

Preparatory Study on

Eco-design of Boilers

Task 6 Report (FINAL)

Design Options

René Kemna Martijn van Elburg William Li Rob van Holsteijn

Delft, 30 September 2007

VHK

Van Holsteijn en Kemna BV, Elektronikaweg 14, NL-2628 XG Delft

Report prepared for:

European Commission, DG TREN, Unit D3, Rue de la Loi 200, 1100 Brussels, Belgium

Technical officer:

Matthew Kestner

DISCLAIMER & IMPORTANT NOTE

The underlying report is a draft and may be subject to change. The authors accept no liability for any material or immaterial direct or indirect damage resulting from the use of this report or its content. This report contains the results of research by the authors and any opinions in this report are to be seen as strictly theirs. The report is not to be perceived as the opinion of the European Commission, nor of any of the expertsor stakeholders consulted.

CONTENTS

n	1	a	,
ν	u	8	ι

1	INT	RODUCTIO	ON	
	1.1		on	
	1.2			
	1.3		otions & Costs	
			osts Reference Boiler	
		1.3.2 Co	ost Assessment Design Options	5
2	DES	SIGN OPTI	[ONS	12
	2.1	Design opt	tions and Impact size category "M" (Medium)	12
	2.2		tions and Impact size category "L" (Large)	
	2.3		otions and Impact size category "S" (Small)	
	2.4		otions and Impact size category XS and XXS	
	2.5		otions & Impact size category "XL"	
	2.6		otions and Impact size category "XXL"	
	2.7		otions and Impact size category "3XL & 4XL"	
		2.7.1 Re	esults size-class 3XL	49
		2.7.2 Re	esults size-class 4XL	54
		2.7.3 Su	ımmary	59
3	SUN	MARY TA	ABLES	60
	3.1	Size chara	cteristics	60
	3.2	Energy & l	lifecycle costs at Basecase, LLCC and BAT-levels	61

INTRODUCTION

1.1 Introduction

The scope of Task 6 of the preparatory Eco-design study on Central Heating Boilers is the identification of the short-term target design options, their monetary consequences in terms of Life Cycle Costs for the consumer, their environmental costs and benefits and pinpointing the solution with the least Life Cycle Costs (LLCC) and the Best Available Technology (BAT).

The assessment of monetary Life Cycle Costs is relevant to indicate whether design solutions might negatively or positively impact the total EU consumer's expenditure over the total product life (purchase, running costs, etc.). The distance between the LLCC and the BAT indicates – in a case a LLCC solution is set as a minimum target – the remaining space for product-differentiation (competition). The BAT indicates a medium-term target that would probably be more subject to promotion measures than restrictive actions. The BNAT (= Best Not yet Available Technologies (see subtask 6.5) indicates the long-term possibilities and helps to define the exact scope and nature of possible measures.

VHK has made all calculations based on the ECOBOILER model version 5a, which is added separately as an Excel file.

1.2 Approach

The BaseCase New Individual and Collective Boilers - as defined in Task 5 - will serve as the reference for the evaluation of the design options. These Base-cases define a complete heating system (incl. the heat generator, temperature controllers and valve controllers) in combination with its EU-average heat load. Because of reasons explained earlier, the proposed design options not only related to the boiler appliance itself, but also to other auxiliary system components that help improving the efficiency of the boiler and reducing the energy consumption for space heating. These auxiliary components are items like temperature controllers, valve controllers, renewable generator components that are commonly offered and sold together with the boiler appliance).

For each Design-option, the increase in consumer price (VAT included) will be estimated on the bases of:

- the data that was gathered and presented in the Task 2 Report, chapter 4 and 5
- data gathered for the Task 4 Report
- hands-on experience with engineering and production in the heating industry
- product list prices and prices collected from web-shops

The energy savings related to each individual design option will be calculated using the Integrated Boiler Model, version 5a. The consequences of each design-option for environmental impact and Life-Cycle costs will be determined on the bases of the EuP EcoDesign Model (version 5), where the input for the energy consumption in the use-phase is the output "CH Energy Total" from the Integrated Boiler Model.

The parameters that are used for calculating the life-cycle running costs are based on the results of the task 2 Report chapter 4, being:

Table 1.1

Product-life [yr]	17	Electricity rate per kWhe	0,15 €/kWh	Electr. rate increase / yr.	1,5%
Discount rate	2%	Gas rate per kWh	0,047 €/kWh	Gas rate increase / yr.	5,6%
Repair& maint /yr	€180	Oil rate per kWh	0,061 €/kWh	Oil rate increase / yr.	8,2%

1.3 Design Options & Costs

1.3.1 Costs Reference Boiler

The Base-Case New Individual Medium sized Boiler will serve as the first reference for the design options for the individual boiler, due to its market share of around 52%. Pursuant to Task 5, the table below gives a compact summary of this reference case for the evaluation of the design options..

Table 1-2. Reference system for evaluation of design options

INPUTS CH		PRODUCT PRICE BREAK DOWN	
CH-power class	4 -M (Medium)		
	1 –av. existing		
boiler characteristics		OEM Subass.Costs (Task 2, Ch5)	Euro/ system
power input in kW*	22 kW	Heat exchanger group	90
turndown ratio	33%	El. controls group	50
standby heat loss (% of Pnom)	1,0 %	Burner group	20
steady st. efficiency %	5 -80/80/80/80	Fuel controls group	35
fuel (dew point)	1-gas	CH-return group	40
air-fuel mix control	1 -pneumatic	CH-supply group	10
circ. Pump power	6 -95W	Fan group	30
fan power	3 -P=940W	Casing	30
CPU power sb/on	4 -P=10/12W	Condensate collect	8
controls power sb/on	2 -P=0/10W	Hot water group	21
comb. air intake	1 -room sealed	Packaging etc.	10
boiler mass (empty), kg	45 kg	Extra oil-fired (*0,12)	65
water content in kg	4,0 kg	Subtotal OEM	409
envelope volume in m³	0,15 m³		
noise level in dB-A	43 dB-A	Labour (30% of Subtotal OEM)	123
controllers		Overhead (70% of Subtotal OEM)	286
auto-timer control	yes	total MSP	818
valve control	2 -RTV 2K		
boiler temp control	6 -on/off RT	Ex wholesale (1,3 * total MSP)	1.063
electronic optimiser	no	Ex inst.excl.VAT (1,55 * tot. MSP)	1.268
auto set weather control	N/A	BOILER cons.str price incl.VAT	1.509

Reference System features

The Reference system is a system with a predefined "EU-average" heat load, that consists of a wall hung room-sealed modulating LT-boiler (η on GCV = 80/80/80/80%) Of 22 kW and a turn-down ratio of 33%. The boiler is equipped with standard average electric auxiliary components (pump, fan, cpu). The temperature is controlled with an on/off room thermostat with timer control in the living zone (zone 1) and at least 4 TRV's for the other rooms (bedrooms and bathroom).

Reference System Price

Product Costs

The costs for this reference product-system are based on the OEM material costs for an non-condensing, open, heating only boiler (Table 5.5 Task 2 Report) on one hand, and the

average boiler street price (VAT incl.) of ca. \leq 1500 ,- (Table 4.1 , Task 2 Report) on the other hand. The OEM material-costs for the subassemblies/components op the reference boiler are adjusted according to the table below.

Table 1-3. Explanation Cost build up Base-case "M" size boiler

	(Task 2,	Corrected for
	Chapter 5)	ref. boiler
	Non cond./	LT /
OEM Subass. Costs (Euro/ system)	atmospheric /	room-sealed
	solo	/ combi
Heat exchanger group	80	90
2, El. controls group	50	50
3. Burner group	20	20
4. Fuel controls group	35	35
5. CH-return group	40	40
6. CH-supply group	10	10
7. Fan group		30
8. Casing	30	30
9. Condensate collect		8
10. Hot water group		21
11. Packaging etc.	10	10
12. Extra oil-fired		65
Subtotal OEM	275	409
Labour (30% of Subtotal OEM)	83	123
Overhead (70% of Subtotal OEM)	192	286
total MSP	550	818
Ex wholesale (1,3 * total MSP)	715	1.063
Ex installer excl. VAT (1,55 * total MSP)	853	1.268
BOILER consumer street price incl. VAT (* 1,19)	1014	1.509

Because the reference boiler is room sealed (closed compartment for combustion chamber and heat exchanger) $\[\in \]$ 10,- is added to the OEM price for the HE-group, to compensate for the materials used to close the combustion/he-compartment. Furthermore the reference boiler is fan-assisted, for which reason $\[\in \]$ 30,- is added for a simple fan including fan controls and the necessary additional internal duct work. Since approximately 25% of the new sales are condensing boilers, 25% of the costs for a condensate collector is added. According to Table 5.5 of the Task 2 Report these costs are estimated at $\[\in \]$ 8,-. Since around 58% of the new boilers sold in 2004 are combi boilers, an additional $\[\in \]$ 21,- is added to value the share of combi boilers with additional hot water components.

Finally an additional figure needs to be added to correct for the percentage of oil fired boilers in the "M" (Medium) range of new sold boilers. Pursuant to table 4.1 of the Task 2 Report, this percentage is set at 1.5 * 1.45 * 0.09 = 19.6% (factor for oil * factor for floor standing * 9% share of oil boiler in unit sales (see table 3.11 of the Task 5 report)). For the reference boiler system this equals an extra cost of $\mathbf{\mathfrak{E}}$ 65,-. The consumer street price of the Reference Boiler System thus becomes $\mathbf{\mathfrak{E}}$ 1.509,-.

For collective boilers a higher share of oil fired appliances is applicable, namely 40% as average. For collective boilers (XL to 4XL) this percentage therefore becomes 1,5 * 1,45 * 0.4 = 87 %.

Product costs and boiler size

The impact on product costs for varying the nominal boiler output is mainly related to material costs for the heat exchanger, (burner), casing and packaging (together responsible for appr. 30% of subtotal OEM). In a certain range (in casu the range with a nominal output between $10-30~\rm kW$) these costs and the costs for the other components (fan, pump, control unit, piping) are very similar. Above this range there will be a bigger effect in price because of the different production series of those boilers and their OEM components. Based on list prices and on the calculation principle illustrated in the previous tables, the following numerical relation between nominal output and OEM price is assumed:

For the smaller boilers (XXS, XS, and M) the OEM-costs for the subassemblies 1.HE-group, 8.Casing and 11.packaging are reduced by 15% for each step smaller than size "M"; costs for the other subassembly groups remain the same.

For the bigger boilers (L, XL, XXL, 3XL and 4XL) the costs for these three subassembly groups is increased with 15% for size "L", and for the size "XL" and "XXL" a multiplier of 2 respectively 3 is used. For the last two size-classes the costs for all other subassembly groups is increased with 25% per step upwards. Costs for the 3XL boilers are determined by multiplying all XXL-subassembly costs with a multiplier of 2. Costs for the 4XL boiler are determined by multiplying all 3XL subassembly costs with 4.

This approach leads to the following table on prices for boilers with basecase features.

Table 1.4. Cost build-up different size categories basecase boilers (related to size-category "M")

	_									
		1	2	3	4	5	6	7	8	9
	_	XXS	<u>xs</u>	<u>s</u>	<u>M</u>	<u>L</u>	<u>XL</u>	XXL	XXXL	XXXXL
	Pnom in kW	10	14	19	22	29	60	115	250	750
Nr.	OEM Subass.Costs (Task 2,Ch.5)									
1	Heat exchanger group	55	65	77	90	104	180	270	540	1620
2	El. controls group	50	50	50	50	50	63	78	156	469
3	Burner group	12	14	17	20	23	29	36	72	216
4	Fuel controls group	35	35	35	35	35	44	55	109	328
5	CH-return group	40	40	40	40	40	80	100	200	600
6	CH-supply group	10	10	10	10	10	13	16	31	94
7	Fan group	30	30	30	30	30	60	75	150	450
8	Casing	18	22	26	30	35	60	90	180	540
9	Condensate collect	8	8	8	8	8	16	20	40	120
10	Hot water group	21	21	21	21	21	21	21	21	21
11	Packaging etc.	6	7	9	10	12	20	30	60	180
	Extra oil-fired (*0,11)	54	57	61	65	69	491	664	1310	3895
	Subtotal OEM	340	360	382	409	436	1075	1454	2870	8533
	Labour	102	108	115	123	131	323	436	861	2560
	Overhead	238	252	268	286	305	753	1018	2009	5973
	total MSP	680	719	765	818	872	2151	2909	5740	17065
	Ex wholesale	885	935	994	1063	1133	2796	3781	7462	22185
	Ex installer excl. VAT	1055	1115	1185	1268	1351	3334	4508	8897	26451
	BOILER consumer street price incl. VAT	1255	1326	1410	1509	1608	3967	5365	10587	31477

Installation Costs

The installation costs are based on the data presented in table 4.2 of the Task 2 Report, where the average installation costs for the base-case new gas boilers is \in 1195,- and for oil boilers \in 1737,-. Incorporated in these figures is a share of 40% of the installations that need new or renewed chimneys, electric connections and or condensate drains (due to first time installation and/or condensing boilers). Per size category the installation costs are weighted for their share of oil and gas. For instance in the "M" category there are around 9% oil boilers and 91% gas boilers, resulting in a total installation costs of (1195*0,91 + 1737*0,09 = \in 1244,-). For collective boilers (XL to \$XL) the installation costs are calculated with the adjusted formula "1195*0,6 + 1737*0,4" due to the higher share of oil boilers. In addition to this weighting for fuel, a multiplier is used to compensate for the installation costs related to the size of the boiler, according to the following table:

Size	XXS	XS	S	M	L	XL	XXL	3XL	4XL
Multiplier	0,80	0,85	0,90	1	1,1	2	3	4	7

This leads to the following assumptions on installation costs.

Table 1.5. Installation costs different size categories basecase boilers

	<u>xxs</u>	<u>xs</u>	<u>s</u>	<u>M</u>	L	<u>XL</u>	XXL	XXXL	XXXXL
Pnom in kW	10	14	19	22	29	60	115	250	750
INSTALLATION (Labour, materials, VAT)	972	1033	1094	1215	1337	2572	3857	5143	9001

Controller Costs

Concerning controllers, the reference for the size "M" and the smaller boiler sizes, is the on/off room thermostat with auto timer control, situated in the central part of the house (living) in combination with at least 4 TRV's (2K). Reference prices for these standard TRV's are set at euro 15,- per TRV (consumer price, VAT included) and for the on/off room thermostat with auto timer control: euro 90,-

Reference for collective boiler is the control system with a fixed boiler feed temperature.

A summary table for an overview of all the basecase design inputs is given in table 3.4 of the Task 5 Report.

1.3.2 Cost Assessment Design Options

All costs mentioned in this paragraph relate to size-category "M" and represent the increase in costs for a specific design option compared to the basecase product.

a. Steady-state efficiency

The increase of the steady-state efficiency from 80/80/80 to the various condensing modes, involves several of the subassembly groups, listed in the OEM cost build-up. The table below gives the price-increase for the various steps in improving the steady-state efficiency and is based on Table 5.5 of the Task 2 Report, that summarizes the OEM materials costs indications for gas-fired wall hung boilers.

Table 1-6. Price increase OEM subassembly groups related to steady-state efficiency

OEM S	Subass. Groups	84/84	85/91	87/95	89/97	96/97
Nr.	Steady-state eff. Option nr.	4	3	2	1	9
1	Heat exchanger group	15	25	30	35	60
2	El. controls group		20	30	40	40
3	Burner group				5	5
4	Fuel controls group					*
5	CH-return group		10	15	20	20
6	CH-supply group					
7	Fan group		5	5	5	5
8	Casing					
9	Condensate collector		27	27	27	27
10	Hot water group					
11	Packaging etc.					
			* for	96/97% a typ	e of λ-control	is requested

For the design-option "tertiary heat exchanger" that is represented with a steady-state efficiency figure of "96/97" (option 9), the additional OEM costs of \in 25,- for the 'heat exchanger group' related to a plastic heat exchanger that is added to the air-supply and exhaust channel of the boiler. If this design option is selected, it is necessary to also improve the air-fuel mix control with at least an ionisation based λ -control system to properly benefit from the preheated combustion air in the combustion process.

The expected steady-state efficiency for the tertiary heat exchanger is safely limited to 96 and 97% GCV (96% at 80/60 °C and 97% at 50/30 °C), and not 99% (as already claimed by some boiler manufacturers for boilers without tertiary heat exchanger at the 50/30 regime), because the technology of the tertiary heat exchanger partly still has to prove

itself, and some losses are expected due to an increased power consumption of the fan and due to a more complex dynamic behaviour during on/off cycling of the boiler.

b. Power input

If the heat load of the house is selected, the power input of the boiler normally is selected according to the same power class. The maximum power input of the boiler however, is mainly related to the requested domestic hot water production (combi appliances) and to a lesser extend to the heat load of the house. For heating only purposes it is therefore possible to select a power input class that is below the heat load class of the house. The table below gives the minimal required output power of the boiler for each "house heat load category".

Table 1-7. Load profiles: Net heat load, average power, peak output power required in normal and extreme circumstances

		Extreme peak power [-10 °C]	Temperature & heat-up correction factor EN 12831	MINIMUM REQUIRED OUTPUT POWER	est. input power BaseCase (incl. eff + oversize)
Cat.	Model	Phextr.	#	kW	kW
XXS	apartment new	2,60	1,38	3,6	10
XS	average new	3,70	1,38	5,1	14
S	apartment existing*	5,00	1,38	6,9	19
M	average existing	5,60	1,38	7,7	22
L	house existing	7,60	1,38	10,5	29
XL	new building (8 apartments)	22,20	1,38	30,6	60
XXL	existing building (8 ap.)	33,60	1,38	46,4	115

Selecting a boiler with a reduced power input will not only effect the product purchase price and with it the lifecycle costs, but also the annual energy consumption. Depending on the type of boiler controls and room temperature controls, the energy savings can vary between 0 and $4\,\%$.

The influence on the product costs related to varying the maximal power rating of the reference boiler is illustrated in table 1-4.

c. Turndown Ratio

The costs for increasing the turn-down ratio of a boiler to 10% of the nominal boiler output, largely relates to the principle that is used to accomplish this feature and the reference boiler that is taken as starting point. If an extra diaphragm is used to increase the available air pressure of the traditional pneumatic control unit through which a higher measuring resolution is achieved (see Task 4 Report, paragraph 6.2) the extra OEM costs will be limited to around $\bf 15$ - $\bf 20$ $\bf \in$ for an additional diaphragm and some fine tuning in the controls. If the increased turn down ratio is achieved with an adjusted mix- and control unit, using two valves that are both controlled by a motor, the cost increase will probably be higher. The following OEM cost increase for the "fuel control group" will be used for evaluation of the design options:

Table 1-8. OEM cost increase for the "fuel control group"

Turndown ratio	OEM cost increase for fuel control group
≥ 30%	0 euro
≤ 30% AND ≥ 20	10 euro (fixed amount)
≤ 20% AND ≥ 10	15 – 25 € (lineair function)

* Please note that these extra costs only relate to a boiler that is already optimised for condensing purposes and outfitted with variable speed fans and appropriate burners. If this is not the case cost increase will be double of the here mentioned figures.

d. Standby heat loss

ReductiOn of stand by heat losses can be achieved by reducing the radiation and convection losses of the appliance. Radiation and convection losses of the casing can be reduced by improving the insulation of the hottest spots of the boiler (burner and heat-exchanger) and by improving the insulation of the casing using (improved) insulation material with a reflective coating. Convection losses through the chimney can be reduced by using either a flue valve or some other kind of device or lay-out (heat trap) that prohibits the supply air from passing through the heat exchanger into the chimney.

Improving the insulation of the heat exchanger and casing is not very usefull when the heat can still escape through the flue-duct or chimney. Priority should be to first minimize these convection losses through the exhaust and then start improving on the boiler insulation. The following OEM cost increase will be used for evaluation of the design options:

Table 1-9. OEM cost increase will be used for evaluation of the design options

Standby heat loss	OEM cost increase	
< 1% of nominal power	€ 5,- to be added to subassembly "fan group"	
	(for adjusted construction (heat trap) or additional flue valve)	
≤ 0,5% of nominal power	€ 10,- to be added to the subassembly "casing"	
	(costs for appr. 1,5 m² insulation material)	
	Please note that below 0,5% both OEM price increases are applicable	

e. Air-fuel ratio control

The "M"-size reference boiler uses a standard pneumatic air-fuel ratio control. As explained in the Task 4 Report, this type of λ -control can be further improved with Ionisation based technology of next generation O2 and CO sensors. The following OEM cost-increase for improvement of the λ -control technology will be used for evaluation of the design options:

Table 1-10. OEM cost-increase for improvement of the λ-control technology

λ-control technology	OEM cost increase	
Ionisation based	€20,-	
Next generation O2 en CO	€ 30,-	

f. Circulation Pump

The circulation pump that is assumed as the standard product for the reference boilers, is the single speed pump (single speed may selectable out of three). There is an A-G energy label for circulators, but this applies only to standalone products and cannot be applied to integrated circulation pumps. An alternative classification for the latter could be 1:

- a) Standard pumps, manual speed selection or remote speed selection (one up to three speed)
- b) Electronic pumps, PWM or BUS controlled remote speed selection (more than 20 different speeds)
- c) High efficiency pumps, PWM or BUS controlled remote speed selection (more than 20 different speeds)

¹ Pers. comm.. Armin Marko, 2007

The power consumption of pumps (see also Task 6- table 2.2), according to the differentiation above, and with comparable pressure head ("6-7m pump") is estimated by industry sources at:

- a) 80-95W
- b) 30-95W
- c) 5-70W

For room temperature control systems (pump running mainly on max design speed, e.g. 1000l/h) the median values are expected to be 95, 80 and 45 W.

For outdoor temperature control systems (pump running a lot in part load < 1000 l/h) the typical values are 80, 45 and 25 W.

In any case, these values are relevant for modelling. For legal measures we propose that validated and measured power consumption values should be used.

The same also goes for circulators that are used in solar systems and or in heat pump systems..

The OEM costs for a standard pump are integrated in subassembly group 5: "CH-return-group", with reference costs of \in 40,- for the medium boiler. The following OEM cost-increase will be used for evaluation of the design options (pursuant discussions with pump manufacturers):

Table 1-11. OEM costs for a standard pump

Energy class circulator	OEM cost increase
Class B	€ 22,-
Class A	€ 50,-

g. Fan

The fan of the reference "M" boiler is a variable speed fan with an energy consumption of 9 to 40 watts maximum. This energy consumption of this component can be further reduced by improving motor and impeller efficiency. The following OEM cost-increase for improvement of the fan will be used for evaluation of the design options:

Table 1-12. OEM cost-increase for improvement of the fan

Energy consumption fans	OEM cost increase
6 – 30 watts	€ 5,-
3 – 18 watts	€ 10,-

h. CPU & controls

The power consumption of the CPU with its controls mainly depend on the type off power supply that is used and on the how intelligently the CPU is designed (optimised for minimal consumption or not). The CPU of the reference "M" boiler is an average unit with a power consumption of 10-12 watts. The following OEM cost-increase for improvement of the CPU-power consumption will be used for evaluation of the design options:

Table 1-13. OEM cost-increase for improvement of the CPU-power consumption

Energy consumption CPU	OEM cost increase
6 – 8 watts	€ 4,-
4 – 6 watts	€ 6,-
2 – 3 watts	€ 10,-

i. Boiler temperature control

The basecase boiler temperature control system is the on/off room thermostat controlled system, with auto timer control (clock based night setback). This reference control system can be improved by applying a modulating thermostat or a time proportional room thermostat. The extra costs for these design options are not based on OEM costs but on the price differences that can be derived from street prices for these products. Apart from that there will in the replacement market also be some extra costs for replacing the existing room thermostat. The following difference in street prices for improved room thermostats will be used for evaluation of the related design options:

Table 1-14. difference in street prices for improved room thermostats

Type of room thermostat	Increase purchase price (VAT included)	Additional installation costs
Modulating room thermostat	€ 30,-	€ 25,-
Time proportional RT	€ 50,-	€ 25,-

In case a weather dependent control system is selected the extra costs for this option relates to extra controller components (outdoor sensor and improved boiler control options). From energy perspective the weather dependent control system can not be seen as a design option because it consumes more energy that the basecase on/off room

thermostat. Weather dependent control systems are selected because they offer heating comfort in all habitable rooms. Compared to a fixed boiler temperature controlled system however, the weather dependent control system does offer energy savings and can in that sense be seen as design option.

The following difference in street prices for a weather dependent system (compared to a fixed boiler temp controlled system) will be used for evaluation of the related design options:

Table 1-15. difference in street prices for a weather dependent system

Type of boiler temp. control	Increase purchase price (VAT included)	Additional installation costs
Weather dependent	€ 100,-	€ 80,-

j. Valve control

The reference valve is a Thermostatic Radiator Valve (TRV) with a 2k band. Envisaged improvements of this control feature involves:

- the use of 1k TRV,s
- use of motor valves with a PID loop
- use of motor valves with a cpu

The added costs related to these improvements not only affect the systems purchase price, but also the installation costs (old valves need to be replaced by the new ones). The following cost increase figures will be used for evaluation of the related design options:

Table 1-16. cost increase figures

Type of boiler temp. control	Increase purchase price	Additional	
	(VAT included)	installation costs	
TRV 1k	-	€ 60,- (hydraulic balancing)	
Motor valve + PID loop	€ 60,- per valve	€15,- / valve	
Motor valve + CPU	€ 85,- per valve	€ 15,- / valve	

k. Electronic optimiser

The additional costs for an electric optimiser is related to the extra software that needs to added and most probably to some additional costs for the CPU-components (more expensive processor, etc.). The additional costs for the consumer for this design option is set at $\leqslant 25$,-

l. Autoset weather control

A control system that automatically sets optimal boiler feed temperature based on outdoor temperatures and on information on the difference of the actual and desired temperature in each individual room, is a system that has temperature sensors in each room and preferably uses motor valves in each habitable room. Data is wireless transmitted to a CPU that continuously calculates and adjusts the optimal boiler feed temperature.

The following cost increase figures will be used for evaluation of the related design options:

Table 1-17. cost increase figures autoset weather control

Components for autoset of boiler feed temperature	Increase purchase price (VAT included)	Additional installation costs
Motor valves + RF	€ 85,- per valve	€ 15,- per valve
Centralized control unit + RF	€ 250,-	€ 75,-

m. Solar collector

Based on list prices of manufacturers, the following costs will be used for evaluation of the related design options:

Table 1-18. costs solar collector

Type of collector	Unglazed	Glazed	Vacutube
Fixed material costs	€ 500,-	€ 500,-	€ 500,-
Material costs per m²	€ 200,-	€ 300,-	€ 400,-
Fixed Installation costs	€ 350,-	€ 350,-	€ 350,-
Installation costs per m²	€ 150,-	€ 150,-	€ 150,-

n. Electric Heat Pump

Based on list prices of manufacturers, the following costs will be used for evaluation of the related design options:

Table 1-19. costs electric heat pump

Type of heat pump	Air / water	Brine / water	Water / water
Fixed material costs	€ 750,-	€ 1000,-	€ 1000,-
Material costs per kW	€ 600,-	€ 1000,-	€ 1000,-
Fixed Installation costs	€ 500,-	€ 1000,-	€ 1000,-
Installation costs per kW	€ 300,-	€ 600,-	€ 600,-

For gas fired heat pumps the same price increase is assumed for the various types (air/water, brine/water and water/water).

