

Review study on Vacuum cleaners

Draft final report

Viegand Maagøe A/S

Van Holsteijn en Kemna B.V.

October 2018

The information and views set out in this study are those of the author(s) and do not necessarily reflect the official opinion of the European Commission Prepared by

Study team:

Mette Rames, Annette Gydesen, Baijia Huang, Michelle Peled and Larisa Maya-Drysdale (Viegand Maagøe A/S)

René Kemna and Roy van den Boorn (Van Holsteijn en Kemna B.V.)

Quality assurance:

Annette Gydesen (Viegand Maagøe A/S)

Contract managers:

Viegand Maagøe A/S

Project website: <u>www.ecovacuumcleanerreview.eu</u>

Implements Framework Contract: ENER/C3/2015-619-LOT 2

Specific contract no.: ENER/C3/FV 2017-438/03/FWC 2015-619 LOT2/05/SI2.757436

This study was ordered and paid for by the European Commission, Directorate-General for Energy.

The information and views set out in this study are those of the author(s) and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission's behalf may be held responsible for the use which may be made of the information contained therein.

This report has been prepared by the authors to the best of their ability and knowledge. The authors do not assume liability for any damage, material or immaterial, that may arise from the use of the report or the information contained therein.

© European Union, October 2018. Reproduction is authorised provided the source is acknowledged.

More information on the European Union is available on the internet (<u>http://europa.eu</u>).

I. Preface

This draft final report for the review study of the Ecodesign and Energy Labelling Regulations for vacuum cleaners is the second delivery of the specific contract. As specified in the contract the draft final report concerns all tasks of the MEErP methodology, and is intended to create the basis for discussion at the second stakeholder meeting, including recommendations for revision of the Regulations.

Task 1 outlines the scope of the regulation and of the review study as well as the relevant standards and legislations related to vacuum cleaner energy consumption, durability and resource efficiency.

Task 2 gives an overview of the vacuum cleaner market including sales, stock and base data on consumer costs, as well as an overview of market development trends and production structures.

Task 3 regards the user behaviour, especially looking at robot and cordless vacuum cleaners in order to suggest representative testing and energy consumption calculation at later stages of the study. Furthermore, the end-user relevance of the current test standards is discussed.

Task 4 reviews the technical aspects of vacuum cleaners as products, and outlines the current technology levels in terms of average and best available technologies, on both component and product level. Besides the energy consumption effect, the technologies are also reviewed in terms of resource efficiency.

Task 5 defines the base cases and the environmental and economic impact of each of them. The environmental impact is both the energy consumption in the use phase as well as the material consumption and impact categories in given in the EcoReport tool. The environmental impact is calculated as the product life cycle cost for the end-user for each base case.

Task 6 outlines the design options for improving the environmental of the base cases without causing excessive costs for the end-users. Design options are outlined for both energy and resource efficiency improvements.

Task 7 defines policy options for each base case based on the viable design options and presents the results on the scenario analyses that estimates the environmental and economic impact of each of the policy options.

The specific aspects to review according to article 7 of both Regulations are:

- The review of both regulations in light of technological progress
- The review of verification tolerances to be used by Member State authorities for market surveillance purposes
- whether full size battery operated vacuum cleaners should be included in the scope and
- whether it is feasible to use measurement methods for annual energy consumption, dust pick-up and dust re-emission that are based on a partly loaded rather than an empty receptacle

II. Table of Contents

I.	Pre	face	
II.	Т	able	of Contents
III.	L	ist of	tables
IV.	L	ist of	figures14
V.	Su	mmai	ry18
I.	S	Scope	
II.		Stai	ndardisation and legislation20
III	[.	Mar	ket data22
IV		Use	patterns24
V.	Т	echn	ology overview27
VI		Env	ironmental and economic impacts32
VI	I.	Des	ign options
VI	II.	S	cenarios34
1.	Sco	ope	40
1.	1	Proc	duct scope40
	1.1	.1	Definitions from the regulations40
	1.1	.2	Definitions from preparatory study42
	1.1	.3	Definitions from standards43
	1.1	.4	Description of products44
	1.1	.5	Bagged vs bagless vacuum cleaners49
	1.1	.6	Alignment of definitions49
	1.1	.7	Recommendations53
1.	2	Rev	iew of relevant regulations55
	1.2	2.1	Legislation and agreements at EU level55
	1.2	.2	Voluntary agreements at Member State level61
	1.2	.3	Legislation and agreements at third country level61
1.	3	Rev	iew of relevant standards64
	1.3	1.1	Mandate 54064
	1.3	8.2	Safety standards65

