) (calculated automatically) Ν 5,64 (years) Overall Improvement Ratio STOCK vs. NEW, Use Phase o 1,00

 Table 32: Base case V2 inputs for EU-totals and LCC

Table 33 shows the results of the MEEuP EcoReport LCC assessment for the base case V2.

The total life cycle costs for a product (base case V2) manufactured in 2005 totals in 25,949 \in thereof more than 50% for toner. The costs for paper over the life cycle are half the initial product price.

The total annual consumer expenditure for this base case is 2,3 billion €, thereof 20 million Euro electricity costs.

Та	Table Life Cycle Costs per product and Total annual expenditure (2005) in the EU-25						
	Base Case V2 - MFD - Copier Color (with naper) <i>Item</i>	LCC new product	total annual consumer expenditure in EU25				
D	Product price	8000 €	1120 mln.€				
Е	Installation/ acquisition costs (if any)	0 €	0 mln.€				
F	Fuel (gas, oil, wood)	0 €	0 mln.€				
F	Electricity	292 €	20 mln.€				
G	Water	0 €	0 mln.€				
н	Aux. 1: Office paper	3714 €	250 mln.€				
ı.	Aux. 2 :Toner	13379 €	902 mln.€				
J	Aux. 3: None	0 €	0 mln.€				
к	Repair & maintenance costs	564 €	38 mln.€				
	Total	25949 €	2329 mln.€				

Table 33: Life cycle costs assessment of base case V2

5.3.4. LCC analysis for base case V3

Table 34 provides the input table for EU-totals and life cycle costs assessment for the base case V3.

Table 34: Base case	V3	inputs	for	EU-totals	and LCC	2
---------------------	-----------	--------	-----	------------------	---------	---

Tat	ole Inputs for EU-Totals & LCC		
	INPUTS FOR EU-Totals & economic Life Cycle Costs		unit
nr	Description		
Α	Product Life	6	years
в	Annual sales	3,68	mln. Units/year
с	EU Stock	14,73	mln. Units
D	Product price	900	Euro/unit
Е	Installation/acquisition costs (if any)		Euro/ unit
F	Fuel rate (gas, oil, wood)		Euro/GJ
G	Electricity rate	0,14	Euro/kWh
н	Water rate		Euro/m3
I	Aux. 1: Office paper	1,5	Euro/kg
J	Aux. 2 :Toner	500	Euro/kg
к	Aux. 3: None		Euro/kg
L	Repair & maintenance costs	600	Euro/ unit
м	Discount rate (interest minus inflation)	1,8%	%
Ν	Present Worth Factor (PWF) (calculated automatically)	5,64	(years)
0	Overall Improvement Ratio STOCK vs. NEW, Use Phase	1,00	

Table 35 shows the results of the MEEuP EcoReport LCC assessment for the base case V3.

Та	ble . Life Cycle Costs per product and Tota Base Case_V3_EP-Printer-SFD-mono (incl_Paper)	Il annual expenditure (200 LCC new product	05) in the EU-25 total annual consumer expenditure in EU25
	Nom		
D	Product price	900 €	3312 mln.€
Е	Installation/ acquisition costs (if any)	0 €	0 mln.€
F	Fuel (gas, oil, wood)	0 €	0 mln.€
F	Electricity	213 €	557 mln.€
G	Water	0 €	0 mln.€
н	Aux. 1: Office paper	5634 €	14715 mln.€
L	Aux. 2 :Toner	7506 €	19606 mln.€
J	Aux. 3: None	0 €	0 mln.€
к	Repair & maintenance costs	564 €	1473 mln.€
	Total	14817 €	39663 mln.€

Table 35: Life cycle costs assessment of base case V3

The total life cycle costs for a product (base case V3) manufactured in 2005 totals in $14,817 \in$ thereof more than 50% for toner. Compared to paper and toner costs the product price is a minor cost factor.

The total annual consumer expenditure for this base case is 39.7 billion € thereof 557 million € electricity costs.

5.3.5. LCC analysis for base case V4

Table 36 provides the input table for EU-totals and life cycle costs assessment for the base case V4.

Table 36: Base case V4 inputs for EU-totals and LCC

Tab	Table . Inputs for EU-Totals & LCC						
	INPUTS FOR EU-Totals & economic Life Cycle Costs		unit				
nr	Description						
Α	Product Life	6	years				
в	Annual sales	0,83	mln. Units/year				
С	EU Stock	1,92	mln. Units				
D	Product price	1500	Euro/unit				
Е	Installation/acquisition costs (if any)		Euro/ unit				
F	Fuel rate (gas, oil, wood)		Euro/GJ				
G	Electricity rate	0,14	Euro/kWh				
н	Water rate		Euro/m3				
I	Aux. 1: Office paper	1,5	Euro/kg				
J	Aux. 2 :Toner	900	Euro/kg				
к	Aux. 3: None		Euro/kg				
L	Repair & maintenance costs	600	Euro/ unit				
м	Discount rate (interest minus inflation)	1,8%	%				
Ν	Present Worth Factor (PWF) (calculated automatically)	5,64	(years)				
o	Overall Improvement Ratio STOCK vs. NEW, Use Phase	1,00					

Table 37 shows the results of the MEEuP EcoReport LCC assessment for the base case V4.