DESIGN OPTIONS

The ECOBOILER model contains 31 main variables that each have – as an average- around 4 options to choose from. Theoretically this means that there are around 4^{31} possible combinations. This comes down to 4600 quadrillion design options (4600 * 10^{15}) for each size category. Since it is impossible to analytically cover all possible options, the best we can do is pick out some characteristic design options – possibly as heterogeneous as possible – and give an overview of their energy and Life Cycle Costs results.

We will limit the amount of options to 9 per size class.

Clearly, the presented options must not be considered by the reader as the only possible ones.

2.1 Design options and Impact size category "M" (Medium)

The following design options have been elaborated for this size class "M" (Medium).

Explanation design options:

- 1. Reference (see table 1-2 and first column table 2-2)
- 2. Improvement steady-state efficiency from 80/80 to 87/95
- 3. Improvement steady-state efficiency to **89/97** and replacement of on/off room thermostat with a **modulating room thermostat** with **electronic optimiser**.
- 4. Option 3, extended with energy **class "B" variable speed pump**.
- 5. Option 4, extended with an improved **turndown ratio of 20%**, a reduction of the **standby heat loss to 0,5%**, a not over dimensioned **high efficient fan**, a **CPU with minimal standby power** consumption (2/3 watts), and the use of **1K TRV's** (which in fact is a hydraulic balancing of the system).
- 6. Option 5, extended with an improved **turndown ratio of 10%**; an improved steady-state efficiency through the application of a **tertiary heat exchanger with λ-control**, an energy **class "A" variable speed pump**.
- 7. Option 6, extended with a **2 kW electric air/water heat pump** with a nominal COP of **2,5** (at 7/50); (CH fraction served = 100%).
- 8. Option 6, extended with a **2 kW electric brine/water heat pump** with a nominal COP of **3,1** (at 0/50); (CH fraction served = 100%).
- 9. Option 6, extended with a **5 m² vacutube type solar collector** (CH fraction served = 100%).

Figure 2-1.

Design options, lifecycle costs and annual energy consumption category "M"

The average annual primary energy consumption for the BaseCase "M" sized boilers amounts to 13.827 kWh (net heating efficiency is 54%), with a total lifecycle costs of € 18.750,-

This annual primary energy consumption can be reduced with approximately 4090 kWh (= 30%) to 9735 kWh/a with the existing and proven technology that is selected for Design Option 5. The net heating efficiency with this option is improved to 78%. The related lifecycle costs are reduced to \in 15.797,-.

With Design Option nr. 6, the net heating efficiency is further improved to 82% (annual primary energy consumption: 9250 kWh), with similar lifecycle costs. The technology of the tertiary heat exchanger used in this design option however is not fully matured yet. For this reason we propose to use an **LLCC target** that is related to design option 5 and corresponds with a net efficiency of 78%

The BAT level is best represented with Design Option 8, that combines a state-of the art condensing boiler (incl. tertiary he) with a 2 kW brine water heat pump with a nominal COP of 3,1 (at $0/50^{\circ}$ C). With this option the net heating efficiency rises to 136% giving a annual primary energy consumption of 5591 kWh. **BAT level is therefore set at 130** − **140%.** Related lifecycle costs are € 16.859,- and as such lower than the basecase lifecycle costs, but still € 1.062,- higher than the LLCC-level.

Design Options number 7 (combination with state-of-the art condensing boiler with an electric air/water heat pump) and options number 9 (combination with vacutube solar collector) are viable options with a net heating efficiency of around 100% and lifecycle costs of respectively \in 16.323,- and \in 17.755,-

Please note that BAT-levels can be further increased to net heating efficiency levels above 160% when water-to-water heat pumps are used.

The impact of the Design Options are summarized in the tables on the next four pages:

Table 2-2: Input Design Options in EcoBoiler Integrated Model for size category "M"

Table 2-3: Prices and Installation costs PER UNIT for Design Options size category "M"

Table 2-4: Life Cycle Costs and Annual Expenditure PER UNIT for size category "M"

Table 2-5: Environmental Impact PER UNIT over lifetime for size category "M"

Table 2-2. Input Design Options in EcoBoiler Integrated Model for size category "M"

March Marc	DESIGN OPTIONS	1 BaseCase	2	3	4	5	6	7	8	9
Page			4 -M (Medium)							
Second proper Second prope	hailar abarastariatias	1 -average existing								
Sunday March 1-05		22 k\N/	22 k\N/	22 k\N/	22 k\\/	22 k\N	22 k\\/	22 k\\\/	22 k\N/	22 k\/\/
Second 1,0%										
Second S										
Table Tabl	, ,			, , , ,	,	,,,,,	.,	7,		
2-pneumatic	steady st. efficiency %									
Comparison Com										
Fan power 3 -P=0.40W 3 -P=0.40W 3 -P=0.40W 3 -P=0.40W 1 -P=0.15W 1 -P	air-fuel mix control	2 -pneumatic	3 -ionisation	3 -ionisation	3 -ionisation	3 -ionisation				
Fan power 3 -P=0.40W 3 -P=0.40W 3 -P=0.40W 3 -P=0.40W 1 -P=0.15W 1 -P	circ, pump power	6 -95W	6 -95W	6 -95W	3 -25(45)65 W	3 -25(45)65 W	1 -5(15)25W + sb			
CPL power solon		3 -P=940W	3 -P=940W	3 -P=940W	3 -P=940W	1 -P=318W	1 -P=318W	1 -P=318W		1 -P=318W
Comb, air infake		4 -P=10/12W	4 -P=10/12W	4 -P=10/12W	4 -P=10/12W	1 -P=2/3W				
Doller mass (empty), kg	controls power sb/on	1 -P=0/10W								
Doler mass (empty), kg 45 kg 46 kg 40	comb. air intake	1 -room sealed								
Vale Control In Ng		45 kg								
As de-A As d	water content in kg	4,0 kg	4,0 kg	4,0 kg	4,0 kg	4,0 kg	4,0 kg	4,0 kg	4,0 kg	4,0 kg
Controllers Sub-infer control Sub-infer	envelope volume in m3									
Authoriting control Yes	noise level in dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A
Value control Value Valu	controllers									
Doller temp control Gonfoff RT Gonfoff	auto-timer control	yes								
electronic optimiser	valve control									
Solar (for combi only)	•									
Solar (for combi only) Solar (for combinion only) Sol	•									
Collector type	autoset weather control	N/A	N/A	no	N/A	N/A	N/A	no	no	no
collector surface m2										
Tank position N/A Tandoors										
CH-fraction served El. back-up heater CH? no no no no no no no no no n										
El. back-up heater CH? no no no no no no no n										
Neat pump (HP) Reference type 1 -EI. brine/ water 0/5 3 -EI. air/ water 7/50 Air water 7/50 Ai										
Reference type	Li. back-up fleater Citi	IIO	110	110	110	110	IIO	IIO	110	110
Power nominal in kW 0,0 kW 0,										
COP nominal 0/50										
Ratio CH : DHW 100% 80% 80% 80% 80% 80% 80% 80% 80% 80%										
CH-fraction served 100% 0% 100% 100% 100% 100% 100% 100%										
El. back-up heater CH? No										
Net heating efficiency Primary energy consumption -of which fuel (primary kWh GCV) -of which electricity (primary kWh) Purchase (incl. installation) Purchase (incl. installation) Lifetime Running costs (NPV) Life Cycle Costs LCC ■ 61% 69% 74% 1030 kWh/a 1989 kWh/a 1030 kWh/a 1036 kWh/a 1036 kWh/a 1036 kWh/a 1036 kWh/a 1037 kWh/a 1038 kWh/a 1039 kWh/a 1038 kWh/a 1039 kWh/a 1030 kWh/a 10 kWh/a 1030 kWh/a 1030 kWh/a 1030 kWh/a 1030 kWh/a 1030 kWh/a 10 k										
Net heating efficiency Primary energy consumption -of which fuel (primary kWh GCV) -of which electricity (primary kWh) Purchase (incl. installation) Purchase (incl. installation) Lifetime Running costs (NPV) Lifet Cycle Costs LCC ■ 61% 13237 kWh/a 13235 kWh/a 13237 kWh/a 13237 kWh/a 13237 kWh/a 13236 kWh/a 13247 kWh/a 1325 kWh/a 1326 kWh/a 1326 kWh/a 1327 kWh/a 1327 kWh/a 1328 kWh/a 1328 kWh/a 1328 kWh/a 1329 kWh/a 123	MAIN ENERGY OUTDUTS									
Primary energy consumption - of which fuel (primary kWh /a - of which fuel (primary kWh /a - of which fuel (primary kWh /a - of which electricity (primary kWh /a - of which electricity (primary kWh /a - of which electricity (primary kWh /a - of kWh/a -		54%	61%	69%	74%	78%	82%	103%	136%	100%
-of which fuel (primary kWh GCV) -of which electricity (primary kWh GCV) -of which fuel (primary kWh A B980 kWh/a B										
-of which electricity (primary kWh) 580 kWh/a 576 kWh/a 1.097 kWh/a 1.097 kWh/a 410 kWh/a 281 kWh/a 85 kWh/a 5.214 kWh/a 4.195 kWh/a 123 kWh/a 12										
Purchase (incl. installation) € 2.724 € 3.194 € 3.383 € 3.480 € 3.737 € 4.123 € 7.173 € 9.323 € 7.723 Lifetime Running costs (NPV) € 16.025 € 14.584 € 13.185 € 12.597 € 12.060 € 11.609 € 9.150 € 7.536 € 10.032 Life Cycle Costs LCC € 18.750 € 17.777 € 16.669 € 16.076 € 15.797 € 15.732 € 16.323 € 16.859 € 17.755										
Purchase (incl. installation) € 2.724 € 3.194 € 3.383 € 3.480 € 3.737 € 4.123 € 7.173 € 9.323 € 7.723 Lifetime Running costs (NPV) € 16.025 € 14.584 € 13.185 € 12.597 € 12.060 € 11.609 € 9.150 € 7.536 € 10.032 Life Cycle Costs LCC € 18.750 € 17.777 € 16.076 € 15.797 € 15.732 € 16.323 € 16.859 € 17.755	MAIN LCC OUTPUTS									
Lifetime Running costs (NPV) € 16.025 € 14.584 € 13.185 € 12.597 € 12.060 € 11.609 € 9.150 € 7.536 € 10.032 Life Cycle Costs LCC € 18.750 € 17.777 € 16.669 € 16.076 € 15.797 € 15.732 € 16.323 € 16.859 € 17.755	· · · · · · · · · · · · · · · · · · ·	€ 2.724	€ 3.194	€ 3.383	€ 3.480	€ 3.737	€ 4.123	€ 7.173	€ 9.323	€ 7.723
Life Cycle Costs LCC € 18.750 € 17.777 € 16.569 € 16.076 € 15.797 € 15.732 € 16.323 € 16.859 € 17.755										
Simple Payback Period PBB reference yrs 6,6 yrs 5,0 yrs 4,4 yrs 5,1 yrs 6,2 yrs 17,4 yrs 18,7 yrs 16,5 yrs										
	Simple Payback Period PBB	reference yrs	6,6 yrs	5,0 yrs	4,4 yrs	5,1 yrs	6,2 yrs	17,4 yrs	18,7 yrs	16,5 yrs

Table 2-3. Prices and Installation costs per unit for Design Options size category "M"

DESIGN OPTIONS	1 4 -M (Medium)		2 4 -M (Medium)	3 4 -M (Medium)	4 4 -M (Medium)	5 4 -M (Medium)	6 4 -M (Medium)	7 4 -M (Medium)	4 -M (Medium)	9 4 -M (Medium)
PRODUCT PRICE break down										
OEM Subass. Costs (Task 2, Ch. Heat exchanger group El. controls group Burner group Fuel controls group CH-return group CH-supply group Fan group Casing Condensate collect Hot water group Packaging etc.	90 50 20 35 40 10 30 30 8 21		Euro/ system 120 80 20 35 55 10 35 30 35 21	Euro/ system 125 90 25 35 60 10 35 30 35 21	125 90 25 35 82 10 35 30 35 21	125 100 25 45 82 10 50 40 35 21	150 100 25 80 110 10 50 40 35 21	150 100 25 80 110 50 40 35 21	150 100 25 80 110 50 40 35 21	150 100 25 80 110 10 50 40 35 21
Extra oil-fired (*0,11) Subtotal OEM Labour Overhead	65	409 123	85 536 161	90 566 170	94 592 178	103 646 194	225	119 750 225	750 225	119 750 225
total MSP Ex wholesale Ex installer excl. VAT		286 818 1.063 1.268	375 1.072 1.394 1.662	396 1.132 1.472 1.754	414 1.184 1.540 1.836	452 1.291 1.679 2.001	525 1.501 1.951 2.326	525 1.501 1.951 2.326	525 1.501 1.951 2.326	525 1.501 1.951 2.326
BOILER consumer street price i		1.509	1.978	2.088	2.184	2.382	2.768	2.768	2.768	2.768
CONTROLLERS incl. VAT INSTALLATION (Labour, materials subtotal Boiler (all in)		0 1.215 2.724	1.215 3.194	55 1.240 3.383	55 1.240 3.480	55 1.300 3.737	55 1.300 4.123	55 1.300 4.123	55 1.300 4.123	55 1.300 4.123
SOLAR materials incl. VAT SOLAR installation incl. VAT		0	0	0	0	0	0	0	0	2.500 1.100
HEAT PUMP materials incl. VAT HEAT PUMP installation incl. VAT		0	0	0	0 0	0	0	1.950 1.100	3.000 2.200	0
TOTAL PURCHASE Country Rprice corrected		2.724 2.724	3.194 3.194	3.383 3.383	3.480 3.480	3.737 3.737		7.173 7.173	9.323 9.323	7.723 7.723

Table 2-4. Life Cycle Costs and Annual Expenditure PER UNIT for size category "M"

DESIGN OPTIONS	1	2	3	4	5	6	7	8	9
	4 -M (Medium)	4 -M (Medium)	4 -M (Medium)	4 -M (Medium)	4 -M (Medium)	4 -M (Medium)	4 -M (Medium)	4 -M (Medium)	4 -M (Medium)
LCC break down									
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance TOTAL LCC	€ 1.509 € 1.215 € 12.956 € 497 € 2.573	€ 1.978 € 1.215 € 11.517 € 494 € 2.573	€ 2.143 € 1.240 € 9.672 € 941 € 2.573	€ 2.239 € 1.240 € 9.672 € 352 € 2.573	€ 2.437 € 1.300 € 9.246 € 241 € 2.573	€ 2.823 € 1.300 € 8.964 € 73 € 2.573	€ 4.773 € 2.400 € 2.106 € 4.471 € 2.573	€ 5.823 € 3.500 € 1.366 € 3.597 € 2.573	€ 5.323 € 2.400 € 7.354 € 105 € 2.573
Annual expenditure									
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance IOTAL expenditure/a	€ 89	€ 116	€ 126	€ 132	€ 143	€ 166	€ 281	€ 343	€ 313
	€ 71	€ 71	€ 73	€ 73	€ 76	€ 76	€ 141	€ 206	€ 141
	€ 666	€ 595	€ 529	€ 496	€ 469	€ 445	€ 355	€ 269	€ 368
	€ 35	€ 35	€ 66	€ 25	€ 17	€ 5	€ 313	€ 252	€ 7
	€ 180	€ 180	€ 180	€ 180	€ 180	€ 180	€ 180	€ 180	€ 180
MAIN LCC OUTPUTS Purchase (incl. installation) Lifetime Running costs (NPV) Life Cycle Costs LCC Simple Payback Period PBB	€ 2.724	€ 3.194	€ 3.383	€ 3.480	€ 3.737	€ 4.123	€ 7.173	€ 9.323	€ 7.723
	€ 16.025	€ 14.584	€ 13.185	€ 12.597	€ 12.060	€ 11.609	€ 9.150	€ 7.536	€ 10.032
	€ 18.750	€ 17.777	€ 16.569	€ 16.076	€ 15.797	€ 15.732	€ 16.323	€ 16.859	€ 17.755
	reference yrs	6,6 yrs	5,0 yrs	4,4 yrs	5,1 yrs	6,2 yrs	17,4 yrs	18,7 yrs	16,5 yrs

Table 2-5. Environmental Impact PER UNIT over lifetime for size category "M"

MATERIALS TOTAL USE TO	DESIGN OPTIONS		1 4 -M (Mediun	n)	2 4 -M (Medium)		3 4 -M (Medium)		4 4 -M (Medium)		5 4 -M (Medium		6 4 -M (Medium)		7 4 -M (Medium)		8 4 -M (Medium)		9 4 -M (Medium)	
TOTAL 16 45.2 45.	ENVIRONMENTAL IMPA	CT PER U	NIT OVER LIFE																	
of which big 18 a				USE		USE		USE		USE		USE		USE		USE		USE		USE
Depose Ng 6,7 8,7 8,7 8,7 8,7 8,7 8,7 8,8 38,5 3		kg	45,2		45,2		45,2		45,2		45,2		45,2		45,2		45,2		45,2	
OTHER RESOURCES TOTAL ENERGY (CET) OTHER RESOURCES OTHER RESOURCES OTHER RESOURCES OTHER RESOURCES TOTAL ENERGY (CET) OTHER RESOURCES OTHER RESOURC		kg																		
Total Energy (GER) QJ 831, 828, 4 473, 8 440, 8 688, 7 800. 820, 3 169, 885, 851, 8 853, 507, 809, 500, 387, 387, 387, 387, 468, 455, 6 0 which, deciding primary QJ 42, 0 41, 4 41, 4 41, 4 41, 7 89, 763, 300, 203, 169, 8 28, 208, 200, 7,2 6 373, 372, 300, 203, 109, 108, 8 88, 8 89, 8 7 800, 109, 109, 109, 109, 109, 109, 119, 11	Recycled	kg	38,5		38,5		38,5		38,5		38,5		38,5		38,5		38,5		38,5	
of which, decinting primary CJ	OTHER RESOURCES																			
Water (corposes) m3 3,2 2,8 3,2 2,7 5,7 5,2 2,8 2,0 1,9 1,3 1,0 0,4 25,5 2,48 20,7 20,0 1,5 0,6 0,6 0,5						- / -														
Water (cooling) m3	The state of the s				The second secon												The second secon			
Waste, hours Wast	"					7		7												
EMISSIONS TO AIR GHG in GWP100	(0)					7		7	The second secon								The second secon			
GHO in OMP100	Waste, hazardous/ incine	ra kg	119,3	48,0	119,0	47,7	162,1	90,8	132,8	34,0	135,9	23,2	140,4	7,0	628,7	431,6	466,4	347,3	244,4	10,2
AP ACIdification kgSOX 29,3 28,3 28,3 28,3 28,3 28,3 28,3 28,3 28	EMISSIONS TO AIR																			
VOC Volatile Organic Com, kg		tCO2	46,9	46,8	41,9	41,8	37,2	37,0	35,1	34,8	33,2	33,0	31,8	31,4	24,2	23,6	18,2	17,8	26,6	25,9
POP Persist Organic Poli. mg - Feq. 1,0 0.3 1,0 0.3 1,2 0.5 1,2 0.2 1,3 0.1 2,0 0.0 5,4 2.4 3,5 2.0 3,8 0.1 Mid-Metawy Metals mg N 1,6 0.8 2,2 1,4 1,6 0.6 1,6 0.4 1,4 0.2 8,1 6,4 6,5 5.2 2,2 2 0.2 PAHs mg 0,3 0.2 0,3 0.2 0,4 0.2 0,3 0.1 0,3 0.1 0,2 0.1 0,9 0.8 0.8 0.6 0,3 0.1 0,3 0.1 PM Particulate Matter kg 2,4 1,4 2,4 1,4 2,6 1,5 2,6 1,5 2,6 1,3 2,5 1,2 5,0 1,1 10,2 3.0 4,6 2,6 8,7 1,1 EMISSIONS TO WATER HIMW Heavy Metals g 1 Hy 20 0,9 0.3 0,9 0.3 1,1 0.5 0,9 0.2 0,9 0.1 0,7 0.0 3,3 2,4 2,8 1,9 1,2 0.1 EP Eutrophication g PO4 13,0 1,3 13,0 1,3 14,1 2,4 15,3 0,9 16,4 0,6 17,1 0,0 3,3 2,4 2,8 1,9 1,2 0.1 EP Eutrophication g PO4 13,0 1,3 13,0 1,3 14,1 2,4 15,3 0,9 16,4 0,6 17,1 0,0 3,3 2,4 2,8 1,9 1,2 0.1 Tast twinty material mater		•		- 7 -	,	- / -			The second secon						7.7		The second secon		the second secon	
HMA Heavy Metals mg N 1,8 0,8 1,6 0,8 2,2 1,4 1,6 0,6 1,6 0,4 1,4 0,2 8,1 6,4 6,5 5,2 2,2 0,2 0,9 PAHs mg 0,3 0,2 0,3 0,2 0,4 0,2 0,3 0,1 0,3 0,1 0,3 0,1 0,2 0,1 0,9 0,8 0,8 0,6 0,3 0,1 PM Particulate Matter kg 2,4 1,4 2,4 1,4 2,6 1,5 2,6 1,5 2,6 1,3 2,5 1,2 5,0 1,1 1,0,2 3,0 4,6 2,6 8,7 1,1 PM Facticulate Matter kg 9,4 0,4 1,4 2,4 1,4 2,6 1,5 2,6 1,5 2,6 1,3 2,5 1,2 5,0 1,1 1,0,2 3,0 4,6 2,6 8,7 1,1 PM Factional PM F					The second secon				The second secon											
PAHS mg 0 3 0.2 0.3 0.2 0.3 0.2 0.4 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.1 0.9 0.8 0.8 0.8 0.6 0.3 0.1 0.2 0.1 0.9 0.8 0.8 0.8 0.6 0.3 0.1 0.2 0.1 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.1 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8																				
PM Particulate Matter		-		- 4 -	The second secon				The second secon											
HMW Heavy Metals g Hg/20 0,9 0,3 13,0 1,3 13,0 1,3 14,1 0,5 15,0 0,9 0,2 15,4 0,6 17,1 0,2 34,4 11,4 30,3 9,2 30,5 0,3 3,4 11,4 30,3 9,2 30,5 0,3 34,4 11,4 30,3 9,2 34,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0																				
HMW Heavy Metals g Hg/20 0,9 0,3 13,0 1,3 13,0 1,3 14,1 0,5 15,0 0,9 0,2 15,4 0,6 17,1 0,2 34,4 11,4 30,3 9,2 30,5 0,3 3,4 11,4 30,3 9,2 30,5 0,3 34,4 11,4 30,3 9,2 34,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0	EMISSIONS TO WATER																			
ANNUAL SPACE HEAT ENERGY breakdown TOTAL KWh/a 13827 100% 12352 100% 10987 100% 10300 100% 9735 100% 9251 100% 7368 100% 5591 100% 7642 100% 7581 100% 6056 44% 6056 49% 6056 55% 6056 55% 6056 62% 6056 65% 6056 82% 6056 109% 6056 109% 6056 109% 6056 109% 1045 11% 1126 112% 11245 112% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 113% 11245 112% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 112% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 113% 11245 112% 11245 113% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 113% 11245 112% 11245 112% 11245 113% 11245 11245 112% 11245 112% 11245 112% 11245 112% 11245 112% 11245 112% 11245 112% 11245 112% 11245 112% 11245 112% 11245 11245 11245 11245 11245 11245 11245 11245 11245 11245 11245 11245 11245 11245			0,9	0,3	0,9	0,3	1,1	0,5	0,9	0,2	0,9	0,1	0,7	0,0	3,3	2,4	2,8	1,9	1,2	0,1
TOTAL KWh/a 13827 100% 12352 100% 10987 100% 10300 100% 9735 100% 9251 100% 7368 100% 5591 100% 6056 79% 6056 65% 6056 79% 100% 1100 89% 1100 89% 1100 89% 1245 11% 1245 12% 1245 13% 1245 13% 1245 13% 1245 13% 1245 12% 1245 13% 1	EP Eutrophication	g PO4	13,0	1,3	13,0	1,3	14,1	2,4	15,3	0,9	16,4	0,6	17,1	0,2	34,4	11,4	30,3	9,2	30,5	0,3
TOTAL KWh/a 13827 100% 12352 100% 10987 100% 10300 100% 9735 100% 9251 100% 7368 100% 5591 100% 6056 79% 6056 65% 6056 79% 100% 1100 89% 1100 89% 1100 89% 1245 11% 1245 12% 1245 13% 1245 13% 1245 13% 1245 13% 1245 12% 1245 13% 1																				
Test KWh/a 6056 44% 6056 49% 6056 49% 6056 55% 6066 69% 6056 62% 6056 65% 6056 82% 6056 108% 6056 79%	ANNUAL SPACE HEAT	ENERGY b	reakdown																	
Tmass kWh/a 1106 8% 1106 9% 1245 11% 1245 12% 1245 13% 1245 17% 1245 22% 1245 16% Tintrans kWh/a 318 2% 318 3% 307 3% 307 3% 307 4% 307 5% 307 4% 307 4% 307 3% 307 3% 307 4% 307 4% 230 4% 238 3% 238 4% 238 3% 15k 5% 546 5% 546 5% 546 5% 548 5% 548 5% 548 5% 489 5% 469 5% 469 6% 469 6% 469 6% 469 6% 587 6% 587 8% 587 11% 587 6% 587 8% 587 11% 587 5% 591 6% 587 6% 587 <td>TOTAL</td> <td>kWh/a</td> <td></td> <td></td> <td>12352</td> <td>100%</td> <td>10987</td> <td></td> <td>10300</td> <td></td> <td>9735</td> <td></td> <td>9251</td> <td></td> <td>7368</td> <td></td> <td>5591</td> <td></td> <td>7642</td> <td>100%</td>	TOTAL	kWh/a			12352	100%	10987		10300		9735		9251		7368		5591		7642	100%
Tintrans kWh/a 318 2% 318 3% 307 307 307 307 307 307 307 307 307 307				2.7																
Tfluct (cntrl)																				
Tstrat(emit) kWh/a 629 5% 645 5% 518 58 58 518 58 518 58 518 58 518 518																				
Distr. loss kWh/a 1131 8% 1133 9% 591 5% 591 6% 585 6% 587 6% 587 8% 587 11% 587 8% Steady st. kWh/a 2633 19% 1142 9% 384 3% 384 4% 336 3% 189 2% 47 1% 32 1% 155 2% Start/stop kWh/a 44 0% 45 0% 110 1% 110 1% 88 1% 35 0% 1 0% 0 0% 19 0% Stby heat kWh/a 338 2% 340 3% 133 1% 59 1% 40 0% 10 0% 7 0% 33 0% Electric kWh/a 580 4% 576 5% 1097 10% 410 4% 281 3% 85 1% 84 1%<	, ,											7.7								
Steady st. kWh/a 2633 19% 1142 9% 384 3% 384 4% 336 3% 189 2% 47 1% 32 1% 155 2% Start/stop kWh/a 44 0% 45 0% 110 1% 110 1% 88 1% 35 0% 1 0% 0 0% 19 0% Stby heat kWh/a 338 2% 340 3% 133 1% 59 1% 40 0% 1 0% 7 0% 33 0% Credit colar kWh/a 580 4% 576 5% 1097 10% 410 4% 281 3% 85 1% 84 1% 84 2% 85 1% Credit Solar kWh/a 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.7.7</td><td></td><td></td></t<>																		7.7.7		
Stby heat kWh/a 338 2% 340 3% 133 1% 59 1% 40 0% 10 0% 7 0% 33 0% Electric kWh/a 580 4% 576 5% 1097 10% 410 4% 281 3% 85 1% 84 1% 84 2% 85 1% Credit solar kWh/a 0 0% 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																				
Electric kWh/a 580 4% 576 5% 1097 10% 410 4% 281 3% 85 1% 84 1% 84 2% 85 1% Credit solar kWh/a 0 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%	Start/stop	kWh/a					110					7.7	35		1	0%	0	7.7.7		
Credit solar kWh/a 0 0% 0 0 0% 0 0 0 0 0 0 0 0 0 0 0	*																			
Credit HP kWh/a 0 <																				
Net heating efficiency % 54% 61% 69% 74% 78% 82% 103% 136% 100% gross heat load kWh/a 8.929 8.960 9.107 9.107 9.107 9.142 9.142 9.142 9.142 net heat load kWh/a 7.480 7.608																	The second secon			
gross heat load kWh/a 8.929 8.960 9.107 9.107 9.142 9.142 9.142 9.142 net heat load kWh/a 7.480 7.608 <td>Ordart FIF</td> <td></td> <td>- 0</td> <td>0 /0</td> <td></td> <td>0 /0</td> <td></td> <td>0 /0</td> <td>0</td> <td>0 /0</td> <td>0</td> <td>0 /0</td> <td>0</td> <td>0 /0</td> <td>1077</td> <td>0 /0</td> <td>3434</td> <td>0 /0</td> <td></td> <td>0 70</td>	Ordart FIF		- 0	0 /0		0 /0		0 /0	0	0 /0	0	0 /0	0	0 /0	1077	0 /0	3434	0 /0		0 70
net heat load kWh/a 7.480 7.608 </td <td></td>																				
net load per unit floor area kWh/m2 160 143 127 119 113 107 85 65 89	•																			
	CH system efficiency	%	62%		70%		80%		85%		90%		95%		119%		156%		114%	

2.2 Design options and Impact size category "L" (Large)

The following design options have been elaborated for this size class "L" (Large).