	1.3.3 1.3.4		Material efficiency standards66
			WEEE and RoHS standards66
	1.3	5	Other relevant standards68
	1.3	6	Consumer organizations75
2.	Mar	ket d	data: sales and stock77
2	.1	Prod	duction and trade77
2	.2	Sale	es data80
	2.2	1	Market values
2	.3	Life	span85
2	.4	Sto	ck
2	.5	Ene	rgy and performance
	2.5	1	Energy
	2.5	2	Cleaning performance91
	2.5	3	Dust re-emission
	2.5	4	Sound power94
2	.6	Mar	ket structure and -actors95
	2.6	1	Industry95
	2.6	2	Distribution structure
	2.6	3	Other actors97
2	.7	Con	sumer expenditure base data97
	2.7	1	Interest and inflation rates
	2.7	2	Consumer purchase price
	2.7	.3	Electricity cost
	2.7	4	Repair & maintenance costs100
	2.7	.5	End of life costs102
2	.8	Con	clusions/Recommendations102
3.	Use	rs	
3	.1	Use	pattern of mains-operated cleaners103
	3.1. clea		Formula for calculating annual energy consumption for mains-operated 105

3.2 Use patterns for commercial vacuum cleaners106
3.2.1 Formula for calculating annual energy consumption for commercial cleaners 107
3.3 Use pattern of cordless vacuum cleaners
3.3.1 Formula for calculating annual energy consumption for cordless vacuum cleaners 108
3.4 Use pattern of robot vacuum cleaners
3.4.1 Formula for calculating annual energy consumption for robot vacuum cleaners 110
3.5 General use-determining factors113
3.5.1 Floor types
3.5.2 Vacuum cleaner settings115
3.6 Use of auxiliary products116
3.7 Repair practice118
3.8 Estimated second hand use121
3.9 End of life behaviour121
3.9.1 Recyclability of vacuum cleaners122
3.10 Consumer relevant product testing124
3.10.1 Carpet test
3.10.2 Hard floor test
3.10.3 Specialised nozzles128
3.10.4 Testing with part load129
3.10.5 Commercial vacuum cleaner test137
3.10.6 Cordless and robot vacuum cleaner tests139
3.11 Verification tolerances139
3.12 Barriers and opportunities142
3.12.1 Electricity
4. Technical analysis145
4.1 Components
4.1.1 Motor146
4.1.2 Fan148

	4.1	.3	Receptacle152
	4.1	.4	Filters
	4.1	.5	Hose155
	4.1	.6	Nozzle
	4.1	.7	Batteries
	4.1	.8	Plug and power cord161
4	.2	Mat	erials and resource level161
	4.2	.1	Material consumption in vacuum cleaners161
	4.2	.2	Critical materials and components165
	4.2	.3	Manufacturing and distribution167
	4.2	.4	Recycled content167
	4.2	.5	Use phase
	4.2	.6	End of life169
	4.2	.7	Blue Angel requirements
4	.3	Pro	ducts173
	4.3	.1	Mains-operated domestic vacuum cleaners
	4.3	.2	Commercial vacuum cleaners177
	4.3	.3	Cordless handstick vacuum cleaners179
	4.3	.4	Robot vacuum cleaners
5.	Env	iron	mental and economic impact192
5	5.1	Inp	uts for baseline calculations193
5	5.1	Out	puts from baseline calculations195
	5.1	.1	Mains-operated domestic vacuum cleaners196
	5.1	.2	Commercial vacuum cleaners199
	5.1	.3	Cordless vacuum cleaners200
	5.1	.4	Robot vacuum cleaners
	5.1	.5	EU Totals – Environmental impacts201
5	5.2	Cor	nsumption of critical raw materials and other materials of high importance 204
5	5.3	Life	cycle cost205
6.	Des	ign (options

