On Gas Dynamics of Exhaust Valves

Marcus Winroth, Christopher Ford, Henrik Alfredsson, Ramis Örlü
04-05.10.2017, Energirelaterad Fordonsforskning
1D/0D simulations

\[C_D = \frac{\dot{m}_{\text{actual}}}{\dot{m}_{\text{ideal}}} \]

Measurements of \(C_D \) today assume:
- Static valve (quasi-steady)
- Low pressure ratios (insensitive to pressure ratio)
Objectives

Experimentally investigate the effects on C_D due to:

- Engine speed (valve opening time)
- Pressure ratio
Ideal mass flow

\[C_D = \frac{\dot{m}_{\text{actual}}}{\dot{m}_{\text{ideal}}} \]

Subcritical:

\[\dot{m}_{\text{ideal}} = \frac{A_T p_0}{\sqrt{RT_0}} \left(\frac{p_T}{p_0} \right)^{\frac{1}{\gamma}} \left\{ \frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{p_T}{p_0} \right)^{\frac{\gamma-1}{\gamma}} \right] \right\}^{\frac{1}{2}} \]

Choked:

\[\dot{m}_{\text{ideal}} = A_T p_0 \sqrt{\frac{\gamma}{RT_0}} \left(\frac{2}{\gamma + 1} \right)^{(\gamma+1)/[2(\gamma-1)]} \]

\(A_T \) - Throat area
\(p_T \) - Throat pressure
\(p_0 \) - Total pressure
\(T_0 \) - Total temperature
\(\gamma \) - Ratio of specific heats
\(R \) - Specific gas constant

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se
Dynamic valve setup

Outlet

Linear motor

Linear transducer

Air supply

Spring

Cylinder

Outlet
Static valve setup

Outlet

Diffuser

Cylinder

Flow
\[\dot{m}_{max} = 0.5 \text{ kg/s} \]
\[p_{max} = 500 \text{ kPa} \]
Time-resolved mass flow

\[m(t) = \frac{V}{R} \frac{p(t)}{T(t)} \]

Expansion in the cylinder may be viewed as isentropic

\[\frac{p_2}{p_1} = \left(\frac{T_2}{T_1} \right)^\gamma / (\gamma - 1) \]

Meaning the mass in the cylinder is a function of the pressure and initial temperature

\[m(t) = f(p(t), T(t = 0)) \]
Time-resolved mass flow

\[\dot{m} = \frac{dm}{dt} = \frac{V}{\gamma RT_0} \left(\frac{p_0}{p} \right)^{\gamma-1}/\gamma \frac{dp}{dt} \]

\[n = 900 \text{ rpm} \]
\[p_0 = 400 \text{ kPa} \]
Initial pressure

\[n = 900 \text{ rpm} \]

\[p_0^i \]

\[C_D \]

Valve lift [mm]

\[p_0^i = 300 \text{ kPa} \]
\[p_0^i = 350 \text{ kPa} \]
\[p_0^i = 400 \text{ kPa} \]
\[p_0^i = 450 \text{ kPa} \]
\[p_0^i = 500 \text{ kPa} \]

Static data
Engine speed

\[p_{oi} = 500 \text{ kPa} \]

\[C_D \]

Valve lift [mm]

800 rpm
900 rpm
1100 rpm
1350 rpm
Static data
Quasi-steadiness

\[u_{\text{geometry}} \ll u_{\text{flow}} \]

\[\tau_{\text{geometry}} \gg \tau_{\text{flow}} \Rightarrow \text{Quasi-steady} \]
Quasi-steadiness

Classical idea

\[u_{\text{geometry}} \ll u_{\text{flow}} \]

\[\tau_{\text{geometry}} \gg \tau_{\text{flow}} \Rightarrow \text{Quasi-steady} \]

Neglects the dynamics of the flow conditions

\[\tau_{\text{condition}} \gg \tau_{\text{geometry}} \gg \tau_{\text{flow}} \Rightarrow \text{Quasi-steady} \]
A measure of quasi-steadiness

\[Q_S = \frac{\dot{A}_T}{\dot{m}/m} \]

\[Q_S = C \cdot \left(\frac{p_{0i}}{p_0} \right)^{(\gamma-1)/2\gamma} \frac{V}{A_T \sqrt{\gamma R T_{0i}}} \frac{\dot{A}_T}{A_T} \]

\[Q_S \gg 1 \Rightarrow \text{Quasi-steady} \]

\[C = \left(\frac{\gamma + 1}{2} \right)^{(\gamma+1)/[2(\gamma-1)]} \]
A measure of quasi-steadiness

$p_{0i} = 500$ kPa

Q_s

Valve lift [mm]

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se
Conclusions

It has been shown that:

- The assumptions of quasi-steadiness and pressure-ratio independence do not hold
 - C_D decreases with initial pressure
 - C_D increases with engine speed

Reference:

Competence Center for Gas Exchange

"Charging for the future"