Explanation design options

- 1. Reference (see first column table 2-7).
- 2. Improvement steady-state efficiency from 80/80 to **87/95** and the application of a **weather controlled boiler thermostat** instead of the on/off RT.
- 3. Improvement steady-state efficiency to **89/97**, the use of **1K TRV's** (which in fact is a hydraulic balancing of the system).
- 4. Option 3, extended with energy class "B" variable speed pump, and an electronic optimiser.
- 5. Option 4, extended with **motorized valves with PID** loop (instead of 1k TRV), a not over dimensioned **high efficient fan**, and a reduction of the **standby heat loss to 0,5**%.
- 6. Option 5, extended with an improved turndown ratio of 10%.
- 7. Option 6, extended with a **tertiary heat exchanger**, and ionisation based **lambda control** system, **CPU controlled motor valves** and an a control system for **automatic optimisation of the boiler feed temperature**, also extended with a **3 kW electric air/water heat pump** with a nominal COP of **2,5** (at 7/50); (CH fraction served = 100%).
- 8. Option 7, but here the air/water heat pump is replaced by a **3 kW electric brine/water heat pump** with a nominal COP of **3,1** (at 0/50° C); (CH fraction served = 100%).
- 9. Option 7, but here the air/water heat pump is replaced by a **5 m² vacutube type solar collector** (CH fraction served = 100%).

The average annual primary energy consumption for the BaseCase "L" sized boilers amounts to 19.095 kWh (net heating efficiency is 55%), with a total lifecycle costs of €24.119.-

This annual primary energy consumption can be reduced with approximately 5400 kWh (= **28%**) to 13.686 kWh with the existing and proven technology that is selected for Design Option 6. The net heating efficiency with this option is improved to **78%**. The related lifecycle costs are reduced to ≤ 20.259 ,-.

With Design Option nr. 7, the net heating efficiency is further improved to 104% (annual primary energy consumption: 10.318 kWh), with similar lifecycle costs. The technology of the tertiary heat exchanger used in this design option - and to a lesser extend the control system for automatic optimisation of the boiler feed temperature - are not fully matured yet. For this reason we propose to use an **LLCC target** that is related to design option 6 and corresponds with a net efficiency of **78%**.

The BAT level is best represented with Design Option 8, that combines a state-of the art condensing boiler (incl. tertiary HE) with a 3 kW brine-to-water heat pump with a nominal COP of 3,1 (at $0/50^{\circ}$ C). With this option the net heating efficiency rises to 137% giving a annual primary energy consumption of 7.789 kWh. **BAT level is therefore set at 130-140%.** Related lifecycle costs are \in 21.262,- and as such lower than the basecase lifecycle costs, and around \in 1000,- higher than the LLCC-level.

Please note that BAT-levels can be further increased to net heating efficiency levels above 160% when water-to-water heat pumps are used.

Design Options nr. 9 combines a state-of-the-art condensing boiler with 5 m² vacutube solar collectors, resulting in net heating efficiencies of around 96% with lifecycle costs of around € 22.000,-

The impact of the Design Options are summarized in the tables on the next four pages:

Table 2-7: Input Design Options in EcoBoiler Integrated Model for size category "L"

Table 2-8: Prices and Installation costs PER UNIT for Design Options size category "L"

Table 2-9: Life Cycle Costs and Annual Expenditure PER UNIT for size category "L"

Table 2-10: Environmental Impact PER UNIT over lifetime for size category "L"

Table 2-7. Input Design Options in EcoBoiler Integrated Model for size category "L"

DESIGN OPTIONS	1 BaseCase	2	3	4	5	6	7	8	9
INPUTS CH									
CH-power class	5 -L (Large)	5 -L (Large)	5 -L (Large)	5 -L (Large)	5 -L (Large)	5 -L (Large)	5 -L (Large)	5 -L (Large)	5 -L (Large)
hallan abana stantatian	3 -house existing	3 -house existing	3 -house existing	3 -house existing	3 -house existing	3 -house existing	3 -house existing	3 -house existing	3 -house existing
boiler characteristics	29 kW	29 kW	29 kW	29 kW	29 kW	29 kW	29 kW	29 kW	29 kW
power input in kW* turndown ratio	33%	33%	33%	33%	33%	10%	10%	10%	10%
standby heat loss (% of Pnom)	1,0%	1,0%	1,0%	1,0%	0,5%	0,5%	0,5%	0,5%	0,5%
standby fleat loss (% of Fflorit)	1,0 %	1,070	1,0 /0	1,0 /0	0,5%	0,5 %	0,5 /6	0,5%	0,5%
steady st. efficiency %	5 -80/80/80/80	2 -87/87/95/95	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	9 -ideal 96/96/97/97	9 -ideal 96/96/97/97	9 -ideal 96/96/97/97
fuel (dewpoint)	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas
air-fuel mix control	2-pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	3 -ionisation	3 -ionisation	3 -ionisation
oire nump nower	6 -95W	6 -95W	6 -95W	3 -25(45)65 W	3 -25(45)65 W	3 -25(45)65 W	3 -25(45)65 W	3 -25(45)65 W	3 -25(45)65 V
circ. pump power	3 -P=940W	3 -P=940W	3 -P=940W	3 -P=940W	2 -P=630W	2 -P=630W	2 -P=630W	2 -P=630W	2 -P=630V
fan power CPU power sb/on	4 -P=10/12W	4 -P=10/12W	4 -P=10/12W	4 -P=10/12W	4 -P=10/12W	4 -P=10/12W	1 -P=2/3W	1 -P=2/3W	1 -P=2/3V
controls power sb/on	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W		1 -P=0/10W	1 -P=0/10V
controls power sb/off	1 1 0/1000	1 1 0/1000	1 1 0/1011	1 1 0/1000	1 1 0/1000	1 1 0/1011	1 1 0/1011	1 1 0/1000	1 1 0/100
comb. air intake	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed
boiler mass (empty), kg	51 kg	51 kg	51 kg	51 kg	51 kg	51 kg	51 kg	51 kg	51 kg
water content in kg	6,0 kg	6,0 kg	6,0 kg	6,0 kg	6,0 kg	6,0 kg	6,0 kg	6,0 kg	6,0 kg
envelope volume in m3	0,17 m3	0,17 m3	0,17 m3	0,17 m3	0,17 m3	0,17 m3	0,17 m3	0,17 m3	0,17 m3
noise level in dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A
controllers									
auto-timer control	yes	yes	yes	yes	yes	yes	yes	yes	yes
valve control	2 -RTV 2K	2 -RTV 2K	3 -RTV 1K	3 -RTV 1K	4 -Motor + PID-loop	4 -Motor + PID-loop	5 -Motor + CPU	5 -Motor + CPU	5 -Motor + CPU
boiler temp control	6 -on/off RT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. B
electronic optimiser	no	no	no	yes	yes	yes		yes	yes
autoset weather control	N/A	N/A	no	N/A	N/A	N/A		yes	yes
solar (for combi only)									
collector type	N/A	1 -glazed	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube
collector surface m2	0.0	0,0	0,0	0,0	0,0	0,0		0,0	5,0
tank position	N/A	1 -indoors	1 -indoors	1 -indoors	1 -indoors	1 -indoors	1 -indoors	1 -indoors	1 -indoors
CH-fraction served	0%	100%	0%	0%	0%	0%		0%	100%
El. back-up heater CH?	no	no	no	no	no				no
heat pump (HP)	4 El baix d'unetan 0/5	3 -El. air/ water 7/50	3 -El. air/ water 7/50	3 -El. air/ water 7/50	3 -El. air/ water 7/5	0 El -in/ 7/50	0 El -i-/	1 -El. brine/ water 0/50	0. 51
Reference type	1 -El. brine/ water 0/5						3 -El. air/ water 7/50		2 -El. water/ water 10/s
Power nominal in kW	0,0 kW 0,00	0,0 kW 0,00	0,0 kW 0,00	0,0 kW 2,50	0,0 kW 0,00	0,0 kW 3,50	3,0 kW 2,50	3,0 kW 3,10	0,0 kV
COP nominal 0/50 Ratio CH : DHW	100%	0,00 80%	80%	2,50 80%	80%	3,50 80%	2,50	3,10 80%	3,80 80%
	100%	0%	100%	100%	100%	50%	100%	100%	0%
CH-fraction served El. back-up heater CH?	no	no	no	no	no	no		no	no
MAIN ENERGY OUTPUTS	FF0/	000/	0.40/	700/	740/	700/	40.40/	4070/	000/
Net heating efficiency	55% 19095 kWh/a	60% 17611 kWh/a	64% 16379 kWh/a	70% 15208 kWh/a	74% 14480 kWh/a	78% 13686 kWh/a	104% 10318 kWh/a	137% 7789 kWh/a	96% 11139 kWh/a
Primary energy consumption	18490 kWh/a	16310 kWh/a		14702 kWh/a	13986 kWh/a	13243 kWh/a	2442 kWh/a		10766 kWh/a
-of which fuel (primary kWh GCV)-of which electricity (primary kWh)	605 kWh/a	1.301 kWh/a	15075 kWh/a 1.304 kWh/a	506 kWh/a	495 kWh/a	13243 kWh/a	7.876 kWh/a	1433 kWh/a 6.356 kWh/a	374 kWh/a
(4				222			11010111110		211111111111111111111111111111111111111
MAIN LCC OUTPUTS	400:-		40.50	400/	0.1011	2.1.0	00000	0.11.055	40
Purchase (incl. installation)	€ 2.945	€ 3.614	€ 3.790	€ 3.911	€ 4.246	€ 4.355	€ 8.988	€ 11.838	€ 8.638
Lifetime Running costs (NPV)	€ 21.174	€ 19.639	€ 18.434	€ 17.385	€ 16.674	€ 15.904	€ 11.715	€ 9.424	€ 13.422
Life Cycle Costs LCC	€ 24.119	€ 23.253	€ 22.224	€ 21.296	€ 20.920	€ 20.259	€ 20.703	€ 21.262	€ 22.060
Simple Payback Period PBB	reference yrs	10,6 yrs	6,9 yrs	5,1 yrs	5,8 yrs	5,4 yrs	18,0 yrs	18,7 yrs	14,8 yrs

Table 2-8. Prices and Installati9on costs per unit for Design Options size category "L"

DESIGN OPTIONS	5 -L (Large)		5 -L (Large)	5 -L (Large)	5 -L (Large)	5 5 -L (Large)	6 5 -L (Large)	7 5 -L (Large)	5 -L (Large)	5 -L (Large)
PRODUCT PRICE break down										
OEM Subass. Costs (Task 2, Ch. 8) Heat exchanger group El. controls group Burner group Fuel controls group CH-return group CH-supply group Fan group Casing Condensate collect Hot water group Packaging etc.	104 50 23 35 40 10 30 35 8 21		Euro/ system 138 80 23 35 55 10 35 35 35 21 12	144 90 29 35 60 10 35 35 35 21	Euro/ system 144 90 29 35 82 10 35 35 35 21 12	90 29 35 82 10 45 46 35 21	144 90 29 60 82 10 45 46 35 21	Euro/ system 173 100 29 80 82 10 45 46 35 21	Euro/ system 173 100 29 80 82 10 45 46 35 21	Euro/ system 173 100 29 80 82 10 45 46 35 21
Extra oil-fired (*0,11) Subtotal OEM Labour Overhead total MSP Ex wholesale Ex installer excl. VAT	69	436 131 305 872 1.133 1.351	90 568 171 398 1.137 1.478 1.762	95 600 180 420 1.200 1.560 1.860	100 626 188 438 1.252 1.628 1.941	104 652 195 456 1.303 1.694 2.020	204 477	119 751 225 526 1.502 1.953 2.329	119 751 225 526 1.502 1.953 2.329	751 225 526 1.502 1.953 2.329
BOILER consumer street price in CONTROLLERS incl. VAT INSTALLATION (Labour, materials, subtotal Boiler (all in)		1.608 0 1.337 2.945	2.097 100 1.417 3.614	2.213 100 1.477 3.790	2.309 125 1.477 3.911	2.404 365 1.477 4.246	2.513 365 1.477 4.355	2.771 715 1.552 5.038	2.771 715 1.552 5.038	2.771 715 1.552 5.038
SOLAR materials incl. VAT SOLAR installation incl. VAT HEAT PUMP materials incl. VAT HEAT PUMP installation incl. VAT		0 0 0	0 0	0 0 0	0 0	0 0	0 0 0	0 0 2.550 1.400	4.000 2.800	2.500 1.100 0 0
TOTAL PURCHASE Country Rprice corrected		2.945 2.945	3.614 3.614	3.790 3.790	3.911 3.911	4.246 4.246		8.988 8.988	11.838 11.838	8.638 8.638

Table 2-9. Life Cycle Costs and Annual Expenditure PER UNIT for size category "L"

DESIGN OPTIONS	1 5 -L (Large)	2 5 -L (Large)	3 5 -L (Large)	4 5 -L (Large)	5 5 -L (Large)	6 5 -L (Large)	7 5 -L (Large)	5 -L (Large)	5 -L (Large)
LCC break down									
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance TOTAL LCC	€ 1.608 € 1.337 € 18.083 € 519 € 2.573	€ 2.197 € 1.417 € 15.951 € 1.116 € 2.573	€ 2.313 € 1.477 € 14.743 € 1.118 € 2.573	€ 2.434 € 1.477 € 14.379 € 433 € 2.573	€ 2.769 € 1.477 € 13.678 € 424 € 2.573	€ 2.878 € 1.477 € 12.952 € 380 € 2.573	€ 6.036 € 2.952 € 2.388 € 6.754 € 2.573	€ 7.486 € 4.352 € 1.402 € 5.450 € 2.573	€ 5.986 € 2.652 € 10.529 € 321 € 2.573
Annual expenditure									
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance	€ 95 € 79 € 919 € 36 € 180	€ 129 € 83 € 848 € 78 € 180	€ 136 € 87 € 788 € 78 € 180	€ 143 € 87 € 732 € 30 € 180	€ 163 € 87 € 697 € 30 € 180	€ 169 € 87 € 659 € 27 € 180	€ 355 € 174 € 497 € 473 € 180	€ 440 € 256 € 375 € 381 € 180	€ 352 € 156 € 536 € 22 € 180
MAIN LCC OUTPUTS									
Purchase (incl. installation) Lifetime Running costs (NPV) Life Cycle Costs LCC Simple Payback Period PBB	€ 2.945 € 21.174 € 24.119 reference yrs	€ 3.614 € 19.639 € 23.253 10,6 yrs	€ 3.790 € 18.434 € 22.224 6,9 yrs	€ 3.911 € 17.385 € 21.296 5,1 yrs	€ 4.246 € 16.674 € 20.920 5,8 yrs	€ 4.355 € 15.904 € 20.259 5,4 yrs	€ 8.988 € 11.715 € 20.703 18,0 yrs	€ 11.838 € 9.424 € 21.262 18,7 yrs	€ 8.638 € 13.422 € 22.060 14,8 yrs

Table 2-10. Environmental Impact PER UNIT over lifetime for size category "L"

DESIGN OPTIONS	Ę	1 5 -L (Large)		5 -L (Large)		3 5 -L (Large)		4 5 -L (Large)		5 5 -L (Large)		6 5 -L (Large)		7 5 -L (Large)		5 -L (Large)		5 -L (Large)	
ENVIRONMENTAL IMPA	CT PER UN	IT OVER LIFE																	
MATERIALS TOTAL	kg	TOTAL 50,7	USE	TOTAL 50,7	USE	TOTAL 50,7	USE	TOTAL 50,7	USE	TOTAL 50,7	USE	TOTAL 50,7	USE	TOTAL 50,7	USE	TOTAL 50,7	USE	TOTAL 50,7	USE
of which Disposal Recycled	kg kg	7,0 43.8		7,0 43.8		7,0 43.8		7,0 43.8		7,0 43.8		7,0 43.8		7,0 43.8		7,0 43.8		7,0 43,8	
OTHER RESOURCES	9	.0,0		10,0		10,0		10,0		10,0		10,0		10,0		10,0		.0,0	
Total Energy (GER) of which, electric(in primar Water (process) Water (cooling) Waste, non-haz/ landfill Waste, hazardous/ inciner	m3 m3 kg	1144,3 43,8 3,3 115,6 5,8 121,4	1141,6 43,2 2,9 115,2 1,0 50,1	1064,5 93,5 6,7 248,2 7,0 179,1	1061,8 92,9 6,2 247,8 2,1 107,7	991,4 93,7 6,7 248,6 7,0 179,3	988,7 93,1 6,2 248,2 2,1 107,9	912,9 36,8 2,9 96,7 5,7 140,7	909,5 36,1 2,4 96,3 0,8 41,9	869,9 36,1 2,9 94,7 5,6 153,6	866,2 35,3 2,4 94,2 0,8 41,0	824,1 32,7 2,7 85,0 5,0 170,0	818,4 31,6 2,1 84,3 0,7 36,6	716,2 563,9 38,2 1500,7 19,4 849,0	707,6 562,3 37,5 1499,5 13,0 652,0	543,7 454,8 31,0 1210,9 14,8 645,3	539,2 453,8 30,3 1210,1 10,5 526,1	676,2 28,5 2,7 72,8 5,9 265,2	666,3 26,7 1,8 71,2 0,6 31,0
EMISSIONS TO AIR GHG in GWP100 AP Acidification VOC Volatile Organic Con POP Persist.Organic Poll. HMa Heavy Metals PAHs PM Particulate Matter	tCO2 kgSOx nl kg mg i-Teq mg Ni mg kg	64,8 36,8 0,8 1,0 1,6 0,3 2,5	64,6 35,8 0,8 0,3 0,8 0,2 1,5	59,6 46,7 0,8 1,3 2,5 0,4 2,8	59,4 45,7 0,8 0,6 1,6 0,3 1,8	55,4 45,1 0,7 1,3 2,5 0,4 2,8	55,2 44,1 0,7 0,6 1,6 0,3 1,7	51,7 30,2 0,7 1,2 1,8 0,3 2,7	51,5 28,9 0,7 0,2 0,7 0,1 1,4	49,3 29,1 0,6 1,4 1,9 0,3 2,7	49,0 27,7 0,6 0,2 0,7 0,1 1,4	46,7 27,4 0,6 2,2 1,8 0,2 5,2	46,3 25,8 0,6 0,2 0,6 0,1 1,4	33,5 150,4 0,4 6,7 11,4 1,3	32,8 148,1 0,3 3,7 9,7 1,2 4,0	25,0 120,3 0,3 4,5 9,2 1,1 5,4	24,7 118,8 0,2 3,0 7,8 0,9 3,4	38,4 23,9 0,6 3,7 2,5 0,3 8,8	37,7 21,2 0,5 0,2 0,5 0,1 1,3
EMISSIONS TO WATER HMw Heavy Metals EP Eutrophication	g Hg/20 g PO4	0,9 13,0	0,3 1,3	1,2 14,6	0,6 2,9	1,2 14,6	0,6 2,9	1,0 15,5	0,2 1,1	1,0 16,9	0,2 1,1	0,9 17,9	0,2 1,0	4,5 40,2	3,6 17,3	3,8 35,1	2,9 14,0	1,3 31,0	0,2 0,8
ANNUAL SPACE HEAT E	ENERGY br	eakdown																	
TOTAL Tset Tmass Tintrans Tfluct (cntrl) Tstrat(emit) Distr. loss Steady st. Start/stop Stby heat Electric Credit solar Credit HP	kWh/a kWh/a kWh/a kWh/a kWh/a kWh/a kWh/a kWh/a kWh/a kWh/a kWh/a	19095 8660 1454 401 1359 918 1474 3674 51 499 605 0	100% 45% 8% 2% 7% 5% 8% 19% 0% 3% 3% 0%	17611 8660 1454 371 1359 720 1463 1593 105 584 1301 0	100% 49% 8% 2% 8% 4% 8% 9% 1% 3% 7% 0%	16379 8660 1454 371 673 713 1447 1071 99 587 1304	100% 53% 9% 2% 4% 4% 9% 7% 1% 4% 8% 0%	15208 8660 1651 386 670 715 1368 584 100 568 506	100% 57% 11% 3% 4% 5% 9% 4% 1% 4% 3% 0%	14480 8660 1651 386 288 711 1358 506 89 337 495	100% 60% 11% 3% 2% 5% 9% 3% 1% 2% 3% 0%	13686 8660 1651 336 205 643 1049 452 47 151 443	100% 63% 12% 3% 1% 5% 8% 3% 0% 1% 3% 0%	10318 8660 1651 386 77 642 774 50 6 14 334 0	100% 84% 16% 4% 1% 6% 7% 0% 0% 0% 3% 0%	7789 8660 1651 386 77 642 774 29 3 8 334 0	100% 111% 21% 5% 1% 8% 10% 0% 0% 4% 0%	11139 8660 1651 386 77 642 774 217 26 59 334 1687	100% 78% 15% 3% 1% 6% 7% 2% 0% 1% 3% 0%
Net heating efficiency gross heat load net heat load net load per unit floor are: CH-system efficiency	% kWh/a kWh/a a kWh/m2 %	55% 12.292 10.515 180 63%		60% 12.302 10.486 166 68%		64% 12.314 10.486 154 74%		70% 12.533 10.697 143 81%		74% 12.533 10.697 136 85%		78% 12.533 10.697 129 90%		104% 12.579 10.697 97 119%		137% 12.579 10.697 73 158%		96% 12.579 10.697 105 110%	

2.3 Design Options and Impact size category "S" (Small)

The following design options have been elaborated for this size class "S" (Small).

Explanation design options

- 1. Reference (see first column table 2-12)
- 2. Improvement of turndown ratio to 10%, reduced standby heat loss to 0,5%, steady-state efficiency from 80/80 to 84/84, in combination with energy class "A" pump, high efficient fan (3-18 watt), a low stand by power for the CPU (2/3 watts), time-proportional room thermostat with electronic optimiser.
- 3. Improvement steady-state efficiency to **89/97**, in combination with an **energy class "B" pump**, the **reference fan** (9 40 watts) and **reference CPU** and a **modulating room thermostat** with **electronic optimiser**.
- 4. Option 3, extended with energy class "A" variable speed pump, low power fan and a CPU with low standby power losses (2/3 watts).
- 5. Option 4, extended with an improved **turndown ratio of 10%**, application of **1k TRV's**, a reduction of the **standby heat loss to 0,5%**.
- 6. Option 5, extended with a **tertiary heat exchanger** with an ionisation based **lambda control.**
- 7. Option **2**, extended with a **1,5 kW electric water-to-water heat pump** (collective system in case of apartment blocks), with a nominal **COP of 3,7** (at $10/50^{\circ}$ C) and a CH fraction served of 100%).
- 8. Option **5**, extended with a **1,5 kW electric water-to-water heat pump** (collective system in case of apartment blocks), with a nominal **COP of 3,7** (at 10/50° C) and a CH fraction served of 100%).
- 9. Option **6**, extended with a **1,5 kW electric water-to-water heat pump** (collective system in case of apartment blocks), with a nominal **COP of 3,7** (at 10/50° C) and a CH fraction served of 100%).

Figure 2-11.

Design options, lifecycle costs and annual energy consumption category "S"

The average annual primary energy consumption for the BaseCase "S" sized boilers amounts to 9.368 kWh (net heating efficiency is 52%), with a total lifecycle costs of €14.172,-

This annual primary energy consumption can be reduced with approximately 3154 kWh (= 34%) to 6.214 kWh with the existing and proven technology that is selected for Design Option 5. The net heating efficiency with this option is improved to 79%. The related lifecycle costs are reduced to $\[\le 12.313, - \]$.

With Design Option nr. 6, the net heating efficiency is further improved to 81% (annual primary energy consumption: 6.109 kWh), with slightly higher lifecycle costs. The technology of the tertiary heat exchanger used in this design option is not fully matured yet. For this reason we propose to use an **LLCC target** that is related to design option 5 and corresponds with a net efficiency of **79%**.

The BAT level is best represented with Design Option 9, that combines a state-of the art condensing boiler (incl. tertiary he) with a 1,5 kW water to water heat pump with a nominal COP of 3,7 (at $10/50^{\circ}$ C). With this option the net heating efficiency rises to 163% giving a annual primary energy consumption of 3024 kWh. **BAT level is therefore set at 160-170%.** Related lifecycle costs are € 13.512,- and as such lower than the basecase lifecycle costs, and only around € 1200,- higher than the LLCC-level.