Table 57. Life Cycle Costs assessment of pase case y	Table 37: Life cycle	e costs assessment of base case	V4
--	----------------------	---------------------------------	----

Г

Та	Table . Life Cycle Costs per product and Total annual expenditure (2005) in the EU-25						
	Base Case_V4_EP-Printer-SFD-color (incl_Paper) Item	LCC new product	total annual consumer expenditure in EU25				
	Draduatariaa	1500 C	1045 mln 6				
	Product price	1500 €	1245 MIN.€				
с с							
E	Electricity	284 €	0 min.∈ 97 min <i>€</i>				
г G	Water	204 €	0 mln.€				
н	Aux. 1: Office paper	5634 €	1918 mln.€				
ı	Aux. 2 :Toner	20272 €	6902 mln.€				
J	Aux. 3: None	0 €	0 mln.€				
к	Repair & maintenance costs	564 €	192 mln.€				
	Total	28253€	10353 mln.€				

The total life cycle costs for a product (base case V4) manufactured in 2005 totals in $28,253 \in$ thereof more than two third for toner. Compared to paper and toner costs the product price is a minor cost factor.

The total annual consumer expenditure for this base case is 10.4 billion \in thereof 97 million \in electricity costs.

5.3.6. LCC analysis for base case V5

Table 38 provides the input table for EU-totals and life cycle costs assessment for the base case V5.

	Table 38: Bas	e case V5	inputs for	EU-totals	and LCC
--	---------------	-----------	------------	------------------	---------

Tal	ble . Inputs for EU-Totals & LCC		
	INPUTS FOR EU-Totals & economic Life Cycle Costs		unit
nr	Description		
Α	Product Life	4	years
в	Annual sales	12,33	mln. Units/year
с	EU Stock	68,41	mln. Units
D	Product price	200	Euro/unit
Е	Installation/acquisition costs (if any)		Euro/ unit
F	Fuel rate (gas, oil, wood)		Euro/GJ
G	Electricity rate	0,14	Euro/kWh
н	Water rate		Euro/m3
I.	Aux. 1: Office paper	1,5	Euro/kg
J	Aux. 2 :None	1390	Euro/kg
κ	Aux. 3: None		Euro/kg
L	Repair & maintenance costs	0	Euro/ unit
м	Discount rate (interest minus inflation)	1.8%	%
N	Present Worth Factor (PWF) (calculated automatically)	3,83	(years)
o	Overall Improvement Ratio STOCK vs. NEW, Use Phase	1,00	

Table 39 shows the results of the MEEuP EcoReport LCC assessment for the base case V5.

Table 39: Life cycle costs assessment of base case V5

Г

Та	Table Life Cycle Costs per product and Total annual expenditure (2005) in the EU-25						
	Base Case V5_IJ-MFD-Personal (incl. Paner) Item	LCC new product	total annual consumer expenditure in EU25				
D	Product price	200 €	2466 mln.€				
Е	Installation/ acquisition costs (if any)	0 €	0 mln.€				
F	Fuel (gas, oil, wood)	0 €	0 mln.€				
F	Electricity	10 €	175 mln.€				
G	Water	0 €	0 mln.€				
н	Aux. 1: Office paper	30 €	534 mln.€				
I	Aux. 2 :None	388 €	6942 mln.€				
J	Aux. 3: None	0 €	0 mln.€				
к	Repair & maintenance costs	0 €	0 mln.€				
	Total	628 €	10116 mln.€				

The total life cycle costs for a product (base case V5) manufactured in 2005 totals in 628 €, thereof more than 60% for ink (row "I"). The product price is the second dominating cost factor.

The total annual consumer expenditure for this base case is 10.1 billion \in thereof 175 million \in electricity costs.

5.3.7. LCC analysis for base case V6

Table 40 provides the input table for EU-totals and life cycle costs assessment for the base case V6.

Table 40: Base case V6 inputs for EU-totals and LCC

Tab	Table . Inputs for EU-Totals & LCC					
	INPUTS FOR EU-Totals & economic Life Cycle Costs		unit			
nr	Description					
Α	Product Life	4	years			
в	Annual sales	10,11	mln. Units/year			
с	EU Stock	21,76	mln. Units			
D	Product price	200	Euro/unit			
Е	Installation/acquisition costs (if any)		Euro/ unit			
F	Fuel rate (gas, oil, wood)		Euro/GJ			
G	Electricity rate	0,14	Euro/kWh			
н	Water rate		Euro/m3			
I	Aux. 1: Office paper	1,5	Euro/kg			
J	Aux. 2 :None	1390	Euro/kg			
к	Aux. 3: None		Euro/kg			
L	Repair & maintenance costs	0	Euro/ unit			
м	Discount rate (interest minus inflation)	1,8%	%			
Ν	Present Worth Factor (PWF) (calculated automatically)	3,83	(years)			
o	Overall Improvement Ratio STOCK vs. NEW, Use Phase	1,00				

Table 41 shows the results of the MEEuP EcoReport LCC assessment for the base case V6.

Та	Table . Life Cycle Costs per product and Total annual expenditure (2005) in the EU-25						
	Base Case V6_IJ-MFD-Workgroup (incl Paper) Item	LCC new product	total annual consumer expenditure in EU25				
D	Product price	200 €	2022 mln.€				
Е	Installation/ acquisition costs (if any)	0 €	0 mln.€				
F	Fuel (gas, oil, wood)	0 €	0 mln.€				
F	Electricity	12 €	67 mln.€				
G	Water	0 €	0 mln.€				
н	Aux. 1: Office paper	112 €	636 mln.€				
I.	Aux. 2 :None	1452 €	8257 mln.€				
J	Aux. 3: None	0 €	0 mln.€				
κ	Repair & maintenance costs	0 €	0 mln.€				
	Total	1776€	10983 mln.€				

The total life cycle costs for a product (base case V6) manufactured in 2005 totals in $1,776 \in$, thereof more than 75% for ink. Ink dominates all other cost factors.