	6.1	Dor	mestic mains-operated vacuum cleaners (BC1)20	9
	6.1	.1	Option 1: More stringent energy requirements	9
	6.1	.2	Option 2: More realistic performance, indirectly better energy efficiency .21	0
	6.1	.3	Option 3: Recycled content and/or light-weighting21	1
	6.1	.4	Option 4: Increase product life21	5
	6.1	.5	Option 5: Recycling21	8
	6.2	Cor	nmercial mains-operated vacuum cleaners (BC2)21	9
	6.3	Cor	dless vacuum cleaners (BC3)21	9
	6.4	Dor	mestic robot vacuum cleaners22	1
7.	Sce	enario	os22	2
	7.1	Bet	ter Regulation evaluation22	2
	7.1	.1	Description of the current regulations and their objectives22	3
	7.1	.2	Baseline and point of comparison22	4
	7.1	.3	Effectiveness	6
	7.1	.4	Efficiency23	3
	7.1	.5	Relevance23	9
	7.2	Bas	seline scenario - BAU24	2
	7.3	Poli	icy scenarios for energy efficiency and performance24	6
	7.3	.1	Existing performance parameters24	7
	7.3	.2	New performance requirements24	8
	7.3	.3	Energy saving potentials24	9
	7.3	.4	Specific Ecodesign requirements in PO225	3
	7.3	.5	Label rescaling25	5
	7.4	Poli	icy scenarios for resource efficiency25	7
	7.4	.1	Material energy saving potentials26	1
	7.5	Cor	nclusions and recommendations26	4
I.	Anı	nex A	A – Elaboration of standards26	6
	IX.	Dur	rability of the hose and operational lifetime of the motor	7
	X. V	Vatei	r filter vacuum cleaners27	0
	XI.	Full	size battery operated vacuum cleaners27	0

XII	Robot vacuum cleaners2	271
XII	I. Measurement with a partly loaded instead of an empty receptacle2	272
XIV	/. Measurement with market-representative carpet(s) and hard floor(s)2	274
XV.	. Consumer organization tests2	275
II.	Annex B – GfK data coverage2	280
III.	Annex C - Sales and stock data2	281
IV.	Annex D - Calculated collection rate2	283
V. A	Annex E– Test results2	284
VI.	Annex F - Impacts over a lifetime of vacuum cleaners calculated in the EcoRep	ort
Tool	290	

III. List of tables

Table 1: Advantages and disadvantages for bagged and bagless vacuum cleaners49
Table 2: Vacuum cleaner product types from different sources 50
Table 3: Outline of Ecodesign requirements 55
Table 4: Vacuum cleaner energy label classifications since September 2017
Table 5: PRODCOM and HS6 product codes and nomenclature77
Table 6: Eurostat, PRODCOM, Total vacuum cleaners with self-contained motor - codes
27512123+27512125. Trade data relates to extra-EU only78
Table 7: Value of EU production and selected Extra-EU trade data 2011-2017 in million
euros80
Table 8: Market shares of household vacuum cleaners 82
Table 9: Derived vacuum cleaner sales from 1990 to 20302030
Table 10: Vacuum cleaner market values 84
Table 11: Average unit price for vacuum cleaner in EU according to GfK and Prodcom84
Table 12: Average expected lifetimes and assumed variations used in the stock model, in
years
Table 13: Stock of vacuum cleaners in EU 28 from 2005 to 203087
Table 14: APPLIA Database 2015-2016, Model count, average energy, power and sound
power
Table 15: Average power (in W) of mains-operated domestic VCs EU in the year 201691
Table 16: Average power (in W) of mains-operated domestic VCs EU in the year 2018,
after tier 2 Ecodesign91
Table 17: Sound power mains-operated domestic vacuum cleaners EU 2016
Table 18: Unit retail prices in EUR for household vacuum cleaners, in 2016-prices for EU28
Table 19: Electricity prices with 2016 as base year will be used
Table 20: Vacuum cleaner spare part retail prices101
Table 21: Average total labour costs for repair services in euro per hour, in fixed 2016-
prices101
Table 22: Use pattern for mains-operated domestic vacuum cleaners 104
Table 23: Use pattern for commercial vacuum cleaners 107
Table 24: use pattern for cordless vacuum cleaners 108
Table 25: Average annual running hours in different modes for cordless vacuum cleaners
Table 26: use pattern for robot vacuum cleaners 110
Table 27: Average annual running hours in different modes for robot vacuum cleaners