Because this size category "S" is typical for existing apartments, design options 2 and 7 were elaborated. These two options explore the energy savings that can be achieved with state-of-the art LT boilers, mainly because this type of boiler could prevent the complex and expensive chimney renovation that often is necessary when non-condensing boilers are replaced by condensing boilers. The tables on the next pages show that a state-of-the art LT boiler - combined with a time proportional RT with optimiser - could improve the net heating efficiency from 52% to 68%. Combining the individual state-of-the-art LT-boilers with for example a collective water-to-water delivering 1,5 kW of heat per apartment, could boost the net heating efficiency to around 150%. Combined with state-of-the-art condensing boilers net heating efficiency rises to the earlier mentioned BAT-level of 163%

The impact of the Design Options are summarized in the tables on the next four pages:

Table 2-12: Input Design Options in EcoBoiler Integrated Model for size category "S"

Table 2-13: Prices and Installation costs PER UNIT for Design Options size category "S"

Table 2-14: Life Cycle Costs and Annual Expenditure PER UNIT for size category "S"

Table 2-15: Environmental Impact PER UNIT over lifetime for size category "S"

Table 2-12. Input Design Options in EcoBoiler Integrated Model for size category "S"

DESIGN OPTIONS	1 BaseCase	2	3	4	5	6	7	8	9
INPUTS CH CH-power class	3 -S (Small)	3 -S (Small)	3 -S (Small)	3 -S (Small)	3 -S (Small)	3 -S (Small)	3 -S (Small)	3 -S (Small)	3 -S (Small)
boiler characteristics	5 -apartment existing	5 -apartment existing	5 -apartment existing	5 -apartment existing	5 -apartment existing	5 -apartment existing	5 -apartment existing	5 -apartment existing	5 -apartment existing
power input in kW*	19 kW	19 kW	19 kW	19 kW	19 kW	19 kW	19 kW	19 kW	19 kW
turndown ratio	33%	10%	33%	33%	10%	10%	10%	10%	10%
standby heat loss (% of Pnom)	1,0%	0,5%	1,0%	1,0%	0,5%	0,5%	0,5%	0,5%	0,5%
steady st. efficiency %	5 -80/80/80/80	4 -84/84/84/84	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	9 -ideal 96/96/97/97	4 -84/84/84/84	1 -89/89/97/97	9 -ideal 96/96/97/97
fuel (dewpoint)	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas
air-fuel mix control	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	3 -ionisation	2 -pneumatic		3 -ionisation
aira numa nawar	6 -95W	1 -5(15)25W + sb	3 -25(45)65 W	1 -5(15)25W + sb					
circ. pump power fan power	3 -P=940W	1 -P=318W	3 -P=940W	1 -P=318W	1 -9(15)25W 1 3B				
CPU power sb/on	4 -P=10/12W	1 -P=2/3W	4 -P=10/12W	1 -P=2/3W					
controls power sb/on	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W
	4	4	4 manifestation	4	4	4	4 mains and add	4	4 marine and add
comb. air intake	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed		1 -room sealed
boiler mass (empty), kg water content in kg	34 kg 2.0 kg	34 kg 2,0 kg	34 kg 2,0 kg	34 kg 2,0 kg	34 kg 2,0 kg	34 kg 2,0 kg	34 kg 2,0 kg	34 kg 2,0 kg	34 kg 2,0 kg
envelope volume in m3	0,12 m3	0,12 m3	0,12 m3	0,12 m3	0,12 m3	0,12 m3	0,12 m3	0,12 m3	0,12 m3
noise level in dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A
	10 05 //	10 05 //	10 05 /1	10 05 /1	10 05 / 1	10 05 /1	10 0571	10 05 / 1	10 05 / 1
controllers									
auto-timer control	yes	yes	yes	yes	yes	yes	yes	yes	yes
valve control boiler temp control	2 -RTV 2K 6 -on/off RT	3 -RTV 1K	2 -RTV 2K 7 -modulating RT	2 -RTV 2K	3 -RTV 1K	3 -RTV 1K 7 -modulating RT		3 -RTV 1K	3 -RTV 1K
electronic optimiser	no	8 -time-prop. RT yes	yes	7 -modulating RT yes	7 -modulating RT yes	yes	8 -time-prop. RT yes	7 -modulating RT yes	7 -modulating RT yes
autoset weather control	N/A	N/A	no	N/A	N/A	N/A	no		no
solar (for combi only)	A1/A	4 -11	0	0	0	0	0	0	0
collector type collector surface m2	N/A 0,0	1 -glazed 0,0	3 -vacutube	3 -vacutube	3 -vacutube 0,0	3 -vacutube 0,0	3 -vacutube	3 -vacutube	3 -vacutube 0,0
tank position	N/A	1 -indoors	0,0 1 -indoors	0,0 1 -indoors	1 -indoors	1 -indoors	0,0 1 -indoors	0,0 1 -indoors	1 -indoors
CH-fraction served	0%	100%	0%	0%	0%	0%	0%	0%	0%
El. back-up heater CH?	no	no	no	no	no	no	no		no
heat pump (HP)	4 El balantana 0/F	0 51 -1-1-1	0 El alul	0 51 -1-1	0 El alduntos 7/5	0 El alalameter 7/50	0.51	0.51	0.51
Reference type	1 -El. brine/ water 0/5	3 -El. air/ water 7/50 0.0 kW	3 -EI. air/ water 7/50 0.0 kW	3 -El. air/ water 7/5			2 -El. water/ water 10/50		2 -El. water/ water 10/50
Power nominal in kW COP nominal 0/50	0,0 kW 0,00	0,0 kW 0,00	0,0 kW 0,00	0,0 kW 2,50	0,0 kW 0,00	0,0 kW 3,50	1,5 kW 3,70	1,5 kW 3,70	1,5 kW 3,70
Ratio CH : DHW	100%	80%	80%	80%	80%	80%	80%	80%	80%
CH-fraction served	100%	0%	100%	100%	100%	50%	100%	100%	100%
El. back-up heater CH?	no	no	no	no	no	no	no		no
MAIN ENERGY OUTPUTS Net heating efficiency	52%	68%	71%	75%	79%	81%	152%	162%	163%
Primary energy consumption	9368 kWh/a	7258 kWh/a	6894 kWh/a	6570 kWh/a	6214 kWh/a	6109 kWh/a	3234 kWh/a	3040 kWh/a	3024 kWh/a
-of which fuel (primary kWh GCV)	8814 kWh/a	7131 kWh/a	6495 kWh/a	6495 kWh/a	6136 kWh/a	6033 kWh/a	958 kWh/a	783 kWh/a	768 kWh/a
-of which electricity (primary kWh)	555 kWh/a	127 kWh/a	398 kWh/a	75 kWh/a	78 kWh/a	76 kWh/a	2.276 kWh/a	2.257 kWh/a	2.257 kWh/a
MAINLOCOLITRUTO									
MAIN LCC OUTPUTS Purchase (incl. installation)	€ 2.504	€ 3.159	€ 3.233	€ 3.444	€ 3.673	€ 3.854	€ 7.596	€ 8.073	€ 8.254
Lifetime Running costs (NPV)	€ 11.668	€ 9.655	€ 9.267	€ 8.989	€ 3.673	€ 3.054	€ 7.596	€ 5.274	€ 5.259
Life Cycle Costs LCC	€ 14.172	€ 12.814	€ 12.500	€ 12.433	€ 12.313	€ 12.391	€ 13.057	€ 13.347	€ 13.512
Simple Payback Period PBB	reference yrs	6,1 yrs	6,0 yrs	6,7 yrs	7,4 yrs	8,3 yrs	18,5 yrs	19,6 yrs	20,2 yrs
•									

Table 2-13. Prices and Installation costs per unit for Design Options size category "S"

DESIGN OPTIONS	3 -S (Small)	3 -S (Small)	3 -S (Small)	3 -S (Small)	5 3 -S (Small)	6 3 -S (Small)	7 3 -S (Small)	3 -S (Small)	9 3 -S (Small)
PRODUCT PRICE break down									
OEM Subass. Costs (Task 2, Ch. Heat exchanger group El. controls group Burner group Fuel controls group CH-return group CH-supply group Fan group Casing Condensate collect Hot water group Packaging etc. Extra oil-fired (*0,11) Subtotal OEM Labour Overhead total MSP Ex wholesale Ex installer excl. VAT BOILER consumer street price CONTROLLERS incl. VAT INSTALLATION (Labour, materials subtotal Boiler (all in)	77 50 17 35 40 10 30 26 8 21 9 61 38 21 9 61 11 26 76 99 1.18	5	Euro/ system 106 90 21 35 82 10 35 26 35 21 9 89 558 167 391 1.116 1.451 1.731 2.059 55 1.119 3.233	Euro/ system 106 100 21 35 110 10 45 26 35 21 9 98 615 185 431 1.231 1.600 1.907 2.270 55 1.119 3.444	Euro/ system 106 100 21 60 110 10 50 34 35 21 9 105 661 198 463 1.322 1.719 2.049 2.439 55 1.179 3.673	Euro/ system 128 100 21 80 110 10 50 34 35 21 9 113 710 213 497 1.420 1.846 2.201 2.620 55 1.179 3.854	Euro/ system 89 60 17 60 90 10 45 34 8 21 9 84 526 158 369 1.053 1.369 1.632 1.942 75 1.179 3.196	Euro/ system 106 100 21 60 110 10 50 34 35 21 9 105 661 198 463 1.322 1.779 2.049 2.439 55 1.179 3.673	Euro/ system 128 100 21 80 110 10 50 34 35 21 9 113 710 213 497 1.420 1.846 2.201 2.620 55 1.179 3.854
HEAT PUMP materials incl. VAT HEAT PUMP installation incl. VAT	-	0	0	0	0	0	2.500 1.900	2.500	2.500
TOTAL PURCHASE Country Rprice corrected	2.50 2.50		3.233 3.233	3.444 3.444	3.673 3.673	3.854 3.854	7.596 7.596	8.073 8.073	8.254 8.254

Table 2-14. Life Cycle Costs and Annual Expenditure PER UNIT for size category "S"

DESIGN OPTIONS	3 -S (Small)	3 -S (Small)	3 -S (Small)	4 3 -S (Small)	5 3 -S (Small)	6 3 -S (Small)	7 3 -S (Small)	8 3 -S (Small)	3 -S (Small)
LCC break down Product Price Installation	€ 1.410 € 1.094	€ 1.980 € 1.179	€ 2.114 € 1.119	€ 2.325 € 1.119	€ 2.494 € 1.179	€ 2.675 € 1.179	€ 4.517 € 3.079	€ 4.994 € 3.079	€ 5.175 € 3.079
Fuel energy (gas, oil) Electricity Repair & Maintenance	€ 8.620 € 476 € 2.573	€ 6.974 € 109 € 2.573	€ 6.352 € 342 € 2.573	€ 6.352 € 64 € 2.573	€ 6.001 € 67 € 2.573	€ 5.900 € 65 € 2.573	€ 937 € 1.952 € 2.573	€ 766 € 1.936 € 2.573	€ 751 € 1.935 € 2.573
Annual expenditure	€ 14.172	€ 12.814	€ 12.500	€ 12.433	€ 12.313	€ 12.391	€ 13.057	€ 13.347	€ 13.512
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance	€ 83 € 64 € 451 € 33 € 180	€ 116 € 69 € 349 € 8 € 180	€ 124 € 66 € 332 € 24 € 180	€ 137 € 66 € 316 € 4 € 180	€ 147	€ 157	€ 266 € 181 € 156 € 137 € 180	€ 294 € 181 € 146 € 135 € 180	€ 304 € 181 € 146 € 135 € 180
TOTAL expenditure/a	€ 812	€ 723	€ 726	€ 703	€ 700	€ 705	€ 919	€ 937	€ 946
MAIN LCC OUTPUTS Purchase (incl. installation) Lifetime Running costs (NPV) Life Cycle Costs LCC Simple Payback Period PBB	€ 2.504 € 11.668 € 14.172 reference yrs	€ 3.159 € 9.655 € 12.814 6,1 yrs	€ 3.233 € 9.267 € 12.500 6,0 yrs	€ 3.444 € 8.989 € 12.433 6,7 yrs	€ 3.673 € 8.640 € 12.313 7,4 yrs	€ 3.854 € 8.538 € 12.391 8,3 yrs	€ 7.596 € 5.461 € 13.057 18,5 yrs	€ 8.073 € 5.274 € 13.347 19,6 yrs	€ 8.254 € 5.259 € 13.512 20,2 yrs

Table 2-15. Environmental Impact PER UNIT over lifetime for size category "S"

DESIGN OPTIONS		1 3 -S (Small)		2 3 -S (Small)		3 -S (Small)		4 3 -S (Small)		5 3 -S (Small)		6 3 -S (Small)		7 3 -S (Small)		8 3 -S (Small)		9 3 -S (Small)	
ENVIRONMENTAL IMPA	CT PER U	NIT OVER LIFE																	
MATERIALS		TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE
TOTAL	kg	34,1		34,1		34,1		34,1		34,1		34,1		34,1		34,1		34,1	
of which Disposal	kg	6,1		6,1		6,1		6,1		6,1		6,1		6,1		6,1		6,1	
Recycled	kg	27,9		27,9		27,9		27,9		27,9		27,9		27,9		27,9		27,9	
OTHER RESOURCES																			
Total Energy (GER)	GJ	566,0	563,3	435,5	432,8	417,2	414,5	394,7	391,4	373,9	370,2	369,6	364,0	228,2	219,7	212,4	207,9	216,8	207,0
of which, electric(in prima		40,2	39,6	9,7	9,1	29,1	28,4	6,1	5,3	6,4	5,6	6,6	5,4	164,1	162,5	162,1	161,2	162,9	161,1
Water (process)	m3	3,1	2,6	1,1	0,6	2,4	1,9	0,9	0,4	0,9	0,4	0,9	0,4	11,6	10,8	11,5	10,7	11,7	10,7
Water (cooling)	m3	106,0	105,6	24,6	24,2	76,3	75,9	14,6	14,2	15,3	14,8	15,3	14,5	434,6	433,4	430,6	429,8	431,3	429,7
Waste, non-haz./ landfill	kg	5,7	0,9	5,0	0,2	5,5	0,7	4,9	0,1	4,9	0,1	4,4	0,1	10,2	3,7	8,0	3,7	9,0	3,7
Waste, hazardous/ incine	ra kg	117,2	45,9	81,8	10,5	104,3	33,0	105,0	6,2	119,1	6,4	139,7	6,3	385,5	188,5	306,1	186,9	421,1	186,8
EMISSIONS TO AIR																			
GHG in GWP100	tCO2	31,8	31,6	24,8	24,6	23,5	23,3	22,5	22,3	21,3	21,1	21,1	20,7	11,0	10,4	10,0	9,7	10,4	9,7
AP Acidification	kgSOx	23,0	22,0	12,9	11,9	17,0	16,0	11,3	10,0	11,0	9,6	11,0	9,5	45,4	43,1	44,1	42,6	45,2	42,5
VOC Volatile Organic Cor		0,4	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,1	0,1	0,1	0,2	0,1
POP Persist.Organic Poll. HMa Heavy Metals	. mg i-Teq mg Ni	1,0 1,6	0,3	0,8 1,0	0,1	0,9 1,4	0,2	1,0 1,2	0,0	1,2 1,4	0,0	2,0 1,4	0,0	4,0 4,5	1,1 2,8	2,6 4,2	1,1 2,8	4,6 4,8	1,1 2,8
PAHs	mg	0,3	0,7	0,2	0,2	0,3	0,5	0,2	0,1	0,2	0,1	0,2	0,1	0,5	0,4	0,5	0,4	0,6	0,4
PM Particulate Matter	kg	2,3	1,3	2,1	1,1	2,3	1,2	2,3	1,1	2,4	1,1	4,9	1,0	9,0	1,8	3,8	1,8	9,3	1,8
EMISSIONS TO WATER																			
HMw Heavy Metals	g Hg/20	0,8	0,3	0,6	0,1	0,8	0,2	0,8	0,0	0,9	0,0	0,7	0,0	1,9	1,0	1,9	1,0	2,2	1,0
EP Eutrophication	g PO4	12,9	1,2	12,0	0,3	12,6	0,9	14,6	0,2		0,2	17,1	0,2	27,9	5,0	26,1	5,0	35,2	5,0
ANNUAL SPACE HEAT I	ENERGY b	<u>reakdown</u>																	
TOTAL	kWh/a	9368	100%	7258	100%	6894	1000/	6570	100%	6214	100%	6109	100%	3234	100%	3040	100%	3024	100%
Tset	kWh/a	3799	41%	3799	52%	3799	100% 55%	3799	58%	3799	61%	3799	62%	3234 3799	117%	3040 3799	125%	3024 3799	126%
Tmass	kWh/a	788	8%	875	12%	875	13%	875	13%	875	14%	875	14%	875	27%	875	29%	875	29%
Tintrans	kWh/a	263	3%	254	3%	254	4%	254	4%	254	4%	254	4%	254	8%	254	8%	254	8%
Tfluct (cntrl)	kWh/a	642	7%	122	2%	351	5%	351	5%	166	3%	168	3%	122	4%	166	5%	168	6%
Tstrat(emit)	kWh/a	415	4%	310	4%	343	5%	343	5%	312	5%	312	5%	310	10%	312	10%	312	10%
Distr. loss	kWh/a	846	9%	483	7%	435	6%	435	7%	432	7%	432	7%	483	15%	432	14%	432	14%
Steady st.	kWh/a	1752	19%	1139	16%	252	4%	252	4%	216	3%	125	2%	152	5%	35	1%	18	1%
Start/stop	kWh/a	43	0%	114	2%	76	1%	76	1%	43	1%	29	0%	15	0%	0	0%	0	0%
Stby heat	kWh/a	265	3%	35	0%	111	2%	111	2%	39	1%	39	1%	5	0%	6	0%	6	0%
Electric	kWh/a	555	6%	127	2%	398	6%	75	1%	78	1%	76	1%	127	4%	78	3%	76	3%
Credit solar	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Credit HP	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	2908	0%	2917	0%	2915	0%
Net heating efficiency	%	52%		68%		71%		75%		79%		81%		152%		162%		163%	
gross heat load	kWh/a	6.052		6.149		6.168		6.168		6.168		6.198		6.149		6.168		6.198	
net heat load	kWh/a	4.850		4.928		4.928		4.928		4.928		4.928		4.928		4.928		4.928	
net load per unit floor are		141		109		104		99		93		92		49		46		45	
CH system efficiency	%	60%		78%		82%		86%		91%		93%		175%		186%		187%	

2.4 Design Options and Impact size category XS and XXS

Already for the size category "S" we saw a relatively small change in the lifecycle costs for the Design Options 2 to 6, due to the fact that improved efficiency brings less when annual energy consumption is limited. For the "XS" and "XXS" sized boilers this is even more so. The difference in lifecycle costs for a state-of-the-art LT boiler (option 2) versus the LLCC-level in the size class "XXS" is only around \in 140,-. Pay-back periods for the proposed design options will therefore be longer.

Based on similar Design Options as described for the size-class "S" (Small) , the following graph can be constructed for size-class XXS:

Figure 2-16.

Design options, lifecycle costs and annual energy consumption category "XXS"

Similar to the previous size class "S", we may conclude for these two sized classes "XS" and "XXS" that the **LLCC levels** have net heating efficiency values of around **77-78**%, to be achieved with state-of-the-art condensing boilers. However, given the longer payback periods and the chimney problem, the state-of-the art LT boiler - with a net system efficiency of around **68**% - could be a practical alternative, when combined with some form of renewable energy (solar or heat pump). A detailed economic analysis per project is advised.

Combined with collective heat pumps or (collective) solar collectors, the **BAT-levels** for these size classes (even with LT boilers) can be raised to above **160%**.

The impact of the Design Options are summarized in the tables on the next four pages:

Table 2-17: Input Design Options in EcoBoiler Integrated Model for size category "XXS"

Table 2-18: Prices & Installation costs PER UNIT for Design Options size category "XXS"

Table 2-19: Life Cycle Costs and Annual Expenditure PER UNIT for size category "XXS"

Table 2-20: Environmental Impact PER UNIT over lifetime for size category "XXS"

Table 2-17. Input Design Options in EcoBoiler Integrated Model for size category "XXS"

DESIGN OPTIONS	1 BaseCase	2	3	4	5	6	7	8	9
INPUTS CH									
CH-power class	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)
	6 -apartment new	6 -apartment new	6 -apartment new	6 -apartment new	6 -apartment new	6 -apartment new	6 -apartment new	6 -apartment new	6 -apartment new
boiler characteristics	40 1307	40 1344	40 1344	40 134/	40 134/	40 1307	40.130/	40 130/	40 130/
power input in kW*	10 kW	10 kW 10%	10 kW 33%	10 kW	10 kW	10 kW	10 kW	10 kW 10%	10 kW
turndown ratio	33% 1,0%		1,0%	33% 1,0%	10% 0,5%	10% 0,5%	10% 0,5%	0,5%	10% 0,5%
standby heat loss (% of Pnom)	1,070	0,5%	1,0%	1,070	0,5%	0,5%	0,5%	0,5%	0,5%
steady st. efficiency %	5 -80/80/80/80	4 -84/84/84/84	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	9 -ideal 96/96/97/97	4 -84/84/84/84	1 -89/89/97/97	9 -ideal 96/96/97/97
fuel (dewpoint)	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas
air-fuel mix control	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	3 -ionisation	2 -pneumatic	2 -pneumatic	3 -ionisation
circ. pump power	5 -65W	1 -5(15)25W + sb	3 -25(45)65 W	1 -5(15)25W + sb	1 -5(15)25W + sb	1 -5(15)25W + sb			
fan power	2 -P=630W	1 -P=318W	3 -P=940W	1 -P=318W	1 -P=318W	1 -P=318W	1 -P=318W	1 -P=318W	1 -P=318W
CPU power sb/on	3 -P=6/8W	1 -P=2/3W	4 -P=10/12W	1 -P=2/3W	1 -P=2/3W	1 -P=2/3W	1 -P=2/3W	1 -P=2/3W	1 -P=2/3W
controls power sb/on	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W	1 -P=0/10W
•									
comb. air intake	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed
boiler mass (empty), kg	34 kg	34 kg	34 kg	34 kg	34 kg	34 kg	34 kg	34 kg	34 kg
water content in kg	1,5 kg	1,5 kg	1,5 kg	1,5 kg	1,5 kg	1,5 kg	1,5 kg	1,5 kg	1,5 kg
envelope volume in m3	0,08 m3	0,08 m3	0,08 m3	0,08 m3	0,08 m3	0,08 m3	0,08 m3	0,08 m3	0,08 m3
noise level in dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A	43 dB-A
controllers									
auto-timer control	yes	yes	yes	yes	yes	yes	yes	yes	yes
valve control	2 -RTV 2K	3 -RTV 1K	2 -RTV 2K	2 -RTV 2K	3 -RTV 1K	3 -RTV 1K	3 -RTV 1K	3 -RTV 1K	3 -RTV 1K
boiler temp control	6 -on/off RT	8 -time-prop. RT	7 -modulating RT	7 -modulating RT	7 -modulating RT	7 -modulating RT	8 -time-prop. RT	7 -modulating RT	7 -modulating RT
electronic optimiser	no	yes	yes	yes	yes	yes	yes	yes	yes
autoset weather control	N/A	N/A	no	N/A	N/A	N/A	no	no	no
solar (for combi only)									
collector type	N/A	1 -glazed	3 -vacutube	3 -vacutube	3 -vacutube				
collector surface m2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
tank position	N/A	1 -indoors	1 -indoors	1 -indoors					
CH-fraction served	0%	100%	0%	0%	0%	0%	0%	0%	0%
El. back-up heater CH?	no	no	no	no	no	no	no	no	no
heat pump (HP)									
Reference type	1 -EI, brine/ water 0/5	3 -EI. air/ water 7/50	3 -EI. air/ water 7/50	3 -El. air/ water 7/50	3 -El. air/ water 7/50	3 -El. air/ water 7/50	2 -EI. water/ water 10/50	2 -EI, water/ water 10/50	2 -EI. water/ water 10/50
Power nominal in kW	0.0 kW	0.0 kW	0.0 kW	0.0 kW	0.0 kW	0.0 kW	1.0 kW	1.0 kW	1,0 kW
COP nominal 0/50	0,00	0,00	0,00	2,50	0,00	3,50	3,70	3,70	3,70
Ratio CH : DHW	100%	80%	80%	80%	80%	80%	80%	80%	80%
CH-fraction served	100%	0%	100%	100%	100%	50%	100%	100%	100%
El. back-up heater CH?	no	no	no	no	no	no	no	no	no
MAIN ENERGY OUTPUTS									
Net heating efficiency	53%	68%	71%	77%	81%	83%	148%	164%	165%
Primary energy consumption	4422 kWh/a	3515 kWh/a	3366 kWh/a	3094 kWh/a	2933 kWh/a	2887 kWh/a	1609 kWh/a	1456 kWh/a	1447 kWh/a
-of which fuel (primary kWh GCV)	4100 kWh/a	3375 kWh/a	3027 kWh/a	3027 kWh/a	2868 kWh/a	2823 kWh/a	353 kWh/a	255 kWh/a	249 kWh/a
-of which electricity (primary kWh)	322 kWh/a	140 kWh/a	339 kWh/a	66 kWh/a	66 kWh/a	64 kWh/a	1.256 kWh/a	1.200 kWh/a	1.197 kWh/a
MAIN LCC OUTPUTS									
Purchase (incl. installation)	€ 2.227	€ 2.866	€ 2.915	€ 3.126	€ 3.344	€ 3.499	€ 6.493	€ 6.944	€ 7.099
Lifetime Running costs (NPV)	€ 6.858	€ 5.993	€ 5.824	€ 5.590	€ 5.433	€ 5.389	€ 3.995	€ 3.852	€ 3.843
Life Cycle Costs LCC	€ 9.085	€ 8.859	€ 8.739	€ 8.716	€ 8.778	€ 8.888	€ 10.488	€ 10.796	€ 10.943
Simple Payback Period PBB	reference yrs	13,9 yrs	13,6 yrs	13,4 yrs	15,0 yrs	16,5 yrs	34,3 yrs	35,6 yrs	36,7 yrs
				-, ,			, , ,		

Table 2-18. Prices and Installation costs PER UNIT for Design Options size category "XXS"

DESIGN OPTIONS	1 1 -XXS (XX Small)	1 -XXS (XX Small)	3 1 -XXS (XX Small)	4 1 -XXS (XX Small)	5 1 -XXS (XX Small)	6 1 -XXS (XX Small)	7 1 -XXS (XX Small)	8 1 -XXS (XX Small)	9 1 -XXS (XX Small)
PRODUCT PRICE break down									
OEM Subass. Costs (Task 2, Ch. 5) Heat exchanger group El. controls group Burner group Fuel controls group CH-return group CH-supply group Fan group Casing Condensate collect Hot water group Packaging etc. Extra oil-fired (*0,11)	55 50 12 35 40 10 30 18 8 21 6	Euro/ system 64 60 12 60 90 10 45 18 8 21 6 75	Euro/ system 77 90 15 35 82 10 35 18 35 21 6	To a system 77 100 15 35 110 45 18 35 21 6 89	77 100 15 60 110 10 50 25 35 21 6	92 100 15 80 110 10 50 25 35 21 6	Euro/ system 64 60 12 60 90 10 45 25 8 21 6 76	Euro/ system 77 100 15 60 110 10 50 25 35 21 6	Euro/ system 92 100 15 80 110 10 50 25 35 21 6 103
Subtotal OEM Labour Overhead total MSP Ex wholesale Ex installer excl. VAT BOILER consumer street price in	340 102 238 680 885 1.055 1.255	470 141 329 940 1.222 1.457 1.734	505 151 353 1.010 1.313 1.565 1.863	562 169 393 1.124 1.461 1.742 2.073	605 181 423 1.210 1.573 1.875 2.232	194 453 1.294 1.682 2.006	477 143 334 955 1.241 1.480	605 181 423 1.210 1.573 1.875 2.232	647 194 453 1.294 1.682 2.006 2.387
CONTROLLERS incl. VAT INSTALLATION (Labour, materials, subtotal Boiler (all in) SOLAR materials incl. VAT	VAT) 0 972 2.227	75 1.057 2.866 0	55 997 2.915	55 997 3.126	55 1.057 3.344	55 1.057 3.499 0	75 1.057 2.893	55 1.057 3.344	55 1.057 3.499
SOLAR installation incl. VAT HEAT PUMP materials incl. VAT HEAT PUMP installation incl. VAT	0 0 0	0 0	0 0	0 0 0	0 0 0	0 0 0	2.000 1.600	2.000 1.600	2.000 1.600
TOTAL PURCHASE Country Rprice corrected	2.227 2.227	2.866 2.866	2.915 2.915	3.126 3.126	3.344 3.344	3.499 3.499	6.493 6.493	6.944 6.944	7.099 7.099