The total annual consumer expenditure for this base case is 11 billion \in thereof 67 million \in electricity costs.

5.3.8. LCC Summary

The LCC calculations for the EU-25 totals of the individual base cases is summarised in Table 42. In total the six base cases aggregated for the EU-25 is an annual expenditure of 87.5 billion \in thereof 1.1 billion \in on electricity, 54.5 billion \in on toner and ink. Be aware that these calculations are based on a TEC measurement scenario, which overestimates the real number of printed pages compared to paper market data (see 5.4.7 below).

Table 42: LCC Summary all base cases

		total annual consumer expenditure in EU-25 (mln. €)					
			Base C	ase			Total
	V1	V2	V3	V4	V5	V6	
Product price	4080	1120	3312	1245	2466	2022	14245
Electricity	209	20	557	97	175	67	1125
Office paper	3931	250	14715	1918	534	636	21984
Toner	5248	902	19606	6902	0	0	32658
Ink	0	0	0	0	6942	8257	15199
Repair &	597	38	1473	192	0	0	2300
Maintenance							
Total	14065	2329	39663	10353	10116	10983	87509

5.4. EU Totals

The objective of this final task in the report is the aggregation of the single base case's MEEuP EcoReport results and respective EU stock data to an overall environmental impact assessment for the European Union. The reference year for the EU totals assessment is 2005. At first it has to be said that there are some limitations related to this particular assessment. A comprehensive environmental impact assessment of EU totals concerning office imaging equipment would require a transparent structure of all market segments, their exact installed base of products, performance characteristics as well their individual environmental impacts. With the definition of six base cases – average products with considerable market shares – we intended covering a large portion of the highly divers office imaging equipment market. But as a matter of fact, these six base cases and their allocated stock figures provide only a rough estimate of the EU total impact.

In order to show a fairly realistic magnitude of the total environmental impact we have chosen the base cases consciously by focusing on the lower to medium end of the product performances range. Regarding the EP-products (V1 to V4), due to the fact that we correlate the imaging speed of these base cases with a particular use pattern and related image creation volume (Energy Star TEC methodology), the chosen moderate speed classes (V1 and V2 at 26 ipm, V3 and V4 at 32 ipm) will hopefully avoid an overestimation in EU total. According to more detailed market figures of product sales by speed classes compiled in Section 2.2.3 and 2.2.4 the chosen base cases reflect the largest segments in the market. Regarding EP-copiers, the 2005 placement figures for monochrome devices show that products up to 30 ipm have almost 80% of total market share although only 20% of total are in a range of 20 to 30 ipm. Regarding EP-printer, the 25 to 39 ipm segment is still gaining market shares and will become with more than 50% the single most dominant segment by 2008. It is obvious that this approach does not allow a very detailed breakdown of the total environmental impact in terms of specific speed classes and other performance characteristics. We can therefore not assess if a smaller share of high performance products (e.g. high speed, larger format) may have a proportionally larger impact. This is a limit of the study.

Regarding the IJ-products (V5 and V6), we have discussed the selection criteria in previous tasks. Due to the fact that the actual stock in 2005 is with almost 70% clearly dominated by SFDs, the chosen base cases V5 and V6 are certainly not an ideal match. Having said this, it also has to be said, that the focus on MFDs reflects the technical and therefore market trend more realistically. The relatively short product life cycle of 3 to 4 years results in a fast turnover of products. According to available market forecasts, the installed base of IJ-products will consist of over 70% MFDs by the year 2010. Against this background the choice of MFD base cases seems justified.

The missing segments are single function facsimile machines and flatbed scanners for which no base cases were developed. According to the available market figures both product groups show a dynamic decline due to the general increase in MFDs. At this point of the study we will neglect both product categories in the assessment.

5.4.1. Aggregated EU totals for base case V1

Table 43 shows the MEEuP EcoReport results for the EU total impact assessment of Base Case V1 (EP-Copier/MFD monochrome)¹⁴. In order to provide a balanced view on the product related impacts we excluded paper consumption in the right column of the table. The specific impact of paper has been discussed in the single base case assessments already. In order to put the impact of Base Case V1 into perspective of the whole EU imaging equipment market a comparative analysis of all base case results will follow in Section 5.4.7.