Table 28: Percentage of consumers rating parameters important/very important in a
purchase situation113
Table 29: Faults experienced with upright vacuum cleaners and cylinder vacuum cleaners
Table 30: Re-use, recycling, heat recovery, incineration and landfill rates assumed for the
End of life handling of vacuum cleaners
Table 31: Amount of material send to re-use, recycling, heat recovery, incineration and
landfill for the different types of vacuum cleaners
Table 32: Verification tolerances set out in the regulations and preliminary indication of
expanded uncertainties
Table 33: Global Energy Architecture Performance Index report – best performing countries
Table 34: Filter classes according to EN 1822:2009155
Table 35: Comparison properties of Li-ion battery types (L =Low, M=Moderate, H=high)
Table 36: Cycle life of LI-ion batteries as a function of DoD.
Table 37: Bill-of-materials, Cylinder Vacuum Cleaner (source: JRC-IES 2015)163
Table 38: The assumed material composition in the current study. 164
Table 39: List of critical raw materials 165
Table 40. Base case 1: Domestic mains-operated vacuum cleaners' energy, performance,
price
Table 41. Base Case 1: Domestic mains-operated vacuum cleaners' materials (product life
8 years, package 0.08 m ³)176
Table 42. Nilfisk commercial cylinder vacuum cleaner examples (source: Nilfisk.com, Sept.
2018)
Table 43. Base case 2: Commercial mains-operated vacuum cleaners (BC2)
Table 44. Base Case 2: Commercial mains-operated vacumm clenaers materials (product-
Table 44. Base Case 2: Commercial mains-operated vacumm clenaers materials (product-life 5 years, package 0.1 m ³)
life 5 years, package 0.1 m ³)179
life 5 years, package 0.1 m ³)179 Table 45: Average data for cordless handstick cleaners collected from online retailers for
life 5 years, package 0.1 m ³)179 Table 45: Average data for cordless handstick cleaners collected from online retailers for 27 models from 16 brands
life 5 years, package 0.1 m ³)
life 5 years, package 0.1 m ³)
life 5 years, package 0.1 m ³)
life 5 years, package 0.1 m ³)
life 5 years, package 0.1 m³)179Table 45: Average data for cordless handstick cleaners collected from online retailers for27 models from 16 brands182Table 46. Base case 3: Cordless vacuum cleaners' energy, performance, price182Table 47. Base Case 3: Cordless vacuum cleaners' materials (product-life 6 years, package1820.05 m³)182Table 48: characteristics of 6 robot vacuum cleaner models (source Stiftung Warentest188

Table 51. Base Case 4: Robot vacuum cleaners' Energy and performance
Table 52. Base Case 4: Robot vacuum cleaners materials (product-life 6 years, package
0.05 m ³)191
Table 53: Base case economic and market data for EcoReport, from task 2. All data is for
2016
Table 54: Average annual energy consumption (based on AE values) for each base case in
2016
Table 55: Inputs to calculate the environmental impacts and where they are presented
Table 56: Environmental impacts during the entire lifetime of vacuum cleaners sold in 2016
Table 57: Annual environmental impacts of vacuum cleaners (EU-28 stock)203
Table 58: The amount of cobalt, gold and copper and the derived impacts regarding energy,
emission of CO2-eq and market value in euros per product
Table 59: The amount of cobalt, gold and copper and the derived impacts regarding energy,
emission of CO2-eq and market value in euros for the total stock of vacuum cleaners.205
Table 60: The combined impact and value of gold and copper in all air conditioners (stock)
Table 61: Life cycle costs of the three base cases (VAT included)
Table 62: Annual consumer expenditure in EU28 207
Table 63 . Prices of plastic injection moulding grades
Table 64: Comparison of results of this study to results from the 2013 Impact Assessment
regarding cumulative savings of key parameters
Table 65: Coverage of energy label data for each vacuum cleaner type in scope of the
regulations
Table 66: Percentage of consumers rating parameters important/very important in a
purchase situation (Source: APPLiA 2018 consumer survey)232
Table 67: Development of average AE values for domestic mains-operated and commercial
vacuum cleaners 2020-2030
Table 68: Policy Option 1, 2 and 3: Energy and performance related requirements. Where
no tier is mentioned, the requirement applies from tier 1
Table 69: Energy savings for each base case in 2030 for PO1, PO2 and PO3
Table 70: EU User expenditure for each base case 253
Table 71: Energy consumption of cordless and robot vacuum cleaners in PO2, kWH/year
Table 72: Rescaling of the energy label and assumed distributions 256
Table 73: Suggested label classes for the performance parameters on the energy label