Table 2-19. Life Cycle Costs and Annual Expenditure PER UNIT for size category "XXS"

DESIGN OPTIONS	1	2	3	4	5	6	7	8	9
	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)	1 -XXS (XX Small)
LCC break down									
Product Price	€ 1.255	€ 1.809	€ 1.918	€ 2.128	€ 2.287	€ 2.442	€ 3.836	€ 4.287	€ 4.442
Installation	€ 972	€ 1.057	€ 997	€ 997	€ 1.057	€ 1.057	€ 2.657	€ 2.657	€ 2.657
Fuel energy (gas, oil)	€ 4.009	€ 3.300	€ 2.961	€ 2.961	€ 2.804	€ 2.761	€ 346	€ 250	€ 244
Electricity	€ 276	€ 120	€ 290	€ 57	€ 56	€ 55	€ 1.077	€ 1.029	€ 1.027
Repair & Maintenance	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573
Annual expenditure									
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance TOTAL expenditure/a	€ 74 € 57 € 213 € 19 € 180 € 543	€ 106 € 62 € 169 € 8 € 180	€ 113 € 59 € 162 € 20 € 180	€ 125 € 59 € 149 € 4 € 180	€ 135 € 62 € 141 € 4 € 180	€ 144 € 62 € 139 € 4 € 180	€ 226 € 156 € 77 € 75 € 180	€ 252 € 156 € 70 € 72 € 180	€ 261 € 156 € 70 € 72 € 180
MAIN LCC OUTPUTS Purchase (incl. installation) Lifetime Running costs (NPV) Life Cycle Costs LCC Simple Payback Period PBB	€ 2.227	€ 2.866	€ 2.915	€ 3.126	€ 3.344	€ 3.499	€ 6.493	€ 6.944	€ 7.099
	€ 6.858	€ 5.993	€ 5.824	€ 5.590	€ 5.433	€ 5.389	€ 3.995	€ 3.852	€ 3.843
	€ 9.085	€ 8.859	€ 8.739	€ 8.716	€ 8.778	€ 8.888	€ 10.488	€ 10.796	€ 10.943
	reference yrs	13,9 yrs	13,6 yrs	13,4 yrs	15,0 yrs	16,5 yrs	34,3 yrs	35,6 yrs	36,7 yrs

Table 2-20. Environmental Impact PER UNIT over lifetime for size category "XXS"

DESIGN OPTIONS		1 1 -XXS (XX Sm	all)	2 1 -XXS (XX Sma	II)	3 1 -XXS (XX Smal	II)	4 1 -XXS (XX Sma	ıll)	5 1 -XXS (XX Sma	all)	6 1 -XXS (XX Smal	I)	7 1 -XXS (XX Smal	l)	8 1 -XXS (XX Small)	9 1 -XXS (XX Small	l)
ENVIRONMENTAL IMPA	CT PER U	NIT OVER LIFE																	
MATERIALS		TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE
TOTAL	kg	34,1		34,1		34,1		34,1		34,1		34,1		34,1		34,1		34,1	
of which Disposal	kg	6,1		6,1		6,1		6,1		6,1		6,1		6,1		6,1		6,1	
Recycled	kg	27,9		27,9		27,9		27,9		27,9		27,9		27,9		27,9		27,9	
OTHER RESOURCES																			
Total Energy (GER)	GJ	269,4	266,7	213,4	210,7	206,9	204,2	188,1	184,8	178,9	175,2	178,2	172,5	The second secon	110,9	105,6	101,1	110,4	100,6
of which, electric(in primar Water (process)	m3	23,6 2.0	23,0 1.5	10,6 1,1	10,0	24,8 2,1	24,2	5,5 0.8	4,7 0,3	5,5 0,9	4,7 0,3	5,7 0,9	4,6 0,3	91,2 6,7	89,7 6,0	86,7 6,4	85,7 5.7	87,3 6,6	85,5 5,7
Water (cooling)	m3	61.7	61.3	27.1	26.7	64.9	64.5	13.1	12.6	13.0	12.5	12.9	12.2	240.3	239.1	229.3	228.5	229.6	228,0
Waste, non-haz./ landfill	kg	5,3	0,5	5,0	0,2	5,4	0,6	4,9	0,1	4,9	0,1	4,4	0,1	8,5	2,1	6,3	2,0	7,3	2,0
Waste, hazardous/ inciner	akg	98,0	26,7	82,9	11,6	99,4	28,0	104,3	5,5	118,1	5,4	138,7	5,3	301,0	104,0	218,5	99,4	333,4	99,1
EMISSIONS TO AIR																			
GHG in GWP100	tCO2	15,1	14,9	12,1	11,9	11,5	11,3	10,7	10,5	10,2	9,9	10,2	9,8		5,1	5,0	4,6	5,3	4,6
AP Acidification	kgSOx	12,4	11,4	8,1	7,1	11,3	10,3	6,5	5,3	6,4	5,0	6,5	5,0	The second secon	23,6		22,4	25,0	22,4
VOC Volatile Organic Con		0,2	0,2 0,2	0,2 0,8	0,2	0,2 0,9	0,1	0,2	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,0	0,1	0,0
POP Persist.Organic Poll. HMa Heavy Metals	mg i-Teq mg Ni	0,9 1,3	0,2	0,8 1,1	0,1	1,3	0,2	1,0 1,2	0,0	1,2 1,3	0,0	2,0 1,3	0,0	3,6 3,3	0,6 1,6	2,1 2,9	1.5	4,1 3,5	0,6 1,5
PAHs	mg	0,2	0,1	0,2	0,2	0,2	0,3	0,2	0,1	0,2	0,1	0,2	0,1	0,3	0,2	0,4	0,2	0,4	0,2
PM Particulate Matter	kg	2,1	1,1	2,0	1,0	2,2	1,1	2,3	1,0	2,3	1,0	4,8	1,0		1,4	3,4	1,4	8,9	1,4
EMISSIONS TO WATER																			
HMw Heavy Metals	g Hg/20	0,7	0,1	0,7	0,1	0,7	0,2	0,8	0,0	0,9	0,0	0,7	0,0		0,6	1,5	0,6	1,7	0,6
EP Eutrophication	g PO4	12,4	0,7	12,0	0,3	12,4	0,7	14,6	0,1	15,9	0,1	17,1	0,1	25,7	2,8	23,7	2,6	32,8	2,6
ANNUAL SPACE HEAT E	NERGY b	<u>reakdown</u>																	
TOTAL	kWh/a	4422	100%	3515	100%	3366	100%	3094	100%	2933	100%	2887	100%	1609	100%	1456	100%	1447	100%
Tset	kWh/a	1653	37%	1653	47%	1653	49%	1653	53%	1653	56%	1653	57%	1653	103%	1653	114%	1653	114%
Tmass	kWh/a	423	10%	470	13%	470	14%	470	15%	470	16%	470	16%	470	29%	470	32%	470	32%
Tintrans	kWh/a	277	6%	260	7%	260	8%	260	8%	260	9%	260	9%	260	16%	260	18%	260	18%
Tfluct (cntrl)	kWh/a	383	9%	65	2%	204	6%	204	7%	92	3%	92	3%	65	4%	92	6%	92	6%
Tstrat(emit)	kWh/a	241	5% 9%	191	5% 8%	212	6%	212	7% 7%	194	7% 8%	194	7% 8%	191	12% 17%	194	13% 16%	194	13%
Distr. loss Steady st.	kWh/a kWh/a	394 628	14%	280 388	11%	231 -64	7% -2%	231 -64	-2%	234 -60	-2%	234 -100	-3%	280 56	3%	234 12	16%	234 6	16% 0%
Start/stop	kWh/a	21	0%	57	2%	-64	1%	-64 24	1%	12	0%	-100	0%	6	0%	0	0%	0	0%
Stby heat	kWh/a	79	2%	12	0%	37	1%	37	1%	13	0%	13	0%	1	0%	1	0%	1	0%
Electric	kWh/a	322	7%	140	4%	339	10%	66	2%	66	2%	64	2%	140	9%	66	5%	64	4%
Credit solar	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Credit HP	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	1511	0%	1526	0%	1527	0%
Net heating efficiency	%	53%		68%		71%		77%		81%		83%		148%		164%		165%	
gross heat load	kWh/a	2.965		3.005		3.015		3.015		3.015		3.031		3.005		3.015		3.031	
net heat load	kWh/a	2.354		2.382		2.382		2.382		2.382		2.382		2.382		2.382		2.382	
net load per unit floor area CH system efficiency	a kwn/m2 %	56 61%		45 78%		43 81%		39 89%		37 93%		37 95%		21 170%		19 188%		18 189%	
or ayatem emolency	, u	01/0		10/0		01/0		03/0		33 /0		33 /6		110/0		100 /0		103/0	

2.5 Design Options & Impact size category "XL"

The following design options have been elaborated for this size-class "XL" (Extra Large).

Explanation design options

- 1. Reference (see first column table 2-22)
- 2. Improvement steady-state efficiency from 80/80 to **87/95** and the application of a **weather controlled boiler thermostat with timer control** instead of the on/off RT.
- 3. Improvement steady-state efficiency to **89/97**, the use of **1K TRV's** (which in fact is a hydraulic balancing of the system).
- 4. Option 3, extended with a smaller **95 W pump**, an **electronic optimiser** and a more energy efficient **CPU** (14/16 W)
- 5. Option 4, extended with **motorized valves with PID** loop (instead of 1k TRV) and a reduction of the **standby heat loss to 0,5%**.
- 6. Option 5, extended with an improved **turndown ratio of 10%**, a minimization of the **CPU power consumption to 10/12 W**, and **CPU controlled motor valves**
- 7. Option 6, extended with a **tertiary heat exchanger**, and ionisation based **lambda control** system, also extended with a **7 kW electric air/water heat pump** with a nominal COP of **2,5** (at 7/50); (CH fraction served = 100%).
- 8. Option 7, but here the air/water heat pump is replaced by a **7 kW electric** water/water heat pump with a nominal COP of **3,8** (at 10/50° C); (CH fraction served = 100%).
- 9. Option 7, but here the air/water heat pump is replaced by a **24 m² vacutube type solar collector** (CH fraction served = 100%).

Figure 2-21.

Design options, lifecycle costs and annual energy consumption category "XL"

The average annual primary energy consumption for the BaseCase "XL" sized boilers amounts to 45.965 kWh (net heating efficiency is 44%), with a total lifecycle costs of €57.697,-

This annual primary energy consumption can be reduced with approximately 5400 kWh (= **46**%) to 24.806 kWh with the existing and proven technology that is selected for Design Option 6. The net heating efficiency with this option is improved to **77**%. The related lifecycle costs are reduced to $\mathbf{\mathfrak{S}}$ 37.851,-. This **77**% is also the **LLCC-level.**

With Design Option nr. 8 (in which a state-of-the-art condensing boiler (with tertiary heat exchanger and lambda-control) is combined with a 7 kW water-to-water heat pump), the net heating efficiency can be increased to a **BAT level of 132%** (annual consumption: 14507 kWh) with lifecycle costs that are only € 800,- higher than the LLCC-level.

If the power output of the heat pump in Design Option 8 is further increased to 12 kW, the neat heating efficiency rises to 157%, with an annual consumption of 12.159 kWh and lifecycle costs of \leqslant 43.659,-

The ultimate BAT level is best represented with a system that combines individual local state-of-the-art condensing boilers with a collective water-to-water heat pump. Net heating efficiencies can then be increased to levels above 140 % (see also BAT-options for XXS to S)

Design Options nr. 9 combines a state-of-the-art condensing boiler with 24 m^2 vacutube solar collectors, resulting in net heating efficiencies of around 101% with lifecycle costs of around \in 46.000,-

The impact of the Design Options are summarized in the tables on the next four pages:

Table 2-22: Input Design Options in EcoBoiler Integrated Model for size category "XL"

Table 2-23: Prices and Installation costs PER UNIT for Design Options size category "XL"

Table 2-24: Life Cycle Costs and Annual Expenditure PER UNIT for size category "XL"

Table 2-25: Environmental Impact PER UNIT over lifetime for size category "XL"

Table 2-22. Input Design Options in EcoBoiler Integrated Model for size category "XL"

DESIGN OPTIONS	1 BaseCase	2	3	4	5	6	7	8	9
INPUTS CH		O. VI. (Vine Lenna)	0 VI (Vina I anna)	O VI (Vivs I suppl	O. VI. (Vine I anne)	O. VI. (Vine I anna)	O. VI. (Vive I come)	O. VI. (Vive I arre)	O. VI. (Vive I arre)
CH-power class	6 -XL (Xtra Large)	6 -XL (Xtra Large)	6 -XL (Xtra Large)	6 -XL (Xtra Large)	6 -XL (Xtra Large)	6 -XL (Xtra Large)	6 -XL (Xtra Large)	6 -XL (Xtra Large)	6 -XL (Xtra Large)
boiler characteristics	8 -new building (8 ap)	8 -new building (8 ap)	8 -new building (8 ap)	8 -new building (8 ap)	8 -new building (8 ap)	8 -new building (8 ap)	8 -new building (8 ap)	8 -new building (8 ap)	8 -new building (8 ap)
power input in kW*	60 kW	60 kW	60 kW	60 kW	60 kW	60 kW	60 kW	60 kW	60 kW
turndown ratio	33%	33%	33%	33%	33%	10%	10%	10%	10%
standby heat loss (% of Pnom)	1,0%	1,0%	1,0%	1,0%	0,5%	0,5%	0,5%	0,5%	0,5%
standby fleat loss (% of Filoff)	1,0%	1,070	1,070	1,070	0,5%	0,5%	0,5%	0,5%	0,5 %
steady st. efficiency %	5 -80/80/80/80	2 -87/87/95/95	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	9 -ideal 96/96/97/97	9 -ideal 96/96/97/97	9 -ideal 96/96/97/97
fuel (dewpoint)	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas
air-fuel mix control	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	3 -ionisation	3 -ionisation	3 -ionisation
circ. pump power	7 -200W	7 -200W	7 -200W	6 -95W	6 -95W	6 -95W		6 -95W	6 -95W
fan power	5 -P=60W	5 -P=60W	5 -P=60W	5 -P=60W	5 -P=60W	5 -P=60W		5 -P=60W	5 -P=60W
CPU power sb/on	7 -P=28/30W	7 -P=28/30W	7 -P=28/30W	5 -P=14/16W	5 -P=14/16W	4 -P=10/12W		4 -P=10/12W	4 -P=10/12W
controls power sb/on	3 -P=0/18W	3 -P=0/18W	3 -P=0/18W	3 -P=0/18W	3 -P=0/18W	3 -P=0/18W	3 -P=0/18W	3 -P=0/18W	3 -P=0/18W
	4 years and	4 years and	A recommend	4 reem earled	4 years and a	4 manus ascient	4	A washing and and	4 manus and total
comb. air intake	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed		1 -room sealed	1 -room sealed
boiler mass (empty), kg	110 kg	110 kg	110 kg	110 kg	110 kg	110 kg	110 kg	110 kg	110 kg
water content in kg	12,0 kg	12,0 kg	12,0 kg	12,0 kg	12,0 kg	12,0 kg	12,0 kg	12,0 kg	12,0 kg
envelope volume in m3	1,00 m3	1,00 m3	1,00 m3	1,00 m3	1,00 m3	1,00 m3	1,00 m3	1,00 m3	1,00 m3
noise level in dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A
controllers									
auto-timer control	no	yes	yes						
valve control	2 -RTV 2K	2 -RTV 2K	3 -RTV 1K	3 -RTV 1K	4 -Motor + PID-loop	5 -Motor + CPU		5 -Motor + CPU	5 -Motor + CPU
boiler temp control	4 -fixed BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT
boiler temp control	no	no	no	yes	yes	yes		yes	yes
autoset weather control	N/A	N/A	no	N/A	N/A	N/A			no
solar (for combi only)									
collector type	N/A	1 -glazed	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube		3 -vacutube	3 -vacutube
collector surface m2	0,0	0,0	0,0	0,0	0,0	0,0	- / -	0,0	24,0
tank position	N/A	1 -indoors		1 -indoors	1 -indoors				
CH-fraction served	0%	100%	0%	0%	0%	0%		0%	100%
El. back-up heater CH?	no	no	no	no	no	no	no	no	no
hant numm (UD)									
heat pump (HP) Reference type	1 -El. brine/ water 0/5	3 -EI. air/ water 7/50	3 -El. air/ water 7/50	2 -EI, water/ water 10/50	2 -EI, water/ water 10/50				
Power nominal in kW	0.0 kW	0.0 kW	0.0 kW	0.0 kW	0.0 kW	0.0 kW		7.0 kW	0.0 kW
COP nominal 0/50	0,0 KW	0,0	0,0	2.50	0,0	3,50		3,80	3,80
Ratio CH : DHW	100%	80%	80%	80%	80%	80%		80%	80%
CH-fraction served	100%	0%	100%	100%	100%	50%		100%	0%
El. back-up heater CH?	no	no	no	no	no	no		no	no
MAIN ENERGY OUTPUTS									
Net heating efficiency	44%	58%	62%	68%	71%	77%	88%	132%	101%
Primary energy consumption	45965 kWh/a	32672 kWh/a	30171 kWh/a	28283 kWh/a	26831 kWh/a	24806 kWh/a	21690 kWh/a	14507 kWh/a	18899 kWh/a
-of which fuel (primary kWh GCV)	43118 kWh/a	30560 kWh/a	28054 kWh/a	26989 kWh/a	25536 kWh/a	23670 kWh/a	5838 kWh/a	4662 kWh/a	17668 kWh/a
-of which electricity (primary kWh)	2.848 kWh/a	2.112 kWh/a	2.117 kWh/a	1.295 kWh/a	1.295 kWh/a	1.136 kWh/a	15.852 kWh/a	9.844 kWh/a	1.231 kWh/a
MAIN LCC OUTPUTS									
Purchase (incl. installation)	€ 6.498	€ 7.841	€ 8.170	€ 8.195	€ 8.639	€ 8.951	€ 17.010	€ 22.660	€ 23.510
Lifetime Running costs (NPV)	€ 51.199	€ 37.117	€ 34.437	€ 32.591	€ 31.035	€ 28.901	€ 22.419	€ 16.008	€ 22.553
	€ 57.697	€ 44.958	€ 42.607	€ 40.786	€ 39.674	€ 37.851	€ 39.429	€ 38.668	€ 46.063
Life Cycle Costs LCC Simple Payback Period PBB	reference vrs	1.9 vrs	2,0 yrs	1.8 vrs	2,1 yrs	2.2 vrs	8.9 vrs	10.1 vrs	11.8 vrs

Table 2-23. Prices and Installation costs PER UNIT for Design Options size category "XL"

DESIGN OPTIONS	1 6 -XL (Xtra Larg	je)	2 6 -XL (Xtra Large)	3 6 -XL (Xtra Large)	4 6 -XL (Xtra Large)	6 -XL (Xtra Large)	6 -XL (Xtra Large)	7 6 -XL (Xtra Large)	8 6 -XL (Xtra Large)	9 6 -XL (Xtra Large)
PRODUCT PRICE break down										
OEM Subass. Costs (Task 2, Ch. 5	Euro/ system		Euro/ system	Euro/ system	Euro/ system	Euro/ system	Euro/ system	Euro/ system	Euro/ system	Euro/ system
Heat exchanger group	180		240	250	250	250	250	300	300	300
El. controls group	63		100	113	113	113	113	113	113	113
Burner group	29		29	36	36	36	36	36	36	36
Fuel controls group	44		44	44	44	44	75	100	100	100
CH-return group	80		110	120	120	120	120	120	120	120
CH-supply group	13		13	13	13	13	13	13	13	13
Fan group	60		70	70	70	80	80	80	80	80
Casing	60		60	60	60	80	80	80	80	80
Condensate collect	10		44	44	44	44	44	44	44	44
Hot water group	21		21	21	21	21	21	21	21	21
Packaging etc.	20		20	20	20	20	20	20	20	20
Extra oil-fired (*0,11)	486		630	663	663	688	715	778	778	778
Subtotal OEM		1.064	1.380	1.453	1.49				1.703	1.703
Labour		319	414	436	43				511	511
Overhead		745	966	1.017	1.0			1.192	1.192	1.192
total MSP		2.129	2.759	2.905	2.90				3.407	3.407
Ex wholesale		2.768	3.587	3.777	3.77				4.428	4.428
Ex installer excl. VAT		3.300	4.277	4.503	4.50				5.280	5.280
BOILER consumer street price in	cl. VAT	3.927	5.089	5.359	5.39	5.56	5.774	6.283	6.283	6.283
CONTROLLERS incl. VAT		0	100	100	1:	25 36	5 465	465	465	465
INSTALLATION (Labour, materials,	VAT)	2.572	2.652	2.712	2.7	12 2.71	2 2.712	2.712	2.712	2.712
subtotal Boiler (all in)		6.498	7.841	8.170	8.19	8.63	9 8.95	9.460	9.460	9.460
SOLAR materials incl. VAT		0	0	0		0	0	0	0	10.100
SOLAR installation incl. VAT		0	0	0		0	0	0	0	3.950
HEAT PUMP materials incl. VAT		0	0	0		0	0	4.950	8.000	0
HEAT PUMP installation incl. VAT		0	0	0		0	0	2.600	5.200	0
TOTAL PURCHASE		6.498	7.841	8.170	8.19	8.63	9 8.95	17.010	22.660	23.510
Country Rprice corrected	-	6.498	7.841	8.170	8.19	95 8.63	9 8.95	17.010	22.660	23.510

Table 2-24. Life Cycle Costs and Annual Expenditure PER UNIT for size category "XL"

DESIGN OPTIONS	1 6 -XL (Xtra Large)	2 6 -XL (Xtra Large)	3 6 -XL (Xtra Large)	4 6 -XL (Xtra Large)	5 6 -XL (Xtra Large)	6 6 -XL (Xtra Large)	7 6 -XL (Xtra Large)	8 6 -XL (Xtra Large)	9 6 -XL (Xtra Large)
LCC break down									
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance	€ 3.927 € 2.572 € 46.185 € 2.442 € 2.573	€ 5.189 € 2.652 € 32.734 € 1.811 € 2.573	€ 5.459 € 2.712 € 30.049 € 1.815 € 2.573	€ 5.484 € 2.712 € 28.908 € 1.110 € 2.573	€ 5.927 € 2.712 € 27.353 € 1.110 € 2.573	€ 6.239 € 2.712 € 25.353 € 975 € 2.573	€ 11.698 € 5.312 € 6.253 € 13.594 € 2.573 € 39.429	€ 14.748 € 7.912 € 4.994 € 8.442 € 2.573	€ 16.848 € 6.662 € 18.925 € 1.056 € 2.573
Annual expenditure									
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance TOTAL expenditure/a	€ 231 € 151 € 2.423 € 171 € 180	€ 305 € 156 € 1.723 € 127 € 180	€ 321 € 160 € 1.591 € 127 € 180	€ 323 € 160 € 1.491 € 78 € 180	€ 349 € 160 € 1.415 € 78 € 180	€ 367 € 160 € 1.308 € 68 € 180	€ 688 € 312 € 1.144 € 951 € 180	€ 868 € 465 € 765 € 591 € 180	€ 991 € 392 € 996 € 74 € 180
MAIN LCC OUTPUTS Purchase (incl. installation) Lifetime Running costs (NPV) Life Cycle Costs LCC Simple Payback Period PBB	€ 6.498 € 51.199 € 57.697 reference yrs	€ 7.841 € 37.117 € 44.958 1,9 yrs	€ 8.170 € 34.437 € 42.607 2,0 yrs	€ 8.195 € 32.591 € 40.786 1,8 yrs	€ 8.639 € 31.035 € 39.674 2,1 yrs	€ 8.951 € 28.901 € 37.851 2,2 yrs	€ 17.010 € 22.419 € 39.429 8,9 yrs	€ 22.660 € 16.008 € 38.668 10,1 yrs	€ 23.510 € 22.553 € 46.063 11,8 yrs

Table 2-25. Environmental Impact PER UNIT over lifetime for size category "XL"