Incl. Paper		Excl. Paper		
Table . Summary Environmenta 2005, Base_Case_V1_EP-Copier Paper)	al Impacts EU-Stock r_MFD-mono (incl.	Table Summary Environmental Impacts EU-Stock 2005, Base_Case_V1_EP-Copier_MFD-mono (excl. Demon		
main life cycle indicators	value unit	main life cycle indicators	value unit	
Total Energy (GER)	129 PJ	Total Energy (GER)	24 PJ	
of which, electricity	3,2 TWh	of which, electricity	1,7 TWh	
Water (process)*	202 mln.m3	Water (process)*	2 mln.m3	
Waste, non-haz./ landfill*	297 kton	Waste, non-haz./ landfill*	120 kton	
Waste, hazardous/ incinerated*	17 kton	Waste, hazardous/ incinerated*	16 kton	
Emissions (Air)		Emissions (Air)		
Greenhouse Gases in GWP100	3 mt CO2eq.	Greenhouse Gases in GWP100	1 mt CO2eq.	
Acidifying agents (AP)	20 kt SO2eq.	Acidifying agents (AP)	7 kt SO2eq.	
Volatile Org. Compounds (VOC)	1 kt	Volatile Org. Compounds (VOC)	0 kt	
Persistent Org. Pollutants (POP)	1 g i-Teq.	Persistent Org. Pollutants (POP)	1 g i-Teq.	
Heavy Metals (HM)	2 ton Ni eq.	Heavy Metals (HM)	1 ton Nieq.	
PAHs	1 ton Ni eq.	PAHs	1 ton Ni eq.	
Particulate Matter (PM, dust)	8 kt	Particulate Matter (PM, dust)	3 kt	
Emissions (Water)		Emissions (Water)		
Heavy Metals (HM)	1 ton Hg/20	Heavy Metals (HM)	1 ton Hg/20	
Eutrophication (EP)	14 kt PO4	Eutrophication (EP)	0 kt PO4	
*=caution: low accuracy for production pl	hase	*=caution: low accuracy for production ph	ase	

Table 43: Base Case V1 summary environmental impacts for EU-stock

¹⁴ These figures are extracted from a seperate table of the result sheet in the MEEuP Eco Report.

5.4.2. Aggregated EU totals for base case V2

Table 44 shows the MEEuP EcoReport results for the EU total impact assessment of Base Case V2 (EP-Copier/MFD colour). In order to provide a balanced view on the product related impacts we excluded paper consumption in the right column of the table. The specific impact of paper has been discussed in the single base case assessments already. In order to put the impact of Base Case V2 into perspective of the whole EU imaging equipment market a comparative analysis of all base case results will follow in Section 5.4.7.

Incl. Paper		Excl. Paper	
Table . Summary Environmental 2005, Base Case V2 - MFD - Copi	Impacts EU-Stock er Color (with paper)	Table Summary Environmental 2005, Base Case V2 - MFD - Copi	Impacts EU-Stock er Color (excl. Paper)
main life cycle indicators	value unit	main life cycle indicators	value unit
Total Energy (GER)	10 PJ	Total Energy (GER)	4 PJ
of which, electricity	0,3 TWh	of which, electricity	0,2 TWh
Water (process)*	13 mln.m3	Water (process)*	0 mln.m3
Waste, non-haz./ landfill*	51 kton	Waste, non-haz./ landfill*	40 kton
Waste, hazardous/ incinerated*	5 kton	Waste, hazardous/ incinerated*	5 kton
Emissions (Air) Greenhouse Gases in GWP100 Acidifying agents (AP)	0 mt CO2eq. 2 kt SO2eq.	Emissions (Air) Greenhouse Gases in GWP100 Acidifying agents (AP)	0 mt CO2eq. 1 kt SO2eq.
Persistent Org. Compounds (VOC)		Persistent Org. Pollutants (POP)	0 a i-Tea
Heavy Metals (HM)	0 ton Nieq.	Heavy Metals (HM)	0 ton Nieq.
PAHs	0 ton Ni eq.	PAHs	0 ton Ni eq.
Particulate Matter (PM, dust)	1 kt	Particulate Matter (PM, dust)	1 kt
Emissions (Water)		Emissions (Water)	
Heavy Metals (HM)	0 ton Hg/20	Heavy Metals (HM)	0 ton Hg/20
Eutrophication (EP)	1 kt PO4	Eutrophication (EP)	0 kt PO4
*=caution: low accuracy for production pha	ase	*=caution: low accuracy for production ph	ase

Table 44: Base Case	V2 summary	environmental	impacts	for EU-stock
---------------------	------------	---------------	----------------	--------------

5.4.3. Aggregated EU totals for base case V3

Table 45 shows the MEEuP EcoReport results for the EU total impact assessment of Base Case V3 (EP-Printer/SFD monochrome). In order to provide a balanced view on the product related impacts we excluded paper consumption in the right column of the table. The specific impact of paper has been discussed in the single base case assessments already. In order to put the impact of Base Case V3 into perspective of the whole EU imaging equipment market a comparative analysis of all base case results will follow in Section 5.4.7.

Incl. Paper		Excl. Paper	
Table . Summary Environmenta 2005, Base Case_V3_EP-Printer-	l Impacts EU-Stock -SFD-mono (incl.	Table . Summary Environmenta 2005, Base Case_V3_EP-Printer Baner)	l Impacts EU-Stock -SFD-mono (excl.
main life cycle indicators	value unit	main life cycle indicators	value unit
Total Energy (GER)	447 PJ	Total Energy (GER)	55 PJ
of which, electricity	9,9 TWh	of which, electricity	4,3 TWh
Water (process)*	752 mln.m3	Water (process)*	5 mln.m3
Waste, non-haz./ landfill*	827 kton	Waste, non-haz./ landfill*	165 kton
Waste, hazardous/ incinerated*	41 kton	Waste, hazardous/ incinerated*	38 kton
Emissions (Air)		Emissions (Air)	
Greenhouse Gases in GWP100	8 mt CO2eq.	Greenhouse Gases in GWP100	3 mt CO2eq.
Acidifying agents (AP)	64 kt SO2eq.	Acidifying agents (AP)	15 kt SO2eq.
Volatile Org. Compounds (VOC)	2 kt	Volatile Org. Compounds (VOC)	0 kt
Persistent Org. Pollutants (POP)	2 g i-Teq.	Persistent Org. Pollutants (POP)	1 g i-Teq.
Heavy Metals (HM)	4 ton Ni eq.	Heavy Metals (HM)	3 ton Ni eq.
PAHs	1 ton Ni eq.	PAHs	1 ton Ni eq.
Particulate Matter (PM, dust)	22 kt	Particulate Matter (PM, dust)	6 kt
Emissions (Water)		Emissions (Water)	
Heavy Metals (HM)	2 ton Hg/20	Heavy Metals (HM)	2 ton Hg/20
Eutrophication (ED)	52 kt PO4	Eutrophication (EP)	0 kt PO4