Table 74: Policy Option 4 and 5: resource efficiency requirements 258
Table 75: Material energy savings for each base case in 2030 for PO4 and PO5262
Table 76: EU Material end-user expenditure for each base case
Table 77: CENELEC TC 59X WG 6 sub-working groups 266
Table 78: IEC TC 59 SC 59F Working groups and advisory groups 266
Table 79: Calculated collection rate in EU 2014 283
Table 80: All impact categories for mains-operated domestic vacuum cleaners. The life
cycle phase with the highest impact for each of the categories is highlighted with red text.
Table 81: All impact categories for commercial vacuum cleaners. The life cycle phase with
the highest impact for each of the categories is highlighted with red text290
Table 82: All impact categories for cordless vacuum cleaners. The life cycle phase with the
highest impact for each of the categories is highlighted with red text
Table 83: All impact categories for robot vacuum cleaners. The life cycle phase with the
highest impact for each of the categories is highlighted with red text

IV. List of figures

Figure 1: Left: Barrel or tub form factor. Right: Sledge form factor45
Figure 2: Upright or Beat & Brush vacuum cleaner form factor (left) and roller brush (right)
46
Figure 3: Battery operated handstick vacuum cleaners46
Figure 4: two examples of 2-in-1 handstick vacuum cleaners and the detached handheld
vacuum cleaner
Figure 5: Example of a robot vacuum cleaner48
Figure 6: Overview of vacuum cleaner categories and the level to which they are defined
Figure 7: scenario for sub-categorisation of the cordless vacuum cleaner category53
Figure 8: Label 1 (left) and label 2 (right) for vacuum cleaners56
Figure 9: Floor plan of test-box for cleaning, according to section 572
Figure 10: Floor plan of straight-line cleaning test according to section 672
Figure 11: Floor plan for testing autonomous coverage73
Figure 12: Apparent VC consumption 2010-2017 according to Eurostat PRODCOM, with
estimated fractions of products out of scope of the regulation79
Figure 13: Vacuum cleaner \leq 1500W and $<$ 20L receptacle, EU 2017 imports by origin and
EU 2017 exports by destination80
Figure 14: Vacuum cleaner \leq 1500W and $<$ 20L receptacle, EU 2017 imports by origin and
EU 2017 exports by destination

Figure 15: Total annual sales and stock of all vacuum cleaner types in EU-28
Figure 16: Energy Label classification energy 2015-2016 (sources: APPLiA and GfK)89
Figure 17: Energy Label classification hard floor cleaning 2015-2016 (sources: APPLiA and
GfK)92
Figure 18: Energy Label classification carpet cleaning 2015-2016 (sources: APPLiA and
GfK)93
Figure 19: Energy Label classification dust-re-emission 2015-2016 (sources: APPLiA and
GfK)94
Figure 20: Types of rooms that more than 50% of the respondents in the APPLiA survey
have in their homes
Figure 21: Flooring types in the five most commonly occurring room types114
Figure 22: typical dirt types in the five most commonly occurring room types115
Figure 23: User behaviour regarding power settings, according to APPLiA consumer survey.
Figure 24: Consumer habits regarding changing bags and filter of their main vacuum
cleaner, according to the APPLiA consumer survey117
Figure 25: Hourly labour cost in €, 2016 for European countries118
Figure 26: Expected reprocessing of vacuum cleaners at End of life
Figure 27: Typical bag-full indicator on bagged vacuum cleaner (left) and bagless vacuum
cleaner (right)131
Figure 28: Net electricity generation, EU-28, 2015 (% of total, based on GWh)142
Figure 29: Hourly load values a random day in March144
Figure 30: Key components in a mains-operated vacuum cleaner
Figure 31: Sankey-diagram of energy flows in a mains-operated cylinder vacuum cleaner
(source: VHK 2017 graph on the basis of AEA Ricardo 2009 data)146
Figure 32: Backwards curved centrifugal fan (left) and fan definitions using the centrifugal
Figure 33: Cordier diagram (Eurovent/EVIA 2016 citing Eck 2003)149
Figure 34: Fan efficiency as a function of specific speed for industrial centrifugal fans in the
range up to 10 kW (source: Eurovent, EVIA. pers. comm.)
Figure 35: The volume of the receptacle is between 1.3 and 3.4 litres. Average size in the
most recent tests is 2.2 litres
Figure 36 The principle of a dry vacuum cleaner with a water filter (picture source: Kärcher
2018)
Figure 37: Example of an exploded drawing and spare parts listing for the canister (left)
and the nozzle plate (right)162
Figure 38. Commercial, cordless, backpack vacuum cleaner (source: Hoover)
Figure 39. Examples of form factors for cordless stick models