DESIGN OPTIONS		1 6 -XL (Xtra Lar	rao)	6 -XL (Xtra Larg	(a)	6 -XL (Xtra Larg	o)	4 6 -XL (Xtra Larg	٥)	5 6 -XL (Xtra Larg	(a)	6 6 -XL (Xtra Larg	o)	7 6 -XL (Xtra Large	o)	8 6 -XL (Xtra Large)		9 6 -XL (Xtra Large	٥)
				0 -AL (Alla Laig	e)	6 -AL (Alla Lary	e)	0 -AL (Alla Laig	e)	6 -AL (Alla Lary	e)	6 -AL (Alla Lary	8)	6 -AL (Alla Large	3)	0 -AL (Alla Large)		6 -AL (Alla Large	e)
ENVIRONMENTAL IMPA	ACT PER U	NIT OVER LIFE																	
MATERIALS		TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE
TOTAL	kg	129,8		129,8		129,8		129,8		129,8		129,8		129,8		129,8		129,8	
of which																			
Disposal	kg	10,4		10,4		10,4		10,4		10,4		10,4		10,4		10,4		10,4	
Recycled	kg	119,4		119,4		119,4		119,4		119,4		119,4		119,4		119,4		119,4	
OTHER RESOURCES																			
Total Energy (GER)	GJ	2829,8	2827,2	2013,2	2010,5	1861,1	1858,4	1738,2	1734,9	1650,2	1646,5	1527,3	1521,6	1495,9	1487,3	991,3	986,8	1173,0	1163,2
of which, electric(in prima	ıry GJ	204,0	203,3	151,4	150,8	151,8	151,2	93,2	92,4	93,3	92,4	82,3	81,1	1133,4	1131,9	703,9	702,9	89,7	87,9
Water (process)	m3	14,0	13,6	10,5	10,1	10,5	10,1	6,7	6,2	6,7	6,2	6,0	5,4	76,2	75,5	47,6	46,9	6,8	5,9
Water (cooling)	m3	542,6	542,2	402,5	402,1	403,5	403,1	247,0	246,5	247,0	246,5	217,2	216,4	3019,5	3018,3	1875,2	1874,4	236,0	234,4
Waste, non-haz./ landfill	kg	9,5	4,7	8,3	3,5	8,3	3,5	6,9	2,1	6,9	2,1	6,2	1,9	32,5	26,1	20,5	16,2	7,3	2,0
Waste, hazardous/ incine	era kg	307,1	235,8	246,2	174,8	246,6	175,3	206,1	107,2	219,8	107,2	227,5	94,1	1509,4	1312,3	934,2	815,0	336,1	101,9
EMISSIONS TO AIR																			
GHG in GWP100	tCO2	175,8	175,6	125,0	124,8	115,3	115,1	108,6	108,4	103,1	102,8	95,5	95,1	72,6	72,0	49,1	48,7	72,9	72,2
AP Acidification	kgSOx	180,9	179,9	130,2	129,2	122,9	121,9	104,9	103,6	100,7	99,3	92,5	90,9	311,0	308,7	196,3	194,8	77,6	74,9
VOC Volatile Organic Cor	mį kg	2,6	2,6	1,8	1,8	1,7	1,7	1,6	1,6	1,5	1,5	1,4	1,4	0,8	0,8	0,6	0,5	1,1	1,0
POP Persist.Organic Poll			1,3	1,7	1,0	1,7	1,0	1,6	0,6	1,8	0,6	2,5	0,5	10,4	7,4	6,1	4,6	4,1	0,6
HMa Heavy Metals	mg Ni	4,4	3,5	3,5	2,6	3,5	2,6	2,7	1,6	2,9	1,6	2,7	1,4	21,2	19,5	13,5	12,1	3,6	1,6
PAHs	mg	0,7	0,5	0,5	0,4	0,5	0,4	0,4	0,3	0,4	0,3	0,3	0,2	2,4	2,3	1,6	1,4	0,4	0,3
PM Particulate Matter	kg	5,1	4,2	4,3	3,2	4,2	3,1	4,0	2,7	4,0	2,7	6,4	2,5	14,6	7,4	7,0	5,0	9,8	2,3
EMISSIONS TO WATER																			
HMw Heavy Metals	g Hg/20	1,9	1,3	1,6	1,0	1,6	1,0	1,3	0,6	1,4	0,6	1,2	0,5	8,2	7,3	5,4	4,5	1,7	0,6
EP Eutrophication	g PO4	18,0	6,3	16,3	4,6	16,3	4,6	17,3	2,8	18,6	2,8	19,4	2,5	57,7	34,8	42,7	21,6	32,9	2,7
ANNUAL SPACE HEAT	ENERGY b	reakdown																	
TOTAL	Is\A/b/a	45005	1000/	22672	1000/	30171	1000/	28283	1000/	2024	1000/	24900	1000/	24600	1000/	44507	100%	40000	1000/
Tset	kWh/a kWh/a	45965 19949	100% 43%	32672 13222	100% 40%	13222	100% 44%	28283 13222	100% 47%	26831 13222	100% 49%	24806 13222	100% 53%	21690 13222	100% 61%	14507 13222	91%	18899 13222	100% 70%
Tmass	kWh/a	335	1%	3394	10%	3394	11%	3763	13%	3763	14%	3763	15%	3763	17%	3763	26%	3763	20%
Tintrans	kWh/a	0	0%	2239	7%	2239	7%	2155	8%	2155	8%	2155	9%	2155	10%	2155	15%	2155	11%
Tfluct (cntrl)	kWh/a	3109	7%	2971	9%	1372	5%	1391	5%	570	2%	160	1%	159	1%	159	1%	159	1%
Tstrat(emit)	kWh/a	2507	5%	2291	7%	2194	7%	2248	8%	2151	8%	1711	7%	1714	8%	1714	12%	1714	9%
Distr. loss	kWh/a	6514	14%	3536	11%	3514	12%	3037	11%	3041	11%	2631	11%	2632	12%	2632	18%	2632	14%
Steady st.	kWh/a	8450	18%	1645	5%	858	3%	-24	0%	-89	0%	-255	-1%	119	1%	95	1%	351	2%
Start/stop	kWh/a	216	0%	126	0%	118	0%	117	0%	103	0%	49	0%	8	0%	6	0%	23	0%
Stby heat	kWh/a	2037	4%	1135	3%	1142	4%	1081	4%	620	2%	234	1%	56	0%	45	0%	168	1%
Electric	kWh/a	2848	6%	2112	6%	2117	7%	1295	5%	1295	5%	1136	5%	1135	5%	1135	8%	1135	6%
Credit solar	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	6423	0%
Credit HP	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	3273	0%	10419	0%	0	0%
Net heating efficiency	%	44%		58%		62%		68%		71%		77%		88%		132%		101%	
gross heat load	kWh/a	23.766		22.387		22.411		22.723		22.723		22.723		22.819		22.819		22.819	
net heat load	kWh/a	20.284		18.856		18.856		19.140		19.140		19.140		19.140		19.140		19.140	
net load per unit floor are		73		52		48		45		43		40		35		23		30	
CH-system efficiency	%	51%		66%		72%		78%		82%		89%		101%		152%		116%	

2.6 Design Options and Impact size category "XXL"

The XXL boiler is a product typically installed as collective boiler in apartment blocks, suited for heating in average 8 existing apartments, or a double number of new apartments.

The following design options have been elaborated for boiler systems in size class XXL.

Explanation Design Options

- 1. Reference (see first column table 2-18)
- 2. Improvement in boiler temperature control system; instead of a fixed BT a **weather controlled boiler temperature** with **auto timer control** is applied.
- Option 2, extended with an improvement of the steady-state efficiency from 80/80 to 85/91 and an electronic optimiser.
- 4. Option 3, with an improvement of the steady-state efficiency from **85/91 tot 89/97** and a **reduced CPU power consumption to 28/30 watts.**
- 5. Option 4, extended with an improvement of the radiator valves **from 2K to 1K TRV's** and a **reduction of the steady-state heat losses** from 1 **to 0,5 %.**
- 6. Option 5, extended with an improved **turndown ratio of 20%**, a further reduced power consumption of the CPU to 14/16 watts and **motorized radiator valves** with a PID loop.
- Option 6, extended with an improved turndown ratio of 10%, improvement of the steady-state efficiency to 96/97% through a tertiary heat exchanger and CPU controlled motorized radiator valves.
- 8. Option 7, however with steady-state efficiency of **89/97%** and improved with an **electric 7 kW collective water-to-water heat pump** with a nominal COP of **3,8** (at 10/50 C), CH fraction served is 100%).
- 9. Option 7, extended with **40 m² of the vacutube-type solar collector** (tank position indoors) with a CH-fraction served of 100%.

Figure 2-26.
Design options, lifecycle costs and annual energy consumption category "XXL"

The average annual primary energy consumption for the BaseCase "XXL" sized boilers amounts to 93.407 kWh (net heating efficiency is 45%), with a total lifecycle costs of €108.111,-

The LLCC-option clearly is **Design Option 8**, that combines a state-of-the-art condensing boiler with a collective electric water-to-water heat pump and achieves a net heating efficiency of 101%. However, the initial investments needed are almost a factor 3 higher than the basecase option and since the investments and related profits (lower energy bill) are not always in the same hands, some kind of political and financial support is appropriate to facilitate the achievement of this **LLCC-level of 101**%.

With this LLCC-level the annual primary energy consumption is reduced from 93.407 (basecase) to 39.079 kWh, a reduction of 57%! The lifecycle costs are reduced from €108.111,- to € 65.623,- (reduction of 39%!).

The net heating efficiency of this Design Option 8 can be further improved by increasing the nominal load of the heat pump. If for instance a heat pump of 20 kW is used, the net heating efficiency rises up to 135% and lifecycle costs increase to \leqslant 73.738,-. This can be seen as **BAT level for the collective boiler**.

Design Options nr. 9 combines a state-of-the-art condensing boiler with 40 m² vacutube solar collectors (5 m² for each apartment), resulting in net heating efficiencies of around 98% with lifecycle costs of around \in 79.600,-. Considerably lower than the current basecase lifecycle costs but still around \in 14.000,- more than the LLCC level.

The ultimate BAT level is best represented with a system that combined individual local state-of-the-art condensing boilers with a collective water-to-water heat pump. Net heating efficiencies can then be increased to levels above 140 % (see also BAT-options for XXS to S)

The impact of the Design Options are summarized in the tables on the next four pages:

Table 2-27: Input Design Options in EcoBoiler Integrated Model for size category "XXL"

Table 2-28: Prices & Installation costs PER UNIT for Design Options size category "XXL"

Table 2-29: Life Cycle Costs and Annual Expenditure PER UNIT for size category "XXL"

Table 2-30: Environmental Impact PER UNIT over lifetime for size category "XXL"

Table 2-27. Input Design Options in EcoBoiler Integrated Model for size category "XXL"

DESIGN OPTIONS	1 BaseCase	2	3	4	5	6	7	8	9
INPUTS CH CH-power class	7 -XXL (XX Large)								
	7 -exist. building (8 ap)								
boiler characteristics									
power input in kW*	115 kW								
turndown ratio	33%	33%	33%	33%	33%	20%	10%	10%	10%
standby heat loss (% of Pnom)	1,0%	1,0%	1,0%	1,0%	0,5%	0,5%	0,5%	0,5%	0,5%
steady st. efficiency %	5 -80/80/80/80	5 -80/80/80/80	3 -85/85/91/91	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	9 -ideal 96/96/97/97	1 -89/89/97/97	9 -ideal 96/96/97/97
fuel (dewpoint)	1-gas								
air-fuel mix control	2 -pneumatic	3 -ionisation	2 -pneumatic	3 -ionisation					
circ. pump power	7 -200W								
fan power	6 -P=90W								
CPU power sb/on	8 -P=56/60W	8 -P=56/60W	8 -P=56/60W	7 -P=28/30W	7 -P=28/30W	5 -P=14/16W	5 -P=14/16W	5 -P=14/16W	5 -P=14/16W
controls power sb/on	3 -P=0/18W								
comb. air intake	1 -room sealed								
boiler mass (empty), kg	221 kg	221 kg	221 kg	221 kg	221 kg	221 kg	221 kg	221 kg	221 kg
water content in kg	20,0 kg	20,0 kg	20,0 kg	20,0 kg	20,0 kg	20,0 kg	20,0 kg	20,0 kg	20,0 kg
envelope volume in m3	1.00 m3	1,00 m3	1,00 m3	1.00 m3	1.00 m3	1,00 m3	1,00 m3	1,00 m3	1,00 m3
noise level in dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A
controllers									
auto-timer control	no	yes							
valve control	2 -RTV 2K	2 -RTV 2K	2 -RTV 2K	2 -RTV 2K	3 -RTV 1K	4 -Motor + PID-loop	5 -Motor + CPU	5 -Motor + CPU	5 -Motor + CPU
boiler temp control	4 -fixed BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT
•	no	no	yes						
autoset weather control	N/A	N/A	no	N/A	N/A	N/A	no	no	no
solar (for combi only)									
collector type	N/A	1 -glazed	3 -vacutube						
collector surface m2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	40,0
tank position	N/A	1 -indoors							
CH-fraction served	0%	100%	0%	0%	0%	0%	0%		100%
El. back-up heater CH?	no								
heat pump (HP)									
Reference type	1 -EI. brine/ water 0/5	3 -EI. air/ water 7/50	3 -El. air/ water 7/50					2 -EI. water/ water 10/50	
Power nominal in kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	7,0 kW	0,0 kW
COP nominal 0/50	0,00	0,00	0,00	2,50	0,00	3,50	3,70		3,70
Ratio CH : DHW	100%	80%	80%	80%	80%	80%	80%	80%	80%
CH-fraction served El. back-up heater CH?	100% no	0% no	100% no	100% no	100% no	50% no	100% no	100% no	0% no
Zii Basik ap Heater erri				0		0			
MAIN ENERGY OUTPUTS				2.101	2201	220/	o.	1010	2201
Net heating efficiency	45%	51%	57%	61%	66%	69%	74%	101%	98%
Primary energy consumption	93407 kWh/a 89492 kWh/a	76361 kWh/a 73292 kWh/a	69143 kWh/a 65698 kWh/a	65041 kWh/a 61924 kWh/a	60141 kWh/a 57024 kWh/a	56981 kWh/a 54148 kWh/a	53228 kWh/a 50590 kWh/a	39079 kWh/a 22558 kWh/a	40148 kWh/a 37359 kWh/a
-of which fuel (primary kWh GCV)-of which electricity (primary kWh)	3.915 kWh/a	3.069 kWh/a	3.445 kWh/a	3.116 kWh/a	3.116 kWh/a	2.833 kWh/a	2.638 kWh/a	16.522 kWh/a	2.788 kWh/a
MAIN LCC OUTPUTS Durchase (incl. installation)	6.0.474	6.0.254	€ 11.294	£ 11 20E	£ 44 C22	£ 44 070	6 42 000	6 2F 420	£ 25 940
Purchase (incl. installation) Lifetime Running costs (NPV)	€ 9.171 € 98.940	€ 9.351 € 81.377	€ 11.294 € 73.807	€ 11.285 € 69.603	€ 11.633 € 64.511	€ 11.979 € 61.279	€ 12.960 € 57.413	€ 25.439 € 40.185	€ 35.810 € 43.791
Life Cycle Costs LCC	€ 98.940	€ 81.377	€ 73.807	€ 89.888	€ 64.511	€ 61.279	€ 57.413 € 70.373	€ 40.185	€ 43.791
Simple Payback Period PBB	reference yrs	0,2 yrs	1,7 yrs	1,4 yrs	1,4 yrs	1,5 yrs	1,8 yrs	6,1 yrs	9,7 yrs
zp.z : ayadan : anad : ab	10.0.0.00 3.0	0,2 j.0	.,. ,.3	.,. ,	.,. ,	.,. ,	1,0 1.0	<u> </u>	•,. ,

Table 2-28. Prices & Installation costs PER UNIT for Design Options size category "XXL"

DESIGN OPTIONS	7 -XXL (XX Large	e)	7 -XXL (XX Large)	3 7 -XXL (XX Large)	4 7 -XXL (XX Large)	5 7 -XXL (XX Large)	6 7 -XXL (XX Large)	7 7 -XXL (XX Large)	7 -XXL (XX Large)	9 7 -XXL (XX Large)
PRODUCT PRICE break down										
OEM Subass. Costs (Task 2, Ch. 5 Heat exchanger group	270		Euro/ system 270	Euro/ system 345	Euro/ system 375	Euro/ system 375	Euro/ system 375	Euro/ system 450	Euro/ system	Euro/ system 450
El. controls group Burner group	78 36		78 36	131 43	141 45	141 45	141 45	141 45	141 45	141 45
Fuel controls group	55		55	66	55	55	70	125	94	125
CH-return group	100		100	150	150	150	150	150	150	150
CH-supply group	16		16	19	16	16	16	16	16	16
Fan group Casing	75 90		75 90	105 90	88 90	100 120	100 120	100 120	100 120	100 120
Casing Condensate collect	13		13	66	55	55	55	55	55	55
Hot water group	21		21	21	21	21	21	21	21	21
Packaging etc.	30		30	30	30	30	30	30	30	30
Extra oil-fired (*0,11)	658		658	895	894	929	943	1.052	962	1.052
Subtotal OEM		1.440	1.440	1.960	1.958	2.036	2.065	2.303	2.108	2.303
Labour		432	432	588	587	611	619	691	632	691
Overhead total MSP		1.008 2.881	1.008 2.881	1.372 3.921	1.370 3.916	1.425 4.072	1.445 4.130	1.612 4.607	1.476 4.216	1.612 4.607
Ex wholesale		3.745	3.745	5.097	5.090	5.294	5.368	5.989	5.481	5.989
Ex installer excl. VAT		4.466	4.466	6.077	6.069	6.312	6.401	7.141	6.535	7.141
BOILER consumer street price in	ncl. VAT	5.314	5.314	7.232	7.222	7.511	7.617	8.497	7.776	8.497
CONTROLLERS incl. VAT		0	100	125	125	125	365	465	465	465
INSTALLATION (Labour, materials,		3.857	3.937	3.937	3.937	3.997	3.997	3.997	3.997	3.997
subtotal Boiler (all in)		9.171	9.351	11.294	11.285	11.633	11.979	12.960	12.239	12.960
SOLAR materials incl. VAT		0	0	0	0	0	0	0	0	16.500
SOLAR installation incl. VAT		0	0	0	0	0	0	0	0	6.350
HEAT PUMP materials incl. VAT		0	0	0	0	0	0	0	8.000	0
HEAT PUMP installation incl. VAT		0	0	0	0	0	0	0	5.200	0
TOTAL PURCHASE		9.171	9.351	11.294	11.285	11.633	11.979	12.960	25.439	35.810
Country Rprice corrected		9.171	9.351	11.294	11.285	11.633	11.979	12.960	25.439	35.810

Table 2-29. Life Cycle Costs and Annual Expenditure PER UNIT for size category "XXL"

DESIGN OPTIONS	1 7 -XXL (XX Large)	7 -XXL (XX Large)	3 7 -XXL (XX Large)	4 7 -XXL (XX Large)	5 7 -XXL (XX Large)	6 7 -XXL (XX Large)	7 7 -XXL (XX Large)	8 7 -XXL (XX Large)	9 7 -XXL (XX Large)
LCC break down									
Product Price	€ 5.314	€ 5.414	€ 7.357	€ 7.347	€ 7.636	€ 7.982	€ 8.962	€ 16.241	€ 25.462
Installation	€ 3.857	€ 3.937	€ 3.937	€ 3.937	€ 3.997	€ 3.997	€ 3.997	€ 9.197	€ 10.347
Fuel energy (gas, oil)	€ 93.010	€ 76.173	€ 68.281	€ 64.359	€ 59,266	€ 56.276	€ 52.579	€ 23.444	€ 38.828
Electricity	€ 3.357	€ 2.632	€ 2.954	€ 2.672	€ 2.672	€ 2.430	€ 2.262	€ 14.168	€ 2.391
Repair & Maintenance	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573	€ 2.573
	0 2.0.0	0 2.0.0	0 2.0.0	0 2.010	G 2.01 G	<u> </u>	0 2.0.0	<u> </u>	0.2.0.0
TOTAL LCC	€ 108.111	€ 90.729	€ 85.101	€ 80.888	€ 76.144	€ 73.258	€ 70.373	€ 65.623	€ 79.601
									·
Annual expenditure									
·									
Product Price	€ 313	€ 318	€ 433	€ 432	€ 449	€ 470	€ 527	€ 955	€ 1.498
Installation	€ 227	€ 232	€ 232	€ 232	€ 235	€ 235	€ 235	€ 541	€ 609
Fuel energy (gas, oil)	€ 4.778	€ 3.906	€ 3.537	€ 3.327	€ 3.077	€ 2.915	€ 2.723	€ 1.999	€ 2.054
Electricity	€ 235	€ 184	€ 207	€ 187	€ 187	€ 170	€ 158	€ 991	€ 167
Repair & Maintenance	€ 180	€ 180	€ 180	€ 180	€ 180	€ 180	€ 180	€ 180	€ 180
TOTAL expenditure/a	€ 5.733	€ 4.821	€ 4.588	€ 4.358	€ 4.128	€ 3.970	€ 3.824	€ 4.667	€ 4.508
MAIN LOS CUERUES									
MAIN LCC OUTPUTS Purchase (incl. installation)	€ 9.171	€ 9.351	€ 11.294	€ 11.285	€ 11.633	€ 11.979	€ 12.960	€ 25.439	€ 35.810
Purchase (incl. installation) Lifetime Running costs (NPV)	€ 98.940	€ 9.351	€ 73.807	€ 11.285	€ 64.511	€ 11.979	€ 12.960	€ 25.439	€ 43.791
Life Cycle Costs LCC	€ 98.940	€ 81.377	€ 85.101	€ 80.888	€ 76.144	€ 73.258	€ 57.413	€ 65.623	€ 43.791
Simple Payback Period PBB	reference yrs	0,2 yrs	1,7 yrs	1,4 yrs	1,4 yrs	1,5 yrs	1,8 yrs	6,1 yrs	9,7 yrs

Table 2-30. Environmental Impact PER UNIT over lifetime for size category "XXL"

DESIGN OPTIONS	1	1 7 -XXL (XX La	rge)	7 -XXL (XX Larg	e)	7 -XXL (XX Large)	4 7 -XXL (XX Larg	e)	5 7 -XXL (XX Larg	ge)	6 7 -XXL (XX Larg	e)	7 7 -XXL (XX Large	e)	7 -XXL (XX Large	e)	9 7 -XXL (XX Larg	le)
ENVIRONMENTAL IMPAG	CT PER UI	NIT OVER LIFE																	
MATERIALS		TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE
TOTAL	kg	221,2		221,2		221,2		221,2		221,2		221,2		221,2		221,2		221,2	
of which Disposal	kg	17,0		17,0		17,0		17,0		17,0		17,0		17,0		17,0		17,0	
Recycled	kg	204,1		204,1		204,1		204,1		204,1		204,1		204,1		204,1		204,1	
OTHER RESOURCES																			
Total Energy (GER)	GJ	5683,4	5680,7	4645,3	4642,6	4213,8	4211,1	3963,3	3959,9	3667,9	3664,2	3476,1	3470,4	3250,3	3241,7	2545,8	2541,3	2463,8	2454,0
of which, electric(in primar	y GJ	280,2	279,5	219,8	219,1	246,6	246,0	223,3	222,5	223,3	222,5	203,4	202,3	189,9	188,3	1180,6	1179,7	200,9	199,1
Water (process)	m3	19,1	18,6	15,1	14,6	16,9	16,4	15,4	14,8	15,4	14,8	14,1	13,5	13,3	12,6	79,4	78,6	14,2	13,3
Water (cooling)	m3	745,9	745,5	584,7	584,3		655,9	593,8	593,4	593,8	593,4	540,3	539,5	503,4	502,3	3146,6	3145,8	532,5	530,9
Waste, non-haz./ landfill	kg	11,3	6,4	9,9	5,0	10,5	5,7	9,9	5,1	9,9	5,1	8,9	4,7	10,8	4,3	31,5	27,2	9,9	4,6
Waste, hazardous/ inciner	akg	395,4	324,1	325,4	254,1	356,5	285,2	356,9	258,0	370,6	258,0	368,0	234,6	415,4	218,4	1486,9	1367,8	465,0	230,8
EMISSIONS TO AIR																			
GHG in GWP100	tCO2	343,9	343,7	281,3	281,1	254,3	254,1	239,4	239,1	221,2	221,0	209,9	209,4	196,3	195,7	135,4	135,1	147,8	147,1
AP Acidification	kgSOx	288,0	286,9	233,5	232,5	222,2	221,2	207,3	206,0	195,7	194,3	183,7	182,2	172,3	170,0	359,5	358,0	143,7	141,0
VOC Volatile Organic Com		4,8	4,8	4,0	3,9	3,6	3,6	3,4	3,4	3,1	3,1	3,0	2,9	2,8	2,7	1,7	1,6	2,1	2,0
	٠ .		1,8	2,2	1,4	2,3	1,6	2,5	1,5	2,6	1,5	3,3	1,3	4,2	1,2	9,2	7,7	4,8	1,3
HMa Heavy Metals PAHs	mg Ni	5,7 0,9	4,8 0,7	4,6 0,7	3,8 0,6	5,1 0,8	4,3 0,6	5,0 0,7	3,9 0,6	5,1 0.7	3,9 0,6	4,7 0,6	3,5 0,5	5,0 0,6	3,3 0,5	21,6 2,6	20,3	5,5 0,7	3,5 0,5
PM Particulate Matter	mg kg	7,0	6,1	6,1	5,1	6,0	4,9	5,9	4,6	5,8	4,4	8,1	4,2	11,2	4,0	10,3	8,3	11,1	3,5
EMISSIONS TO WATER																			
HMw Heavy Metals	g Hg/20	2,4	1,8	2,0	1.4	2,2	1,6	2,2	1,4	2,3	1,4	2,0	1,3	2,1	1,2	8,5	7,6	2,4	1,3
EP Eutrophication	g PO4	20,3	8,6	18,4	6,7	19,3	7,6	21,3	6,8	22,6	6,8	23,1	6,2	28,7	5,8	57,4	36,3	36,3	6,1
ANNUAL SPACE HEAT E	NERGY b	<u>reakdown</u>																	
TOTAL	kWh/a	93407	100%	76361	100%	69143	100%	65041	100%	60141	100%	56981	100%	53228	100%	39079	100%	40148	100%
Tset	kWh/a	41924	45%	30392	40%	30392	44%	30392	47%	30392	51%	30392	53%	30392	57%	30392	78%	30392	76%
Tmass	kWh/a	271	0%	6362	8%	7041	10%	7041	11%	7041	12%	7041	12%	7041	13%	7041	18%	7041	18% 5%
Tintrans Tfluot (optrl)	kWh/a kWh/a	0 5262	0% 6%	1984 5082	3% 7%	1990 5129	3% 7%	1990 5138	3% 8%	1990 2517	3% 4%	1990 928	3% 2%	1990 282	4% 1%	1990 282	5% 1%	1990 282	5% 1%
Tfluct (cntrl) Tstrat(emit)	kWh/a	3888	4%	3758	5%	3790	5%	3790	6%	3668	4% 6%	3502	2% 6%	202 3116	6%	3108	8%	3116	8%
Distr. loss	kWh/a	14289	15%	7280	10%	6885	10%	6895	11%	6806	11%	6498	11%	5694	11%	5680	15%	5694	14%
Steady st.	kWh/a	17584	19%	14714	19%	6765	10%	2914	4%	2275	4%	1843	3%	1025	2%	822	2%	749	2%
Start/stop	kWh/a	604	1%	374	0%	385	1%	390	1%	332	1%	267	0%	111	0%	71	0%	80	0%
Stby heat	kWh/a	5669	6%	3346	4%	3321	5%	3375	5%	2002	3%	1686	3%	938	2%	405	1%	684	2%
Electric	kWh/a	3915	4%	3069	4%	3445	5%	3116	5%	3116	5%	2833	5%	2638	5%	2638	7%	2638	7%
Credit solar	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	12520	0%
Credit HP	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	13350	0%	0	0%
Net heating efficiency	%	45%		51%		57%		61%		66%		69%		74%		101%		98%	
gross heat load	kWh/a	48.638		45.129		45.953		46.045		46.045		46.045		46.229		46.045		46.229	
net heat load	kWh/a	42.195		38.738		39.423		39.423		39.423		39.423		39.423		39.423		39.423	
net load per unit floor area		175		143		130		122		113		107		100		73		75	
CH system efficiency	%	52%		58%		66%		70%		75%		80%		85%		116%		113%	

47

2.7 Design Options and Impact size category "3XL & 4XL"

During the last expert meeting, the commission indicated its interest in also the very large gas appliances, i.e. with limited production series. To accommodate this wish we have defined size-classes 3XL and 4XL. Typically this would be heating systems with – for a 3XL boiler - a net heat load of around 100.000 kWh/a and a Pnom somewhere between 150 and 350 kW for instance for apartment buildings (16 - 24 existing apt.) or buildings that combine shops - and offices. The 4XL boiler typically is a boiler with a nominal capacity above 350 kW, serving an average net heat load of over 300.000 kWh per annum (high-rise buildings with 60 apts., large office buildings, hospitals, shopping malls (in cascade configurations)).

A first Indication

Although this Preparatory Study mainly focuses on boilers with a heat output below a 100 kW, VHK did a preliminary assessment on the design options for these larger size-categories, mainly because the related energy consumption is substantial. Resulting figures must therefore be interpreted as indicative and preliminary.