Table 45: Base Case V3 summary environmental impacts for EU-stock

5.4.4. Aggregated EU totals for base case V4

Table 46 shows the MEEuP EcoReport results for the EU total impact assessment of Base Case V4 (EP-Printer/SFD colour). In order to provide a balanced view on the product related impacts we excluded paper consumption in the right column of the table. The specific impact of paper has been discussed in the single base case assessments already. In order to put the impact of Base Case V4 into perspective of the whole EU imaging equipment market a comparative analysis of all base case results will follow in Section 5.4.7.

Incl. Paper		Excl. Paper	
Table Summary Environmenta 2005, Base Case_V4_EP-Printer	l Impacts EU-Stock -SFD-color (incl. Paper)	Table . Summary Environmenta 2005, Base Case_V4_EP-Printer Paper)	l Impacts EU-Stock -SFD-color (excl.
main life cycle indicators	value unit	main life cycle indicators	value unit
Total Energy (GER)	63 PJ	Total Energy (GER)	12 PJ
of which, electricity	1,5 TWh	of which, electricity	0,8 TWh
Water (process)*	99 mln.m3	Water (process)*	1 mln.m3
Waste, non-haz./ landfill*	147 kton	Waste, non-haz./ landfill*	60 kton
Waste, hazardous/ incinerated*	14 kton	Waste, hazardous/ incinerated*	13 kton
Emissions (Air)		Emissions (Air)	
Greenhouse Gases in GWP100	1 mt CO2eq.	Greenhouse Gases in GWP100	1 mt CO2eq.
Acidifying agents (AP)	10 kt SO2eq.	Acidifying agents (AP)	3 kt SO2eq.
Volatile Org. Compounds (VOC)	0 kt	Volatile Org. Compounds (VOC)	0 kt
Persistent Org. Pollutants (POP)	1 g i-Teq.	Persistent Org. Pollutants (POP)	0 g i-Teq.
Heavy Metals (HM)	1 ton Nieq.	Heavy Metals (HM)	1 ton Ni eq.
PAHs	1 ton Ni eq.	PAHs	1 ton Ni eq.
Particulate Matter (PM, dust)	4 kt	Particulate Matter (PM, dust)	2 kt
Emissions (Water)		Emissions (Water)	
Heavy Metals (HM)	1 ton Hg/20	Heavy Metals (HM)	0 ton Hg/20
Eutrophication (EP)	7 kt PO4	Eutrophication (EP)	0 kt PO4
*=caution: low accuracy for production ph	ase	*=caution: low accuracy for production ph	ase

Table 46: Base Case V4 summary environmental impacts for EU-stock

5.4.5. Aggregated EU totals for base case V5

Table 47 shows the MEEuP EcoReport results for the EU total impact assessment of Base Case V5 (IJ-MFD Personal). In order to provide a balanced view on the product related impacts we excluded paper consumption in the right column of the table. The specific impact of paper is in the case of the two inkjet base cases less significant due to the relatively low print volume. This has been discussed in the single base case assessments already. In order to put the impact of Base Case V5 into perspective of the whole EU imaging equipment market a comparative analysis of all base case results will follow in Section 5.4.7.

Table . Summary Environmenta 2005, Base Case V5_IJ-MFD-Per	l Impacts EU-Stock sonal (incl. Paper)	Table . Summary Environmenta 2005, Base Case V5_IJ-MFD-colo	I Impacts EU-Stock or (excl. Paper)
main life cycle indicators	value unit	main life cycle indicators	value unit
Total Energy (GER)	47 PJ	Total Energy (GER)	33 PJ
of which, electricity	2,1 TWh	of which, electricity	1,9 TWh
Water (process)*	30 mln.m3	Water (process)*	3 mln.m3
Waste, non-haz./ landfill*	750 kton	Waste, non-haz./ landfill*	726 kton
Waste, hazardous/ incinerated*	62 kton	Waste, hazardous/ incinerated*	62 kton
Greenhouse Gases in GWP100 Acidifying agents (AP) Volatile Org. Compounds (VOC) Persistent Org. Pollutants (POP) Heavy Metals (HM)	2 mt CO2eq. 10 kt SO2eq. 0 kt 1 g i-Teq. 2 ton Ni eq.	Greenhouse Gases in GWP100 Acidifying agents (AP) Volatile Org. Compounds (VOC) Persistent Org. Pollutants (POP) Heavy Metals (HM)	2 mt CO2eq. 9 kt SO2eq. 0 kt 1 g i-Teq. 2 ton Ni eq.
PAHs	4 ton Ni eq.	PAHs	4 ton Ni eq.
Particulate Matter (PM, dust)	8 kt	Particulate Matter (PM, dust)	7 kt
Emissions (Water)		Emissions (Water)	
Heavy Metals (HM)	2 ton Hg/20	Heavy Metals (HM)	2 ton Hg/20
Eutrophication (EP)	2 kt PO4	Eutrophication (EP)	0 kt PO4

Table 47: Base Case V5 summary environmental impacts for EU-stock

5.4.6. Aggregated EU totals for base case V6

Table 48 shows the MEEuP EcoReport results for the EU total impact assessment of Base Case V6 (IJ-MFD Workgroup). In order to provide a balanced view on the product related impacts we excluded paper consumption in the right column of the table. The specific impact of paper is in the case of the two inkjet base cases less significant due to the relatively low print volume. This has been discussed in the single base case assessments already. In order to put the impact of Base Case V6 into perspective of the whole EU imaging equipment market a comparative analysis of all base case results will follow in Section 5.4.7.