Figure 40: Robot vacuum cleaner (illustrative only, VHK 2018)185
Figure 41: Robot cleaner using a random bounce pattern to cover the surface
Figure 42: Robot cleaner using a random + spiralling pattern to cover the surface186
Figure 43: Robot cleaner using SLAM technology to map the room
Figure 44: Dust pick-up for an average cylinder cleaner and the three best robot cleaners
(source: Stiftung Warentest 2017)188
Figure 45: Total energy consumption and emission of CO ₂ -eq of mains-operated vacuum
cleaners – the impact of one vacuum cleaner over a lifetime
Figure 46: Total energy consumption and emission of CO2-eq of commercial vacuum
cleaners – the impact of one vacuum cleaner over a lifetime
Figure 47: Total energy consumption and emission of CO_2 -eq of cordless vacuum cleaners
- the impact of one vacuum cleaner over a lifetime200
Figure 48: Total energy consumption and emission of CO2-eq of robot vacuum cleaners –
the impact of one vacuum cleaner over a lifetime201
Figure 49: Pricing history of recycled injection grade PP (above) versus virgin PP (below).
Source: www.plasticsnews.com , extract 2018)213
Figure 50: LCC of the base-case (first column) and the durable scenario (second column)
(source: JRC-IES 2015)216
Figure 51: Comparison of stock in 2013 Impact Assessment (IA) and the stock estimates
used in this study225
Figure 52: Total energy consumption for various scenarios (based on stock)226
Figure 53: Greenhouse gas emissions related to electricity consumption in the use phase
Figure 54: Average annual energy consumption of domestic VC in stock and impact of
Ecodesign and Energy Labelling Regulations228
Figure 55: Share of energy savings due to Ecodesign and Energy Labelling Regulations,
based on average AE value of sales each year228
Figure 56: percentage distribution of energy classes for each vacuum cleaner type in 2013,
label coverage 6%
Figure 57: Percentage distribution of energy classes for each vacuum cleaner type in 2016,
label coverage 85%230
Figure 58: Share of people finding areas of the label unclear, out of the 70% finding at
least one parameter unclear (source: APPLiA 2018 consumer survey)231
Figure 59: Average total costs of ownership for domestic users
Figure 60: Average total costs of ownership for commercial users
Figure 61: Manufacturers turnover without regulations (BAU0) and with the current
regulations (BAU)

Figure 62: Retailers turnover without regulations (BAU0) and with the current regulations
(BAU)
Figure 63: Importance of the energy label for future vacuum cleaner purchases241
Figure 64: Expected energy consumption development in the BAU scenario, 2015-2030
Figure 65: Expected annual greenhouse gas emissions in the BAU scenario 2015-2030
Figure 66: Expected development in consumer life cycle costs in the BAU scenario from
2016 to 2030
Figure 67: Energy consumption in PO1, PO2 and PO3 compared to BAU from 2018 to 2030
Figure 68: GHG emissions in PO1, PO2 and PO3 compared to BAU from 2018 to 2030 250
Figure 69: Total end-user expenditure for all vacuum cleaners in EU each year form 2018-
2030252
Figure 70: Material energy in PO4 and PO5 compared to BAU from 2018 to 2030261
Figure 71: GHG emissions in PO4 and PO5 compared to BAU from 2018 to 2030262
Figure 72: Material end-user expenditure for all vacuum cleaners in EU each year form
2018-2030
Figure 73: test rig for vacuum cleaner testing273
Figure 74: Total EU market for floor coverings in 2015, equalling 1900 million m2 and 15%
of global market
Figure 75: left: domestic loop pole, right: domestic cut pile
Figure 76: left: Allura Vinyl Tile, right: Viva Cushion vinyl