The design options that have been elaborated for boiler systems in size class 3XL and 4XL are similar to the ones described in the previous paragraph that deals with the XXL/size.

Explanation Design Options

- 1. Reference (see first column table 2-32 and 2-37))
- 2. Improvement in boiler temperature control system; instead of a fixed BT a **weather controlled boiler temperature** with **auto timer control** is applied.
- 3. Option 2, extended with an improvement of the steady-state efficiency from **80/80 to 85/91** and an **electronic optimiser**.
- 4. Option 3, with an improvement of the steady-state efficiency from **85/91 tot 89/97.**
- Option 4, extended with an improvement of the radiator valves from 2K to 1K TRV's and a reduction of the steady-state heat losses from 1 to 0,5 %.
- 6. Option 5, extended with an improved **turndown ratio of 20%** and **motorized radiator valves with a PID loop**.
- 7. Option 6, extended with an improved turndown ratio of 10%, improvement of the steady-state efficiency to 96/97 % through a tertiary heat exchanger, CPU controlled motorized radiator valves and a reduction of the CPU power consumption
- 8. For 3XL: Option 7, extended with an **electric 25 kW collective water-to-water heat pump** with a nominal COP of **4,1** (at 10/50 C), CH fraction served is 100%).
 - For 4XL: Option 7, extended with an **electric 70 kW collective water-to water heat pump** with a nominal COP of **4,3** (at 10/50 C), CH fraction served is 100%).
- 9. For 3XL: Option 7, extended with **120 m² of the vacutube-type solar collector** (6 m² per apartment, tank position indoors) with a CH-fraction served of 100%.
 - For 4XL: Option 7, extended with **400 m² of the vacutube-type solar collector** (6,6 m² per apartment, tank position indoors) with a CH-fraction served of 100%.

2.7.1 Results size-class 3XL

Figure 2-31.

Design options, lifecycle costs and annual energy consumption category "3XL"

The average annual primary energy consumption for the BaseCase "3XL" sized boilers amounts to 246.159 kWh (net heating efficiency is 43%), with a total lifecycle costs of €272.770,-

The LLCC-option clearly is **Design Option 8**, that combines a state-of-the-art condensing boiler with a collective electric water-to-water heat pump and achieves a net heating efficiency of **98%**. With this **LLCC-level** the annual primary energy consumption is reduced from 246.159 (basecase) to 101.118 kWh, a reduction of 59%! The lifecycle costs are reduced from 246.770, to 164.8271, (reduction of 160%1).

The net heating efficiency of this Design Option 8 can be further improved by increasing the nominal load of the heat pump. If for instance a heat pump of 54 kW is used, the net heating efficiency rises up to 115% and lifecycle costs increase to € 190.187,-. This can be seen as **BAT level for the collective boiler**.

Design Options nr. 9 combines a state-of-the-art condensing boiler with 120 m² vacutube solar collectors (6 m² for each apartment), resulting in net heating efficiencies of around 97% with lifecycle costs of around € 199.739,-. Considerably lower than the current basecase lifecycle costs but still around €35.000,- more than the LLCC level.

The ultimate BAT level is best represented with a system that combined individual local state-of-the-art condensing boilers with a collective water-to-water heat pump. Net heating efficiencies can then be increased to levels above 140 % (see also BAT-options for XXS to S)

The impact of the Design Options are summarized in the tables on the next four pages:

Table 2-32: Input Design Options in EcoBoiler Integrated Model for size category "3XL"

Table 2-33: Prices & Installation costs PER UNIT for Design Options size category "3XL"

Table 2-34: Life Cycle Costs and Annual Expenditure PER UNIT for size category "3XL"

Table 2-35: Environmental Impact PER UNIT over lifetime for size category "3XL"

Table 2-32. Input Design Options in EcoBoiler Integrated Model for size category "3XL"

DESIGN OPTIONS	1	2	3	4	5	6	7	8	9
INPUTS CH	BaseCase								
CH-power class	8 -3XL	8 -3XL	8 -3XL	8 -3XL	8 -3XL				
	9 -high-rise avg. (20 ap)	9 -high-rise avg. (20 ap)	9 -high-rise avg. (20 ap)	9 -high-rise avg. (20 ap)	9 -high-rise avg. (20 ap)				
boiler characteristics									
power input in kW*	250 kW	250 kW	250 kW	250 kW	250 kW				
turndown ratio	33%	33%	33%	33%	33%	20%	10%	10%	10%
standby heat loss (% of Pnom)	1,0%	1,0%	1,0%	1,0%	0,5%	0,5%	0,5%	0,5%	0,5%
steady st. efficiency %	5 -80/80/80/80	5 -80/80/80/80	3 -85/85/91/91	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	9 -Ideal 96/96/97/97	9 -ideal 96/96/97/97	9 -Ideal 96/96/97/97
fuel (dewpoint)	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas
air-fuel mix control	2 -pneumatic	2 -pneumatic	3 -ionisation	3 -ionisation	3 -ionisation				
circ. pump power	8 -600W	8 -600W	8 -600W	8 -600W	8 -600W				
fan power	7 -P=150W	7 -P=150W	7 -P=150W	7 -P=150W	7 -P=150W				
CPU power sb/on	9 -P=72/80W	9 -P=72/80W	8 -P=56/60W	8 -P=56/60W	8 -P=56/60W				
controls power sb/on	4 -P=0/36W	4 -P=0/36W	4 -P=0/36W	4 -P=0/36W	4 -P=0/36W				
comb. air intake	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed				
boiler mass (empty), kg	650 kg	650 kg	650 kg	650 kg	650 kg	650 kg	650 kg	650 kg	650 kg
water content in kg	60,0 kg	60,0 kg	60,0 kg	60,0 kg	60,0 kg	60,0 kg	60,0 kg	60,0 kg	60,0 kg
envelope volume in m3	2,00 m3	2,00 m3	2,00 m3	2,00 m3	2,00 m3	2,00 m3	2,00 m3	2,00 m3	2,00 m3
noise level in dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A
Holse level in ub-A	30 db-A	30 db-A	30 db-A	30 db-A	30 UD-A	30 db-A	30 UD-A	30 db-A	30 db-A
controllers									
auto-timer control	no	yes	yes	yes	yes	yes	yes	yes	yes
valve control	2 -RTV 2K	2 -RTV 2K	2 -RTV 2K	2 -RTV 2K	3 -RTV 1K	4 -Motor + PID-loop	5 -Motor + CPU	5 -Motor + CPU	5 -Motor + CPU
boiler temp control	4 -fixed BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT
	no	no	yes	yes	yes	yes	yes	yes	yes
autoset weather control	N/A	N/A	no	N/A	N/A	N/A	no	no	no
solar (for combi only)									
collector type	N/A	1 -glazed	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube	3 -vacutube
collector surface m2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	120,0
tank position	N/A	1 -indoors	1 -indoors	1 -indoors	1 -indoors	1 -indoors	1 -indoors	1 -indoors	1 -indoors
CH-fraction served	0%	100%	0%	0%	0%	U%	0%	0%	100%
El. back-up heater CH?	no	no	no	no	no	no	no	no	no
heat pump (HP)									
Reference type	1 -El. brine/ water 0/50	3 -El. air/ water 7/5	3 -El. air/ water 7/50	3 -El. air/ water 7/50	3 -El. air/ water 7/50				2 -EI. water/ water 10/50
Power nominal in kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	25,0 kW	0,0 kW
COP nominal 0/50	0,00	0,00	0,00	2,50	0,00	3,50	3,70	4,10	3,80
Ratio CH : DHW	100%	80%	80%	80%	80%	80%	80%	80%	80%
CH-fraction served	100%	0%	100%	100%	100%	50%	100%	100%	0%
El. back-up heater CH?	no	no	no	no	no	no	no	no	no
MAIN ENERGY OUTPUTS									
Net heating efficiency	43%	51%	57%	61%	65%	69%	73%	98%	97%
Primary energy consumption	246159 kWh/a	191530 kWh/a	173312 kWh/a	164060 kWh/a	152105 kWh/a	144722 kWh/a	136977 kWh/a	101118 kWh/a	102729 kWh/a
-of which fuel (primary kWh GCV)	236126 kWh/a	183971 kWh/a	164671 kWh/a	155367 kWh/a	143412 kWh/a	136560 kWh/a	129678 kWh/a	43166 kWh/a	95029 kWh/a
-of which electricity (primary kWh)	10.033 kWh/a	7.560 kWh/a	8.641 kWh/a	8.693 kWh/a	8.693 kWh/a	8.162 kWh/a	7.299 kWh/a	57.952 kWh/a	7.700 kWh/a
MAIN LCC OUTPUTS									
Purchase (incl. installation)	€ 15.730	€ 15.729	€ 18.278	€ 19.571	€ 20.148	€ 20.600	€ 22.460	€ 64.460	€ 89.310
Lifetime Running costs (NPV)	€ 257.040	€ 201.465	€ 182.612	€ 173.121	€ 160.869	€ 153.391	€ 145.597	€ 100.367	€ 110.429
Life Cycle Costs LCC	€ 272.770	€ 217.194	€ 200.890	€ 192.692	€ 181.016	€ 173.991	€ 168.057	€ 164.827	€ 199.739
Simple Payback Period PBB	reference yrs	0,0 yrs	0,7 yrs	0,9 yrs	1,0 yrs	1,0 yrs	1,2 yrs	7,4 yrs	10,4 yrs
,					, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,		, , ,	

Table 2-33. Prices & Installation costs PER UNIT for Design Options size category "3XL"

DESIGN OPTIONS	1 8 -3XL	2 8 -3XL	3 8 -3XL	4 8 -3XL	5 8 -3XL	6 8 -3XL	7 8 -3XL	8 -3XL	9 8 -3XL
PRODUCT PRICE break down									
OEM Subass. Costs (Task 2, Ch. 5) Heat exchanger group El. controls group Burner group Fuel controls group CH-return group CH-supply group Fan group Casing Condensate collect Hot water group Packaging etc. Extra oil-fired (*0,11) Subtotal OEM	540 156 72 109 200 31 150 180 40 21 60 1.310	Euro/ system 540 156 72 109 200 31 150 180 25 21 60 1.298	Euro/ system 690 219 72 109 250 31 175 180 109 21 60 1.610	Euro/ system 750 281 90 109 300 31 175 180 109 21 60 1.770	Euro/ system 750 281 90 109 300 31 200 240 109 21 60 1.841	750 281 90 141 300 31 200 240 109 21 60 1.868	Euro/ system 900 281 90 250 300 31 200 240 109 21 60 2.085	Euro/ system 900 281 90 250 300 31 200 240 109 21 60 2.085	Euro/ system 900 281 90 250 300 31 200 240 109 21 60 2.085
Labour Overhead total MSP	2.87 86 2.00 5.74	1 853 9 1.990	1.058 2.469 7.053	3.6/7 1.163 2.714 7.754	4.033 1.210 2.823 8.067	1.227	1.370 3.198 9.136	1.370 3.198 9.136	1.370 3.198
Ex wholesale Ex installer excl. VAT BOILER consumer street price in	7.46 8.89 ncl. VAT 10.58	8.811	9.169 10.932 13.010	10.080 12.019 14.302	10.487 12.504 14.879	12.682	11.877 14.161 16.852	11.877 14.161 16.852	11.877 14.161 16.852
CONTROLLERS incl. VAT INSTALLATION (Labour, materials, subtotal Boiler (all in)	VAT) 5.14 15.73		125 5.143 18.278	125 5.143 19.571	125 5.143 20.148	5.143	465 5.143 22.460	465 5.143 22.460	5.143
SOLAR materials incl. VAT SOLAR installation incl. VAT		0 0	0	0	0	0	0	0	48.500 18.350
HEAT PUMP materials incl. VAT HEAT PUMP installation incl. VAT		0 0	0	0	0	0	0	26.000 16.000	
TOTAL PURCHASE	15.73	15.729	18.278	19.571	20.148	20.600	22.460	64.460	89.310

Table 2-34. Life Cycle Costs and Annual Expenditure PER UNIT for size category "3XL"

DESIGN OPTIONS	1 8 -3XL	2 8 -3XL	3 8 -3XL	4 8 -3XL	5 8 -3XL	6 8 -3XL	7 8 -3XL	8 -3XL	9 8 -3XL
LCC break down									
200 Broak down									
Product Price	€ 10.587	€ 10.585	€ 13.135	€ 14.427	€ 15.004	€ 15.457	€ 17.317	€ 43.317	€ 65.817
Installation	€ 5.143	€ 5.143	€ 5.143	€ 5.143	€ 5.143	€ 5.143	€ 5.143	€ 21.143	€ 23.493
Fuel energy (gas, oil)	€ 242.005	€ 188.551	€ 168.771	€ 159.235	€ 146.983	€ 139.961	€ 132.907	€ 44.241	€ 97.395
Electricity	€ 8.603	€ 6.482	€ 7.410	€ 7.455	€ 7.455	€ 6.999	€ 6.259	€ 49.695	€ 6.603
Repair & Maintenance	€ 6.431	€ 6.431	€ 6.431	€ 6.431	€ 6.431	€ 6.431	€ 6.431	€ 6.431	€ 6.431
TOTAL 1 00									
TOTAL LCC	€ 272.770	€ 217.194	€ 200.890	€ 192.692	€ 181.016	€ 173.991	€ 168.057	€ 164.827	€ 199.739
							_		
Annual expenditure									
Product Price	6.000	6.000	6.770	6.040	6.000	6.000	64.040	C 0 F 10	6.0.070
Installation	€ 623 € 303	€ 623 € 303	€ 773 € 303	€ 849 € 303	€ 883 € 303	€ 909 € 303	€ 1.019 € 303	€ 2.548 € 1.244	€ 3.872 € 1.382
Fuel energy (gas, oil)	€ 303	€ 9.422	€ 8.525	€ 8.070	€ 7.482	€ 7.119	€ 6.738	€ 1.244	€ 1.362
Electricity	€ 602	€ 454	€ 518	€ 522	€ 522	€ 490	€ 438	€ 3.477	€ 3.033
Repair & Maintenance	€ 450	€ 450	€ 450	€ 450	€ 450	€ 450	€ 450	€ 450	€ 450
TOTAL expenditure/a	€ 14.086	€ 11.250	€ 10.569	€ 10.193	€ 9.639	€ 9.271	€ 8.947	€ 12.693	€ 11.219
MAIN LCC OUTPUTS	4.5.50		6 40 0=0			1	1	1	1
Purchase (incl. installation)	€ 15.730	€ 15.729	€ 18.278	€ 19.571	€ 20.148	€ 20.600	€ 22.460	€ 64.460	€ 89.310
Lifetime Running costs (NPV) Life Cycle Costs LCC	€ 257.040 € 272.770	€ 201.465 € 217.194	€ 182.612 € 200.890	€ 173.121 € 192.692	€ 160.869 € 181.016	€ 153.391 € 173.991	€ 145.597 € 168.057	€ 100.367 € 164.827	€ 110.429 € 199.739
Simple Payback Period PBB	€ 272.770 reference yrs	€ 217.194 0,0 yrs	€ 200.890 0,7 yrs	€ 192.692 0,9 yrs	€ 181.016 1,0 yrs	€ 173.991 1,0 yrs	€ 168.057 1,2 yrs	₹ 164.827 7,4 yrs	€ 199.739 10,4 yrs
Simple Fayback Pellod PBB	reference yis	0,0 yrs	U,7 yrs	0,9 yrs	1,0 yrs	1,0 yrs	1,2 yis	7,4 yrs	10,4 yrs

Table 2-35. Environmental Impact PER UNIT over lifetime for size category "3XL"

DESIGN OPTIONS	8	-3XL		8 -3XL		8 -3XL		8 -3XL		5 8 -3XL		6 8 -3XL		7 8 -3XL		8 8 -3XL		9 8 -3XL	
ENVIRONMENTAL IMP	PACT PER UN	IIT OVER LIFE																	
MATERIALS		TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	US
TOTAL	kg	649.3	USE	649,3	USE	649.3	USE	649,3	USE	649,3	USE	649,3	USE	649,3	USE	649,3	USE	649,3	US
of which	g	0.0,0		0.0,0		0.0,0		0.0,0		0.0,0		0.0,0		0.0,0		0.0,0		0.0,0	
Disposal	kg	17,0		17,0		17,0		17,0		17,0		17,0		17,0		49,6		49,6	
Recycled	kg	204,1		204,1		204,1		204,1		204,1		204,1		204,1		599,7		599,7	
OTHER RESOURCES																			
Total Energy (GER)	GJ	14822,5	14819,8	11530,8	11528,1	10455,3	10452,6	9904,0	9900,6	9190,3	9186,6	8745,1	8739,4	8275,3	8266,8	6739,7	6716,2	6297,6	6225
of which, electric(in prim	nary GJ	717,0	716,3	540,4	539,8	617,6	617,0	621,4	620,7	621,5	620,7	583,9	582,8	522,7	521,2	4141,9	4137,8	562,4	549
Water (process)	m3	48,2	47,8	36,4	36,0	41,6	41,1	41,9	41,4	41,9	41,4	39,4	38,9	35,5	34,7	277,6	275,9	42,1	36
Water (cooling)	m3	1910,7	1910,3	1439,7	1439,4	1645,7	1645,3	1655,6	1655,2	1655,7	1655,2	1554,8	1554,0	1391,0	1389,8	11037,4	11034,1	1476,5	1466
Waste, non-haz./ landfill		21,3	16,5	17,3	12,4	19,0	14,2	19,1	14,3	19,1	14,3	17,7	13,4	18,5	12,0	113,5	95,3	68,3	12
Waste, hazardous/ incin	nera kg	901,9	830,6	697,1	625,8	786,7	715,4	818,5	719,7	832,3	719,7	809,1	675,7	801,3	604,3	5374,5	4797,5	2412,4	637
EMISSIONS TO AIR																			
GHG in GWP100	tCO2	858,1	857,9	667,8	667,6	603,6	603,4	571,3	571,0	529,4	529,2	504,0	503,5	477,4	476,7	333,5	331,7	362,2	356
AP Acidification	kgSOx	588,2	587,2	453,8	452,7	440,7	439,7	426,1	424,8	405,8	404,4	384,5	383,0	357,7	355,4	1145,3	1139,1	322,6	303
VOC Volatile Organic Co	om _l kg	11,4	11,4	8,8	8,8	8,0	8,0	7,5	7,5	7,0	7,0	6,7	6,6	6,3	6,3	3,7	3,6	5,1	4
POP Persist.Organic Po	oll. mg i-Te	5,4	4,7	4,3	3,5	4,8	4,0	5,1	4,1	5,2	4,1	5,8	3,8	6,4	3,4	35,8	27,1	30,4	3
HMa Heavy Metals	mg Ni	13,2	12,3	10,1	9,3	11,5	10,6	11,8	10,7	11,9	10,7	11,3	10,0	10,7	9,0	75,9	71,0	24,5	
PAHs	mg	2,0	1,8	1,5	1,4	1,7	1,5	1,7	1,5	1,7	1,5	1,5	1,4	1,4	1,3	8,5	8,3	2,0	1
PM Particulate Matter	kg	12,7	11,7	10,2	9,2	10,2	9,1	10,1	8,8	9,8	8,5	11,9	8,1	14,7	7,5	42,8	24,9	61,2	6
EMISSIONS TO WATER	R																		
HMw Heavy Metals	g Hg/2(5,2	4,6	4,1	3,5	4,6	4,0	4,7	4,0		4,0	4,4	3,8	4,3	3,4	29,1	26,7	10,9	3
EP Eutrophication	g PO4	33,7	22,0	28,3	16,6	30,7	19,0	33,5	19,1	34,9	19,1	34,8	17,9	39,0	16,0	190,7	127,2	211,6	16
ANNUAL SPACE HEAT	T ENERGY br	<u>eakdown</u>																	
TOTAL	kWh/a	246159	100%	191530	100%	173312	100%	164060	100%	152105	100%	144722	100%	136977	100%	101118	100%	102729	100
Tset	kWh/a	105759	43%	74731	39%	74731	43%	74731	46%	74731	49%	74731	52%	74731	55%	74731	74%	74731	73
Tmass	kWh/a	979	0%	16178	8%	17782	10%	17782	11%	17782	12%	17782	12%	17782	13%	17782	18%	17782	17
Tintrans	kWh/a	0	0%	6778	4%	6814	4%	6814	4%	6814	4%	6814	5%	6814	5%	6814	7%	6814	7
Tfluct (cntrl)	kWh/a	13968	6%	13221	7%	13483	8%	13649	8%	6596	4%	2426	2%	770	1%	770	1%	770	1
Tstrat(emit)	kWh/a	10188	4%	10061	5%	10081	6%	10083	6%	9975	7%	9927	7%	9883	7%	9883	10%	9883	10
Distr. loss	kWh/a	43148	18%	21618	11%	19943	12%	19977	12%	19754	13%	19000	13%	17647	13%	17647	17%	17647	17
Steady st.	kWh/a	46393	19%	33266	17%	13684	8%	4022	2%	2738	2%	1827	1%	26	0%	878	1%	1896	2
Start/stop	kWh/a	1512	1%	865	0%	891	1%	906	1%	801	1%	631	0%	264	0%	85	0%	186	0
Stby heat	kWh/a	14179	6%	7253	4%	7262	4%	7403	5%	4222	3%	3423	2%	1762	1%	575	1%	1248	1
Electric	kWh/a	10033	4%	7560	4%	8641	5%	8693	5%	8693	6%	8162	6%	7299	5%	7299	7%	7299	7
Credit solar	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	35526	0
Credit HP	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	35344	0%	0	0
Net heating efficiency	%	43%		51%		57%		61%		65%		69%		73%		98%		97%	
	kWh/a	124.389		115.107		117.072		117.272		117.272		117.272		117.672		117.672		117.672	
gross heat load	KVVII/a																		
gross heat load net heat load	kWh/a	106.738		97.687		99.327		99.327		99.327		99.327		99.327		99.327		99.327	
•	kWh/a			97.687 113 59%		99.327 102 66%		99.327 97 70%		99.327 90 75%		99.327 85 79%		99.327 81 83%		99.327 60 113%		99.327 61 111%	

2.7.2 Results size-class 4XL

Figure 2-36.

Design options, lifecycle costs and annual energy consumption category "4XL"

The average annual primary energy consumption for the BaseCase "4XL" sized boilers amounts to 739.894 kWh (net heating efficiency is 43%), with a total lifecycle costs of €904.288,-

Also in this category size, the LLCC-option clearly is **Design Option 8**, that combines a state-of-the-art condensing boiler with a collective electric water-to-water heat pump and achieves a net heating efficiency of **99%**. With this **LLCC-level** the annual primary energy consumption is reduced from 739.894 (basecase) to 303.343 kWh, a reduction of 59%! The lifecycle costs are reduced from \notin 904.288,- to \notin 487.237,- (reduction of 46%!).

The net heating efficiency of this Design Option 8 can be further improved by increasing the nominal load of the heat pump. The net heating efficiency can in this way be increased to values up to 115%. This can be seen as **BAT level for the collective boiler**.

Design Options nr. 9 combines a state-of-the-art condensing boiler with 400 m² vacutube solar collectors (6,6 m² for each apartment), resulting in net heating efficiencies of around 100% with lifecycle costs of around € 631.043-. Considerably lower than the current basecase lifecycle costs but still around €143.000,- more than the LLCC level.