Incl. Paper		Excl. Paper	
Table . Summary Environmenta 2005, Base Case V6_IJ-MFD-Wo	l Impacts EU-Stock rkgroup (incl. Paper)	Table . Summary Environmenta 2005, Base Case V6_IJ-MFD-wor	l Impacts EU-Stock rkgroup (excl. Paper)
main life cycle indicators	value unit	main life cycle indicators	value unit
Total Energy (GER)	39 PJ	Total Energy (GER)	21 PJ
of which, electricity	1,2 TWh	of which, electricity	1,0 TWh
Water (process)*	35 mln.m3	Water (process)*	2 mln.m3
Waste, non-haz./ landfill*	618 kton	Waste, non-haz./ landfill*	584 kton
Waste, hazardous/ incinerated*	50 kton	Waste, hazardous/ incinerated*	50 kton
Emissions (Air) Greenhouse Gases in GWP100 Acidifying agents (AP) Volatile Org. Compounds (VOC)	1 mt CO2eq. 8 kt SO2eq. 0 kt	Emissions (Air) Greenhouse Gases in GWP100 Acidifying agents (AP) Volatile Org. Compounds (VOC)	1 mt CO2eq. 6 kt SO2eq. 0 kt
Persistent Org. Pollutants (POP)	1 g i-Teq.	Persistent Org. Pollutants (POP)	1 g i-Teq.
Heavy Metals (HM)	2 ton Ni eq.	Heavy Metals (HM)	2 ton Ni eq.
PAHs	3 ton Ni eq.	PAHs	3 ton Ni eq.
Particulate Matter (PM, dust)	7 kt	Particulate Matter (PM, dust)	6 kt
Emissions (Water)	4 ton Hg/20	Emissions (Water)	1 ton Hg/20
	1 ton Hg/20		
Eutrophication (EP)	2 KT PO4		U KLPO4

Table 48: Base Case V6 summary environmental impacts for EU-stock

5.4.7. Comparative analysis of all base case assessments

The following comparative EU totals impact assessment of the stock aggregated base cases takes mainly the environmental impact category Total Energy (GER) as common indicator. We intend to put the impacts of the single base cases into an overall perspective to the imaging equipment stock in the European Union with the reference year 2005.

The first conclusion from the assessment is related to the tremendous environmental impact of office paper. As a matter of fact paper is a resource intensive material. The manufacturing of paper requires large amounts of water and energy which is also reflected in the resource impact categories waste. According to the MEEuP EcoReport assessment results, Total Energy (GER) impact of the combined six base cases for the EU stock in 2005 is 735 PJ of which 586 PJ or 80% are related to paper consumption (see Figure 21).

Figure 21: Total Energy impact of base cases including paper (EU totals)

The MEEuP EcoReport projects the generation and distribution of paper into the impact assessment of the use phase. But paper consumption is relative. Therefore, a comparative impact assessment should exclude paper in order to detect product design specific environmental aspects. Figure 22 shows the Total Energy (GER) impact of the stock aggregated base case segments according to lifecycle phases without paper consumption. Figure 23 shows the distribution of the impact per lifecycle phase (excl. paper).

Figure 22: Total energy impact per base case and lifecycle phase excluding paper (EU totals)

Figure 23: Distribution of total energy impact per base case segment excluding paper (EU totals)

When comparing the aggregated base case segments (see Figure 22 and Figure 23) we notice for the monochrome EP-Products (V1 and V3) that the primary environmental impact is related to the use phase. More than 65% of the eco-impact is related to the use phase in the case of the EP-Copier/MFD monochrome and 80% in the case of the EP-Printer/SFD monochrome. Regarding the colour EP-Products (V2 and V4) still the use phase has the highest impact. However due to the higher material mass of the product – please notice that the base case V2 has an average weight of 143 kg – the production phase contributes considerably to the overall impact.

Concerning the IJ-MFDs the primary environmental impact is also generated in the manufacturing phase. Although the material mass of the IJ-Products is low the even low image creation volume of both base cases V5 and V6 results in relatively high environmental impact related to the production phase. That however does not mean that in all product cases the use phase is less important. Figure 24 indicates that the total energy consumption in the use phase related to the six base cases is 6.19 TWh. This result is mainly influenced by energy consumption data that have been made available by the industry partners for their products. Concerning the EP-products (base cases V1 to V4) the energy consumption was based on Energy Star TEC values which may not reflect a prolonged ready and sleep mode phase. In reality the allowed default time settings of more than one hour would lead to considerably higher energy consumption depending on the actual time between print jobs. The possible impact of such situation is demonstrated in the Task 7 scenarios. We have to conclude that real life energy consumption is 10 TWh/a. This value is in comparison to other product groups still moderate