V. Summary

The Commission's Regulation (EU) No 666/2013 on Ecodesign requirements for vacuum cleaners and (EU) No 665/2013 on Energy Labelling of vacuum cleaners entered into force in august 2013, with the first Ecodesign requirements and energy label classes A to G applicable from September 2014. The second tier of Ecodesign requirements and the energy label classes A+++ to D were applicable from 1 September 2017.

The objective of the Regulations is to ensure the placing on the market of technologies that reduce the life-cycle environmental impact, leading to estimated electricity savings of 19 TWh per year, corresponding to 6 Mt CO_2 -eq, according to the Impact Assessment¹. By 2025 the savings were estimated to be 27 TWh and 10 Mt CO_2 -eq.

The Ecodesign Regulation was amended by the horizontal Regulation (EU) 2016/2282 with regard to the use of tolerances in verification procedures, while the Energy Labelling Regulation was amended by two horizontal regulations: Regulation (EU) 518/2014 regarding labelling of energy-related products on the internet and Regulation (EU) 2017/254 regarding the use of tolerances in verification procedures. The horizontal Regulations apply to all products covered by Ecodesign and Energy Labelling Regulations.

A special review study was performed in 2016 by Van Holstein en Kemna (VHK) regarding the specific Ecodesign requirements on the durability of the hose and the operational motor lifetime, but without changing the content of the Regulation. Therefore, the results from the special review study will be used in the present study when assessing the need for revising the durability requirements in the Ecodesign Regulation.

The review study of the Ecodesign Regulation EU 666/2013 and Energy Labelling Regulation EU 665/2913 with regard to vacuum cleaners was started in July 2017. The study follows the MEErP methodology and reviews the scope and Ecodesign requirements as well as the labelling classes, in light of current developments in the market concerning technologies, energy efficiency levels and resource efficiency.

¹ COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT (2013) with regard to Ecodesign requirements for vacuum cleaners and the Energy Labelling of vacuum cleaners. <u>http://ec.europa.eu/smart-regulation/impact/ia_carried_out/docs/ia_2013/swd_2013_0240_en.pdf</u>

I. Scope

The scope of the review study follows the scope of the Ecodesign and Energy Labelling Regulations for vacuum cleaners with the addition of battery operated and robot vacuum cleaners, as seen in Figure i. In defining the scope, it was found that there is a need for a redefinition of the current "full size battery operated vacuum cleaner" in order to properly capture the current European market. It is therefore suggested to add a definition for cordless vacuum cleaners and split it into two or three categories based on the size and intended use. The following definitions are suggested:

Cordless vacuum cleaner means a vacuum cleaner powered only by batteries, other than robot vacuum cleaners

Cordless cleaners not intended for floor cleaning:

Handheld vacuum cleaner means a lightweight cordless vacuum cleaner with cleaning head, dirt storage and vacuum generator integrated in a compact housing, allowing the cleaner to held and operated whilst being held in one hand

Cordless vacuum cleaners intended for floor cleaning:

Cordless floor vacuum cleaner means a cordless vacuum cleaner that can be used for cleaning floors from an upright standing position, including handhelds fitted with any tubes, aggregates or similar that makes it possible to use them for cleaning floor from an upright standing position;

Some of the vacuum cleaner types shown in Figure i, particularly upright and cylinder types, can be either bagged or bagless, i.e. using a single-use bag to collect and store the dust or a reusable container. However, it is not suggested to change the definitions of the vacuum cleaner types in the mains-operated group and thus not to include definitions of bagged and bagless cleaners in the regulations, since the same requirements should apply.