The ultimate BAT level is best represented with a system that combined individual local state-of-the-art condensing boilers with a collective water-to-water heat pump. Net heating efficiencies can then be increased to levels above 140 % (see also BAT-options for XXS to S)

The impact of the Design Options are summarized in the tables on the next four pages:

Table 2-37: Input Design Options in EcoBoiler Integrated Model for size category "4XL"

Table 2-38: Prices & Installation costs PER UNIT for Design Options size category "4XL"

Table 2-39: Life Cycle Costs and Annual Expenditure PER UNIT for size category "4XL"

Table 2-40: Environmental Impact PER UNIT over lifetime for size category "4XL"

Table 2-37. Input Design Options in EcoBoiler Integrated Model for size category "4XL"

DESIGN OPTIONS	1 BaseCase	2	3	4	5	6	7	8	9
INPUTS CH									
CH-power class	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL
	10 -block avg. (60 ap)	10 -block avg. (60 ap)	10 -block avg. (60 ap)	10 -block avg. (60 ap)	10 -block avg. (60 ap)	10 -block avg. (60 ap)	10 -block avg. (60 ap)	10 -block avg. (60 ap)	10 -block avg. (60 ap)
poiler characteristics	750 1444	750 1347	750 144	750 1/0/	750 144	750 144/	750 1/0/	750 144/	750 144/
power input in kW*	750 kW	750 kW	750 kW	750 kW	750 kW	750 kW	750 kW	750 kW	750 kW
urndown ratio	33%	33%	33%	33%	33%	20%	10%	10%	10%
standby heat loss (% of Pnom)	1,0%	1,0%	1,0%	1,0%	0,5%	0,5%	0,5%	0,5%	0,5%
steady st. efficiency %	5 -80/80/80/80	5 -80/80/80/80	3 -85/85/91/91	1 -89/89/97/97	1 -89/89/97/97	1 -89/89/97/97	9 -ideal 96/96/97/97	9 -ideal 96/96/97/97	9 -ideal 96/96/97/97
uel (dewpoint)	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas	1-gas
air-fuel mix control	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	2 -pneumatic	3 -ionisation	3 -ionisation	3 -ionisation
circ. pump power	9 -1800W	9 -1800W	9 -1800W	9 -1800W	9 -1800W	9 -1800W	9 -1800W	9 -1800W	9 -1800W
an power	8 -P=400W	8 -P=400W	8 -P=400W	8 -P=400W	8 -P=400W	8 -P=400W	8 -P=400W	8 -P=400W	8 -P=400W
CPÚ power sb/on	10 -P=220/250W	10 -P=220/250W	10 -P=220/250W	10 -P=220/250W	10 -P=220/250W	10 -P=220/250W	10 -P=220/250W	10 -P=220/250W	10 -P=220/250W
controls power sb/on	5 -P=0/72W	5 -P=0/72W	5 -P=0/72W	5 -P=0/72W	5 -P=0/72W	5 -P=0/72W	5 -P=0/72W	5 -P=0/72W	5 -P=0/72W
comb. air intaka	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed	1 -room sealed
comb. air intake	2000 kg	2000 kg	2000 kg	2000 kg	2000 kg	2000 kg	2000 kg	2000 kg	2000 kg
oiler mass (empty), kg	2000 kg 200,0 kg	2000 kg 200,0 kg	2000 kg 200,0 kg	2000 kg 200,0 kg	2000 kg 200,0 kg	2000 kg 200,0 kg	200,0 kg	2000 kg 200,0 kg	2000 kg 200,0 kg
vater content in kg	6,00 m3	6,00 m3	6,00 m3	6,00 m3	6,00 m3	6,00 m3	6,00 m3	6,00 m3	6,00 m3
nvelope volume in m3	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A	50 dB-A
oise level in dB-A	50 GB-A	50 UB-A	50 QB-A	50 UB-A	50 UB-A	50 GB-A	50 UB-A	50 UB-A	50 UB-A
ontrollers									
uto-timer control	no		yes	yes	yes	yes	yes		
alve control	2 -RTV 2K		2 -RTV 2K	2 -RTV 2K	3 -RTV 1K	4 -Motor + PID-loop	5 -Motor + CPU	5 -Motor + CPU	5 -Motor + CPU
oiler temp control	4 -fixed BT		5 -weather ctrl. BT		5 -weather ctrl. BT	5 -weather ctrl. BT	5 -weather ctrl. BT		
	no		yes		yes	yes	yes		
autoset weather control	N/A	N/A	no	N/A	N/A	N/A	no	no	no
solar (for combi only)									
collector type	N/A				3 -vacutube	3 -vacutube	3 -vacutube		
collector surface m2	0,0	- / -			0,0	0,0	0,0		
tank position	N/A		1 -indoors		1 -indoors	1 -indoors	1 -indoors	1 -indoors	
CH-fraction served	0%		0%		0%	0%	0%		
El. back-up heater CH?	no	no	no	no	no	no	no	no	no
heat pump (HP)									
Reference type	1 -EI. brine/ water 0/50								2 -El. water/ water 10/5
Power nominal in kW	0,0 kW		0,0 kW	70,0 kW	0,0 kW				
COP nominal 0/50	0,00		0,00		0,00	3,50	3,70		
Ratio CH : DHW	100%		80%	80%	80%	80%	80%	80%	
CH-fraction served	100%		100%	100%	100%	50%	100%	100%	
El. back-up heater CH?	no	no	no	no	no	no	no	no	no
MAIN ENERGY OUTPUTS									
Net heating efficiency	43%	51%	57%	61%	65%	69%	73%	99%	100%
Primary energy consumption	739894 kWh/a	576868 kWh/a	521267 kWh/a	493450 kWh/a	457388 kWh/a	435154 kWh/a	412351 kWh/a	303343 kWh/a	298747 kWh/a
of which fuel (primary kWh GCV)	710017 kWh/a	554297 kWh/a	495496 kWh/a	467518 kWh/a	431456 kWh/a	410879 kWh/a	390157 kWh/a	144248 kWh/a	275270 kWh/a
of which electricity (primary kWh)	29.877 kWh/a	22.571 kWh/a	25.771 kWh/a	25.932 kWh/a	25.932 kWh/a	24.276 kWh/a	22.194 kWh/a	159.096 kWh/a	23.477 kWh/a
MAIN LCC OUTPUTS									
Purchase (incl. installation)	€ 40.477	€ 40.908	€ 48.506	€ 52.384	€ 54.115	€ 54.991	€ 60.373	€ 174.373	€ 281.223
Lifetime Running costs (NPV)	€ 863.811	€ 40.300	€ 609.375	€ 576.788	€ 534.609	€ 509.120	€ 483.097	€ 312.864	€ 349.819
Life Cycle Costs LCC	€ 904.288	€ 716.315	€ 657.880	€ 629.172	€ 588.724	€ 564.111	€ 463.097	€ 487.237	€ 631.043
Simple Payback Period PBB	reference yrs	0.0 vrs	0.7 yrs	0.9 vrs	0.9 yrs	0.8 yrs	1.1 vrs	5.6 Vrs	9.7 vrs
omple i ayback i chou i bb	reference yra	0,0 yis	0,1 yis	0,3 yis	0,9 yis	0,0 yis	1,1 yis	3,0 yis	3,1 yis

DESIGN OPTIONS	9 -4XL		9 -4XL		9 -4XL		9 -4XL		9 -4XL		9 -4XL		7 9 -4XL		9 -4XL		9 9 -4XL	
PRODUCT PRICE break down																		
OEM Subass. Costs (Task 2, Ch. 8) Heat exchanger group El. controls group Burner group Fuel controls group CH-return group CH-supply group Fan group Casing Condensate collect Hot water group	1.620 469 216 328 600 94 450 540 120		1.620 563 216 328 600 94 450 540 75 21		2.070 750 216 328 750 94 525 540 328 21		2.250 938 270 328 900 94 525 540 328 21		2.250 938 270 328 900 94 600 720 328 21		2.250 938 270 422 900 94 600 720 328 21		2.700 938 270 750 900 94 600 720 328 21		2.700 938 270 750 900 94 600 720 328 21		2.700 938 270 750 900 94 600 720 328 21	
Packaging etc. Extra oil-fired (*0,11)	180 3.895		180 3.936		180 4.873		180 5.353		180 5.568		180 5.646		180 6.300		180 6.300		180 6.300	
Subtotal OEM Labour Overhead total MSP Ex wholesale Ex installer excl. VAT BOILER consumer street price in	ncl. VAT	8.533 2.560 5.973 17.065 22.185 26.451 31.477		8.622 2.587 6.036 17.244 22.418 26.729 31.807		10.675 3.202 7.472 21.350 27.755 33.092 39.380		11.726 3.518 8.208 23.453 30.489 36.352 43.259		12.196 3.659 8.537 24.391 31.709 37.806 44.989		12.368 3.710 8.658 24.736 32.157 38.341 45.626		13.800 4.140 9.660 27.600 35.880 42.779 50.908		13.800 4.140 9.660 27.600 35.880 42.779 50.908		13.800 4.140 9.660 27.600 35.880 42.779 50.908
CONTROLLERS incl. VAT INSTALLATION (Labour, materials, subtotal Boiler (all in)	V <u>AT)</u>	9.001 40.477	-	100 9.001 40.908		125 9.001 48.506		125 9.001 52.384		125 9.001 54.115		365 9.001 54.991		465 9.001 60.373		465 9.001 60.373		465 9.001 60.373
SOLAR materials incl. VAT SOLAR installation incl. VAT HEAT PUMP materials incl. VAT		0		0		0		0		0		0		0		0 0 71.000		160.500 60.350
HEAT PUMP materials incl. VAI HEAT PUMP installation incl. VAT TOTAL PURCHASE		40.477		40.908		48.506		52.384		54.115		54.991		60.373		43.000 474.373		0 0 281.223

Table 2-39. Life Cycle Costs and Annual Expenditure PER UNIT for size category "4XL"

DESIGN OPTIONS	1	2	3	4	5	6	7	8	9
	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL	9 -4XL
LCC break down									
Product Price	€ 31.477	€ 31.907	€ 39.505	€ 43.384	€ 45.114	€ 45.991	€ 51.373	€ 122.373	€ 211.873
Installation	€ 9.001	€ 9.001	€ 9.001	€ 9.001	€ 9.001	€ 9.001	€ 9.001	€ 52.001	€ 69.351
Fuel energy (gas, oil)	€ 830.473	€ 648.335	€ 579.558	€ 546.834	€ 504.654	€ 480.586	€ 456.348	€ 168.720	€ 321.970
Electricity (gas, on)	€ 25.620	€ 19.355	€ 22.099	€ 346.634	€ 22.237	€ 400.300	€ 430.340	€ 136.426	€ 20.132
Repair & Maintenance	€ 7.718	€ 7.718	€ 7.718	€ 7.718	€ 7.718	€ 7.718	€ 7.718	€ 7.718	€ 7.718
Repair & Maintenance	E 7.710	€7.710	€1.110	€1.110	€ 7.710	€ 1.110	€7.710	67.710	€ 7.710
TOTAL LCC	€ 904.288	€ 716.315	€ 657.880	€ 629.172	€ 588.724	€ 564.111	€ 543.471	€ 487.237	€ 631.043
TOTAL LOC	€ 304.200	e 7 10.313	€ 057.000	€ 023.172	€ 300.724	€ 304.111	€ 545.471	€ 407.237	€ 031.043
		_							
Annual expenditure									
Annual expenditure									
Product Price	€ 1.852	€ 1.877	€ 2.324	€ 2.552	€ 2.654	€ 2.705	€ 3.022	€ 7.198	€ 12.463
Installation	€ 529	€ 529	€ 529	€ 529	€ 529	€ 529	€ 5.022	€ 3.059	€ 4.079
Fuel energy (gas, oil)	€ 41.537	€ 32.385	€ 29.264	€ 27.702	€ 25.677	€ 24.429	€ 23.149	€ 17.029	€ 16.771
Electricity	€ 1.793	€ 1.354	€ 1.546	€ 1.556	€ 1.556	€ 1.457	€ 1.332	€ 9.546	€ 1.409
Repair & Maintenance	€ 540	€ 540	€ 540	€ 540	€ 540	€ 540	€ 540	€ 540	€ 540
TOTAL expenditure/a	€ 46.251	€ 36.686	€ 34.203	€ 32.879	€ 30.957	€ 29.661	€ 28.572	€ 37.372	€ 35.263
MAIN LCC OUTPUTS									
Purchase (incl. installation)	€ 40.477	€ 40.908	€ 48.506	€ 52.384	€ 54.115	€ 54.991	€ 60.373	€ 174.373	€ 281.223
Lifetime Running costs (NPV)	€ 863.811	€ 675.407	€ 609.375	€ 576.788	€ 534.609	€ 509.120	€ 483.097	€ 312.864	€ 349.819
Life Cycle Costs LCC	€ 904.288	€ 716.315	€ 657.880	€ 629.172	€ 588.724	€ 564.111	€ 543.471	€ 487.237	€ 631.043
Simple Payback Period PBB	reference yrs	0,0 yrs	0,7 yrs	0,9 yrs	0,9 yrs	0,8 yrs	1,1 yrs	5,6 yrs	9,7 yrs

Table 2-40. Environmental Impact PER UNIT over lifetime for size category "4XL"

DESIGN OPTIONS		1 9 -4XL		9 -4XL		9 -4XL		9 -4XL		9 -4XL		9 -4XL		7 9 -4XL		9 -4XL		9 9 -4XL	
ENVIRONMENTAL IMPAC	T PER UN	IT OVER LIFE																	
MATERIALS		TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE
TOTAL	kg	1997,9	OOL	1997,9	OOL	1997,9	OOL	1997,9	OOL	1997,9	OOL	1997,9	OOL	1997,9	OOL	1997,9	OOL	1997,9	OOL
of which	le m	47.0		47.0		47.0		47.0		47.0		47.0		47.0		450.0		450.0	
Disposal Recycled	kg kg	17,0 204,1		17,0 204,1		17,0 204,1		17,0 204,1		17,0 204,1		17,0 204,1		17,0 204,1		152,6 1845,3		152,6 1845,3	
•		,						,		,		,		,		,			
OTHER RESOURCES Total Energy (GER)	GJ	46108,2	46105,5	35942,6	35939,9	32529.5	32526,8	30809,0	30805,6	28576,0	28572,3	27185,3	27179,6	25756,3	25747,7	20316,5	20293,1	18795,9	18724,2
of which, electric(in primary)		2133,8	2133,2	1612,2	1611,6	1840,7	1840,1	1852,3	1851,5	1852,3	1851,5		1733,3	1586,2	1584,7	11363,5	11359,4	1688,9	1676,2
Water (process)	m3	142,7	142,2	107,9	107,4	123,1	122,7	124,0	123,4	124,0	123,4	116,1	115,6	106,4	105,6	759,1	757,3	117,1	111,7
Water (cooling)	m3	5689,0	5688,6	4297,9	4297,5	4907,2	4906,8	4937,8	4937,4	4937,9	4937,4	4622,8	4622,1	4227,0	4225,8	30295,1	30291,8	4480,3	4470,0
Waste, non-haz./ landfill	kg	54,0	49,2	42,0	37,1	47,2	42,4	47,5	42,7	47,5	42,7	44,2	39,9	43,0	36,5	279,9	261,8	94,3	38,6
Waste, hazardous/ incineral	e kg	2544,7	2473,3	1939,8	1868,5	2204,8	2133,5	2245,6	2146,7	2259,4	2146,7	2143,0	2009,6	2034,4	1837,3	13747,6	13170,6	3718,5	1943,5
EMISSIONS TO AIR																			
GHG in GWP100	tCO2	3090,4	3090,2	2410,3	2410,1	2172,1	2171,9	2054,5	2054,3	1902,3	1902,1	1810,5	1810,0	1716,7	1716,1	1106,4	1104,6	1240,6	1235,1
AP Acidification	kgSOx	3509,9	3508,9	2726,5	2725,4	2540,2	2539,2	2426,8	2425,5	2276,6	2275,2		2159,0	2036,6	2034,3	3532,5	3526,3	1598,0	1579,0
VOC Volatile Organic Comp		48,7	48,6	38,0	38,0	34,1	34,1	32,2	32,2	29,8	29,8		28,3	26,9	26,9	14,2	14,0	19,6	19,2
POP Persist.Organic Poll.	mg i-Te		14,0	11,3	10,6	12,8	12,1	13,1	12,1	13,3	12,1	13,3	11,4	13,4	10,4	83,2	74,5	37,8	11,0
HMa Heavy Metals	mg Ni	37,5	36,6	28,5	27,7	32,4	31,6	32,9	31,8	33,0	31,8	7.7	29,8	28,9	27,2	199,8 22.9	194,9	43,8	28,8
PAHs PM Particulate Matter	mg kg	5,5 63,7	5,4 62,7	4,3 49,9	4,1 48,9	4,6 47,1	4,5 46,0	4,6 45,3	4,5 44,1	4,6 42,8	4,4 41,5		4,1 39,4	3,9 44,3	3,8 37,1	22,9 91,4	22,7 73,5	4,6 84,1	3,8 29,5
EMISSIONS TO WATER HMw Heavy Metals	g Hg/20	14,3	13,8	11,0	10,4	12,5	11,9	12,7	11,9	12,8	11,9	11,9	11,2	11,1	10,2	75,6	73,2	18,2	10,8
EP Eutrophication	g PO4	77,3	65,6	61,3	49,5		56,6	71.4	56,9	72,7	56,9		53,3	71,7	48,7	412.7	349,3	246.3	51,5
•		,-		,				, i		,		,		,		,	,	-,-	
ANNUAL SPACE HEAT EN	IERGV hr	eakdown																	
ANNUAL SPACE HEAT EN	ILKG1 bi	eakuowii																	
TOTAL	kWh/a	739894	100%	576868	100%	521267	100%	493450	100%	457388	100%	435154	100%	412351	100%	303343	100%	298747	100%
Tset	kWh/a	317277	43%	224192	39%	224192	43%	224192	45%	224192	49%	224192	52%	224192	54%	224192	74%	224192	75%
Tmass Tintrans	kWh/a kWh/a	2938 0	0% 0%	49766 20762	9% 4%	54135 20716	10% 4%	54135 20716	11% 4%	54135 20716	12% 5%	54135 20716	12% 5%	54135 20716	13% 5%	54135 20716	18% 7%	54135 20716	18% 7%
Tfluct (cntrl)	kWh/a	41905	6%	39586	7%	40392	8%	40908	8%	19765	4%	7271	2%	2308	1%	2308	1%	2308	1%
Tstrat(emit)	kWh/a	30565	4%	30198	5%	30253	6%	30258	6%	29935	7%	29793	7%	29661	7%	29661	10%	29661	10%
Distr. loss	kWh/a	129442	17%	64853	11%	59826	11%	59929	12%	59259	13%		13%	52928	13%	52928	17%	52928	18%
Steady st.	kWh/a	139556	19%	100290	17%	41208	8%	12130	2%	8265	2%	5524	1%	101	0%	2932	1%	5519	2%
Start/stop	kWh/a	4543	1%	2556	0%	2633	1%	2679	1%	2408	1%	1897	0%	792	0%	285	0%	540	0%
Stby heat	kWh/a	43791	6%	22093	4%	22141	4%	22571	5%	12782	3%	10359	2%	5325	1%	1929	1%	3649	1%
Electric	kWh/a	29877	4%	22571	4%	25771	5%	25932	5%	25932	6%	24276	6%	22194	5%	22193	7%	22194	7%
Credit solar	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	117095	0%
Credit HP	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	107935	0%	0	0%
Net heating efficiency	%	43%		51%		57%		61%		65%		69%		73%		99%		100%	
gross heat load	kWh/a	371.657		345.457		350.726		351.326		351.326		351.326		352.526		352.526		352.526	
net heat load	kWh/a	320.215		294.720		299.043		299.043		299.043		299.043		299.043		299.043		299.043	
net load per unit floor area	kWh/m	146		114		103		97		90		86		81		60		59	
CH system efficiency	%	50%		59%		66%		70%		75%		79%		83%		113%		115%	

2.7.3 **Summary**

The results of the design option calculations for the 3XL and 4Xl size categories clearly show, than an LLCC - level of around 96-98% is economically and technically a viable proposition. However, the initial investments related to this LLCC-level are substantial higher than the basecase option and since the investments and related profits (lower energy bill) are not always in the same hands, some kind of political and financial support is appropriate to facilitate the achievement of this **LLCC-level of 96-98%**.

Another technical options with which this net efficiency level of 96-98% can be achieved is the combination of state-of-the-art condensing boilers with vacutube solar collectors, although lifecycle costs are 10 to 20% higher and simple pay-back period somewhat longer (8 to 9 years instead of 6 to 7 years).

Another option still – although not covered by this Ecodesign Survey – is the CHP option. CHP has the potential of considerable CO2 savings provided the right type and size is used in combination with state-of-the-art condensing boilers. An indicative calculation is made to get a first impression on the savings that can be achieved by applying CHP.

Please note that additional research is needed to fully understand the potential of this option in the light of technical model that is used as basis for the Ecoboiler Integrated Model.

With current CHP technology it is vital that long and steady operating times are achieved, because dynamic losses (start/stop-, high/low- losses) can be considerable. Since no data on this type of dynamic losses are available, the indicative calculation below are related to CHP-systems that only cover a part of the heat demand, in order to facilitate a continuous and steady state operation for a long a period as possible. Furthermore, the heating part of the CHP unit is treated in a similar way as a boiler, meaning that the heat heating efficiency is calculated in the same way (with system losses).

Table 2-41. Indicative and preliminary calculation of energy savings for a specific configuration of a collective boiler combined with CHP.

combined with CHP.				
Reference situation		4XL		
Net heat load	[kWh]	320.214		
Reference Pnom boiler	[kW]	750		
Heating season	[h]	6500	Energy input separate generation	
Reference net heating efficiency	[%]	73%	Energy input for heating	438.649
Reference electric efficiency	[%]	40%	Energy input for electricity production	278.688
			Total	717.337
Collective CHP				
Pnom	[kW]	70		
Steady-state heating efficiency	[%]	55%	Energy input and output CHP	
Steady state electric efficiency	[%]	35%	Neat Heat Production CHP	111.475
Net heating efficiency	[%]	35%	Electricity Production CHP	111.475
Operating time (% of heating season)	[%]	70%	Total Energy input CHP	318.500
Collective Boiler				
Pnom	[kW]	680	Energy input and output collective boiler	
Steady state efficienct boiler	[%]	96%	Neat Heat Production CHP	208.739
Net heating efficiency boiler	[%]	73%	Energy input collective boiler	285.944
			Total input collective boiler & CHP	604.444
			Savings on separate generation	16%
			Net system efficiency *	99%

^{*} Net system efficiency = (net heat load + energy input reference electricity production) / total input collective boiler & CHP)

3 SUMMARY TABLES

3.1 Size characteristics

Based on the market-share of the various size classes in the sales of 2005 and assuming an similar market-share is applicable for the stock, the following estimate is given for the market share of the various size-classes in the EU25 Stock. Total number of boilers of the stock is set at 105 million (see Task 2 report).

Size-Class	Indicative Range for Pnom	Market share	Nr of units in stock *mln.	Avg. Net heat load kWh/a	Examples of application
					- Apartment new
xxs	< 10 kW	2,3 %	2,4	2.350	- Passive new house
AAG	< 10 KW	2,5 /0	2,4	2.330	- Professional practice (part of house)
					- Small shop- / office-space new
					- Average dwelling new
xs	10-15 kW	7.6 %	0 0	3.700	- Terraced or low-E house new
λS	10-15 KVV	7,0 %	8,0	3.700	- Large apartment new
					- Medium shop / office space new
					- Apartment existing
•	40.00.134/	45.0.0/	40.0	4.050	- House new / fully renovated
S	16-20 kW	15,2 %	16,0	4.850	- Penthouse new
					- Small shop / office space existing
					- Average existing
					- House partially renovated
М	21-25 kW	51,5 %	54,1	7.480	- Large apartment existing
					- Medium shop / office space existing
					- House existing
					- Small low-rise apt. Building (4 apts) existing
L	26-32 kW	9,9 %	10,4	10.515	- Two family house new
					- Small office/ shop building new
					- New avg. apt. building (8 apts.)
					- Small low-rise apt. building (4 apts.)
XL	33-70 kW	9,9 %	10,4	20.000	- Villa, large house, 2 family house existing
					- Medium shop/office building new
					- Existing avg. apt. building (8 apts.)
					- High-rise apt. building (12 – 20 apts) new
XXL	70-150 kW	2,6 %	2,7	42.195	- Medium shop/office building existing
					- Large low-rise shop/office building new
					- High-rise apt. building (16-24 apt.) existing
3XL	150-350 kW	0,6 %	0,6	106.738	- Large low-rise shop/office building existing
					- Medium high-rise office building new
					- In cascade: larger high rise building
					- Block heating 3 high-rise buildings (60 apt
4XL	>350 kW	0,6 %	0,6	320.215	- Large high-rise office building
					- In cascades: Hospital, shopping mall, small
					airport, district heating substations.
		100 %	105		

3.2 Energy & lifecycle costs at Basecase, LLCC and BATlevels

Knowing the number of boilers per size-class in the EU stock, their base-case efficiencies and their net heat loads, we can calculate the share of the various size-classes in the overall energy consumption for space heating.

Table 3-2. Share of energy consumption per size class (in % of total)

Size-Class	Pnom [kW]	Net heat load kWh/a	BaseCase Net heating efficiency	Energy consumption kWh/unit/a	Market share in number of boilers	Nr of units in stock *mln.	Total energy consumption per class [TWh/a]	Share of total energy consumption
xxs	10	2.350	53,1%	4.422	2,3%	2,4	10.679	0,4%
XS	14	3.700	54,0%	6.852	7,6%	8,0	54.678	2,2%
S	19	4.850	51,8%	9.368	15,2%	16,0	149.513	5,9%
M	22	7.480	54,1%	13.827	51,5%	54,1	747.695	29,7%
L	29	10.515	55,1%	19.095	9,9%	10,4	198.493	7,9%
						90,8	1.161.058	46,1%
XL	60	20.284	44,1%	45.965	9,9%	10,4	477.806	19,0%
XXL	115	42.195	45,2%	93.407	2,6%	2,7	255.001	10,1%
3XL	250	106.738	42,8%	249.392	0,6%	0,6	157.117	6,2%
4XL	750	320.215	43,3%	739.894	0,6%	0,6	466.133	18,5%
						14,4	1.356.057	53,9%
					100%	105	2.517.115	100%

^{*1 .} Calculated with Ecoboiler Integrated model version 5a

Based on the design options that are selected for the various size classes and calculated with the Ecoboiler Integrated Model version 5a, the following LLCC- and BAT- levels in terms of net heating efficiency are produced (See table 3-3). Please note that NOT all 4600 quadrillion design options were evaluated and that - despite a lot of design options remain un-discussed - the energy savings of the logical and obvious design options that were evaluated, are substantial.

Table 3-3. Net Heating Efficiency for Basecase-, LLCC- and BAT-levels

	Pnom	Net heat load	Net Heating Efficiency	Net Heating Efficiency	Net Heating Efficiency	
Size-Class	[kW]	kWh/a	LEVEL	LLCC-LEVEL	BAT-LEVEL	Explanation BAT
xxs	10	2.350	53%	77%	160 - 170 %	Apartments connected to a collective water/water heat pump
XS	14	3.700	54%	77%	160 - 170 %	Apartments connected to a collective water/water heat pump
S	19	4.850	52%	79%	160 - 170 %	Apartments connected to a collective water/water heat pump
М	22	7.480	54%	78 – 80%	130 - 140 %	House with brine/water heat pump
L	29	10.515	55%	78%	130 - 140 %	House with brine/water heat pump
XL	60	20.000	44%	77%	125 - 135 %	Apartments connected to a collective water/water heat pump
XXL	115	42.195	45%	101%	125 - 135 % *	Apartments connected to a collective water/water heat pump with an increased output
3XL	250	106.738	43%	98%	110 - 120 % *	Apartments connected to a collective water/water heat pump with an increased output
4XL	750	320.215	43%	99%	110 - 120 % *	Apartments connected to a collective water/water heat pump with an increased output

^{*} BAT-levels can be further increased by combining a collective hp with state-of-the-art individual boilers

With the data in the previous tables, the annual energy consumption (and savings) for the LLCC- and BAT- levels can be calculated for each size-category:

Table 3-4. Energy Savings LLCC level versus Basecase level

Size-Class	Net heat load kWh/a	BaseCase Net heating efficiency ¹	Energy consumption kWh/unit/a	LLCC Efficiency level	Energy consumption kWh/unit/a	Savings versus Basecase
XXS	2.350	53,1%	4.422	77%	3052	31%
xs	3.700	54,0%	6.852	77%	4805	30%
S	4.850	51,8%	9.368	79%	6139	34%
M	7.480	54,1%	13.827	78%	9590	31%
L	10.515	55,1%	19.095	78%	13481	29%
XL	20.284	44,1%	45.965	77%	26343	43%
XXL	42.195	45,2%	93.407	101%	41777	55%
3XL	106.738	42,8%	249.392	98%	108916	56%
4XL	320.215	43,3%	739.894	99%	323449	56%

^{*1 .} Calculated with Ecoboiler Integrated model version 5a

Table 3-5. Energy Savings BAT level versus Basecase level

Size-Class	Net heat load kWh/a	BaseCase Net heating efficiency ¹	Energy consumption kWh/unit/a	BAT Efficiency level	Energy consumption kWh/unit/a	Savings versus Basecase
XXS	2.350	53,1%	4.422	165%	1424	68%
xs	3.700	54,0%	6.852	165%	2242	67%
s	4.850	51,8%	9.368	165%	2939	69%
М	7.480	54,1%	13.827	135%	5541	60%
L	10.515	55,1%	19.095	135%	7789	59%
XL	20.284	44,1%	45.965	130%	15603	66%
XXL	42.195	45,2%	93.407	130%	32458	65%
3XL	106.738	42,8%	249.392	115%	92816	63%
4XL	320.215	43,3%	739.894	115%	278448	62%

^{*1 .} Calculated with Ecoboiler Integrated model version 5a

Table 3-6. Lifecycle costs and savings LLCC- and BAT- levels versus Basecase level

Size-Class	BaseCase lifecycle costs	LLCC lifecycle costs	BAT lifecycle costs	LLCC savings	LLCC saving in %	BAT saving	BAT Savings in %
XXS	€ 9.085	€ 8.716	€ 10.943	€ 369	4%	-€ 1.858	-20%
s	€ 14.172	€ 12.313	€ 13.352	€ 1.859	13%	€ 820	6%
М	€ 18.750	€ 15.797	€ 16.859	€ 2.953	16%	€ 1.891	10%
L	€ 24.119	€ 20.259	€ 21.262	€ 3.860	16%	€ 2.857	12%
XL	€ 57.697	€ 37.851	€ 38.668	€ 19.846	34%	€ 19.029	33%
XXL	€ 108.111	€ 65.623	€ 73.738	€ 42.488	39%	€ 34.373	32%
3XL	€ 272.770	€ 164.057	€ 190.187	€ 107.943	40%	€ 81.813	30%
4XL	€ 904.288	€ 487.237	€ 495.964	€ 417.051	46%	€ 408.324	45%

^{*1 .} Calculated with Ecoboiler Integrated model version 5a