According to feedback from the German UBA the value for the total energy consumption in Europe is much higher when extrapolated from the German ISI-Study¹⁵. In this study the energy consumption for household and office devices was calculated for 2001, 2004, 2010 and 2015. To compare these data with the value calculated via the six base cases, we have extrapolated the ISI data for Germany (2004) based on the following assumptions. In a first step we allocated the German data to the population of the EU-5 countries UK, France, Germany, Italy and Spain. Then we assumed that EU-5 represent approximately 70% of EU-25 total. Through that assumption we received respective data for the European Union product stock and energy consumption. The value for the energy consumption calculated in this way is indeed, as commented from UBA, with 20.8 TWh about 3.4 times higher than the value calculated via the base cases or double compared to the assumed 10 TWh/a, but there is also a big mismatch regarding the stock. Extrapolating the

¹⁵ Study by Fraunhofer ISI: "Technische und rechtliche Anwendungsmöglichkeiten einer verpflichtenden Kennzeichnung des Leerlaufverbrauchs strombetriebener Haushalts- und Bürogeräte", Schlomann, Barbara; Cremer; Clemens; Friedewald, Michael; Georgieff, Peter; Gruber, Edelgard; Corradini, Roger; Kraus, Dietmar; Arndt, Ulli; Mauch, Wolfgang; Schaefer, H.; Schulte, Martin; Schröder; Rainer, (2005), BMWi Dienstleistungsvorhaben 53/03, available at: <u>http://publica.fraunhofer.de/eprints/N-33208.pdf</u> (2007/11/30)
ISI-figures would lead to an EU-25 stock of 220.0 Mio devices (not including facsimiles and scanners) compared to 113.2 Mio devices calculated in this study (factor \sim 1.7). Regarding the different stock, the assumptions for the energy consumption are not so different for the ISI-Study (20.8 TWh/a) and this Lot 4 study (10 TWh/a).

Figure 24: Energy consumption of aggregated base case segments per life cycle excl paper (EU totals)

These first results from the MEEuP EcoReport need further discussion. The high impact of paper correlates with the use pattern assumption and the application of TEC methodology for base cases V1 to V4 in particular. In order to put the results of the base case assessments into perspective, we calculated an adjustment factor based on available market data. InfoTrends provides an estimate for image creation volume or page output per product segment. Based on these figures we calculated the difference between the image creation volume according to the base case assumptions and the data provided by InfoTrends (see Table 49).

вс	Product Segment	2005 EU Stock (in 1000 units)	Image Volume according to InfoTrends data (in 1000 pages)	Image Volume according to base case assessments (in 1000 pages)	Factor of difference	Total Energy (GER) according to base case assessments (EU stock in PJ)	Total Energy (GER) with adjustment to InforTrends data (EU stock in PJ)
V1	EP-Copier mono	5.970		*87880		105	
V2	EP-Copier color	381		*87880		6	
	EP-Copier (total)	6.351	129.000.000	558.125.880	4,3	111	26
V3	EP-Printer mono	14.735		*133120		392	
V4	EP-Printer color	1.919		*133120		51	
	EP-Printer (total)	16.654	439.000.000	2.216.980.480	5,1	443	88
V5	IJ-Printer SFD	68.412		**1040		14	
V6	IJ-Printer MFD	21.760		**3900		18	
	IJ-Printer (total)	90.172	79.000.000	156.012.480	2,0	32	16
	Facsimile SFD	13.241					
	Facsimile MFD	6.890					
	Facsimile (total)	20.131	28.000.000	28.000.000	1,0	6	6
Total	all products	133.308	675.000.000	2.959.118.840	4,4	592	136
* paper v	olume of single base ca	se V1 to V4 according	to TEC methodology	y			
** paper	volume of single base c	ases V5 to V6 accordi	ng to own use pattern	assumption			

Table 49: Calculation of real life paper of the paper of	er consumption impact based	on InfoTrends market data
---	-----------------------------	---------------------------

According to this calculation¹⁶ our adjusted Total Energy impact of paper consumption (real life scenario) is 136 PJ in total. This equals an adjustment factor of 4.4 over all segments¹⁷. A direct correlation of the adjusted paper consumption impacts (see Table 49) with the product-related environmental impact results excl. paper (see Figure 22) seems inaccurate because the use phase's energy and toner/ink consumption results would need adjustment as well. Such adjustment would ask for new "TEC pattern-specific" energy consumption values for the base cases V1 to V4. These data could not be obtained. However, we can calculate a rough adjustment factor by modeling the base case's energy consumption values based on the TEC methodology on the one hand and energy consumption estimates per mode on the other hand.

Table 50 provides a model of a possible daily use pattern for EP-Copier/MFD monochrome (V1) reflecting the weekly energy consumption according the TEC based value (4.81 kWh/week) we used for the assessment. The resulting 4.76 kWh/week in our model correlates very well with the 4.81 kWh/week used in the base case V1 assessment. This result indicates that the assumed energy consumption values and the daily use pattern are realistic for a scenario.

¹⁶ In this calculation we included the available data for facsimile machines.

¹⁷ According to feedback from EICTA this is overestimated and the "real life estimate" should be used.

V1: EPCMM	TEC use pattern	n: 26 jobs X 13	Scenario 1: 15	min Ready			
Mode	Active	Ready	Sleep	Off	Day	Week kWh	
Power (W)	600	110	20	0			
hours/day	0,22	6,50	5,28	12,00	24,00		
Use (Wh/d)	132,00	715,00	105,60	0,00	952,60	4,76	
Comments: 4,76 kWh/week correlates with the 4,81 kWh/week which is the average value used in the Base Case V1 assessment. This result indicates that the assumed power consumption values and the daily use pattern are realistic for a scenario.							

Table 50: Model of TEC based use pattern for base case	• V1
--	------

Now we adjust the use pattern by factor 4.4. Instead of 26 jobs per day only 6 jobs per day with 13 images each are calculated. We keep the 15 minutes ready mode time after each job and extent the sleep mode time duration to a total of 10.45 hours. As a result the weekly energy consumption drops to 2.02 kWh/week which equals a reduction factor 2.4 (see Table 51).

V1: EPCMM	Adjusted use pattern: 6 jobs X 13 images (Factor 4,5)				Scenario 1: 15	min Ready
Mode	Active	Ready	Sleep	Off	Day	Week kWh
Power (W)	600	110	20	0		
hours/day	0,05	1,50	10,45	12,00	24,00	
Use (Wh/d)	30,00	165,00	209,00	0,00	404,00	2,02
Comments: The application of adjustment factor 4,5 to the number of jobs per day (26/4,5 = 5,8) rounded to a total of 6 jobs, results under the assumption of a similar 15 min. ready mode use pattern in a reduction in power consumption by factor 2,36.						

Table 51: Model of adjust	ed use pattern for base case V1
---------------------------	---------------------------------

In order to show that a similar value results also for other base cases Table 52 and Table 53 provides the same kind of calculation for the EP-Printer/SFD monochrome (base case V3). The calculation results in a energy consumption reduction factor of 2.5.

V3: EPPSM	TEC use pattern: 32 jobs X 16 images (32 ipm)				Scenario 1: 15 min. ready	
Mode	Active	Ready	Sleep	Off	Day	Week kWh
Power (W)	550	100	20	0		
hours/day	0,27	8,00	3,73	12,00	24,00	
Use (Wh/d)	148,50	800,00	74,60	0,00	1.023,10	5,12
Comments: 5,12 kWh/week correlates with the 5,91 kWh/week which is the average value used in the Base Case V1 assessment. This result indicates, that the assumed power consumption values and the daily use pattern is realistic for a scenario.						

Table 52: Model of TEC based use pattern for base case V3

T5 page 75

V3: EPPSM	Adjusted use pattern: 7 jobs X 16 images (Factor 4,5)				Scenario 1: 15	min. ready
Mode	Active	Ready	Sleep	Off	Day	Week kWh
Power (W)	550	100	20	0		
hours/day	0,06	1,75	10,19	12,00	24,00	
Use (Wh/d)	33,00	175,00	203,80	0,00	411,80	2,06
Comments: The application of adjustment factor 4,5 to the number of jobs per day ($32/4,5 = 7,1$) rounded to a total of 7 jobs, results under the assumption of a similar 15 min. ready mode use pattern in a reduction in power consumption by factor 2,48.						

Table 5	3: Model	of adjusted	use pattern	for base	case V3

If we now apply an average reduction factor 2 to the energy consumption in the use phase, in terms of the impact category Total Energy (GER) the result would indicate that the production phase is the primary source of the environmental impact of office imaging equipment (see Figure 25).

5.4.8. Conclusions

The environmental impact assessment provides an orientation for the priority setting in product eco-design. These priorities have to be matched with the actual eco-design improvement potential which will be assessed in Task 6. In this final part of the Task 5 report we would like to exemplify some priorities for product improvement resulting from the base case assessments.

The assessment shows that the environmental impact of high volume products with short life cycles such as the IJ-MFDs is mainly related to the production phase and the relative quantities of bulk materials and electronic components in particular. In this case a plausible eco-design strategy would include the further miniaturization of the products, less diversity of materials, recycling optimized material selection and physical product design. In reality however, desktop IJ-Products have been miniaturized over the past years already to very large extent. This higher integration required the utilization of functional materials which in turn increased material diversity. A good example for this trend is the higher integration of electronics, where in total less material is utilized but the diversity and value of the material mix is increasing. A detailed environmental impacts in field of electronics (components and board technology). The utilization of advanced electronics provides to the customer more functionality and usually reduces energy consumption. In terms of product eco-design a very fine balance therefore has to be found between the choice/utilization of materials and advanced components on the one hand and the impact of these components in terms of production related environmental impacts on the other hand.

A second example is the EP-Product. In general, EP-Products are much more intensively used and therefore designed for higher volume output over a longer product lifetime. They come as desktops for low and medium speed as well as freestanding machines in all speed classes. The assessments indicated that heavier freestanding machines generate a considerable environmental impact through high mass of materials such as Bulk Plastics and Ferro metals. That does not mean however, that the environmental improvement strategy should focus on material utilization in the first place. In contrary, the use optimization has priority and the better improvement potential. A machine that can print or copy hundreds of document pages in a few minutes creates a high value for the customer. It is therefore necessary that such a machine gets used constantly (see Task 3 report on user behavior for further discussion of this issue). In parallel, that means that such a machine should be very reliable and energy efficient over lifetime. Energy efficiency in turn is determined by the actual image creation volume or use pattern. There are differences is use even for the same

machine as we discussed in Task 3 already. The eco-design has to balance for instance modespecific power consumption and power management options.

In conclusion, the results of the environmental impact assessment only provide a rough orientation for eco-design priorities. Energy efficiency optimization in conjunction with the resource efficient utilization of materials and electronic components are the topics of product improvement. The actual improvement potential of a product case has to be individually assessed in Task 6 and 7.