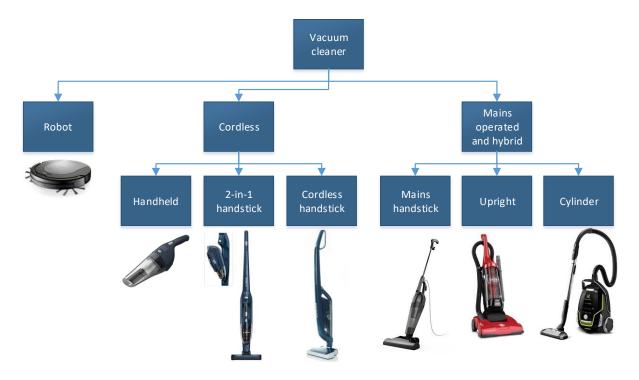


Figure i: main types of vacuum cleaners included in the scope of the review study

II. Standardisation and legislation

New legislation has entered into force since the preparatory study for vacuum cleaners, most important in terms on influence on this study are the WEEE Directive² regarding waste management and the EPS and Standby Regulations, which are important for the battery operated vacuum cleaners. Furthermore, the circular economy package³ from 2016 entails that assessment of resource efficiency should be included in Ecodesign and Energy Labelling studies.

Work is also ongoing to and improve the standards developed in relation to the Ecodesign and Energy Labelling requirements for vacuum cleaners under standardisation request M/540 of 2015⁴. The improvement of existing standards regarding energy consumption, sound power level and dust pick-up on market-representative hard floors and carpets are carried out in working group 6 (CLC TC59X/WG06). The work also includes testing with partly loaded receptacle, durability of the hose and motor, and testing of water filter vacuum cleaners.

Furthermore, new standards are under development on both IEC and CEN/CENELEC level for robot and cordless vacuum cleaners. The development of a standard for robot vacuum

² <u>http://ec.europa.eu/environment/waste/weee/legis_en.htm</u>

³ http://www.europarl.europa.eu/EPRS/EPRS-Briefing-573936-Circular-economy-package-FINAL.pdf

⁴ http://ec.europa.eu/growth/tools-databases/mandates/index.cfm?fuseaction=search.detail&id=561#

cleaners was started in 2009 and is handled in IEC SC 59F WG5, and is monitored by the European working group. The first standard on "Cleaning robots for household use – dry cleaning: methods for measuring performance" was published in July 2014 (IEC 62929-1). Work on the next edition of the standard was started in 2015 under IEC 61885-7 with the name "surface cleaning appliances – part 7: dry-cleaning robots for household use – methods for measuring performance". The new standard will include the following tests:

- Dust pick-up from carpets and hard floor in a box
- Dust pick- up from carpets and hard floor in a straight-line movement
- Autonomous navigation/coverage test
- Obstacle overcome capability
- Energy consumption
- Debris and/or other coarse particles: Box
- Debris and/or other coarse particles: Straight line
- Fibre pickup
- Removal of dust pick-up from carpets and hard floor in a box

Furthermore, work on a standard for noise measurement of robot vacuum cleaners has begun in IEC 60704-2-17. Tests on corner/edge dust pick-up, multi zone navigation, and dust re-emission have been postponed. A preliminary RRT (Round Robin Test) has been conducted for the included tests, but the evaluation of the results is still ongoing. It was concluded by the European working group, however, that the standards for robot vacuum cleaners are not yet mature to be used for Ecodesign and Energy Labelling purposes due to the limited test experience and data on repeatability and reproducibility of test results.

For cordless vacuum cleaners the standardisation work is carried out on IEC level by IEC SC 59F WG 7, "IEC 62885-4 ED1: Surface cleaning appliances - Part 4: Cordless dry vacuum cleaners for household or similar use - Methods for measuring the performance"⁵. and results are monitored by the European working group. The test parameters in the new standard includes:

- Energy consumption of the batteries
- Run time while maintaining reasonable suction power

⁵ http://www.iec.ch/dyn/www/f?p=103:30:0::::FSP_ORG_ID,FSP_LANG_ID:1395,34q

III. Market data

Vacuum cleaner market data was purchased for the review study from GfK, which included sales data for the years 2006-2016, as well as performance data based on the energy label for the years 2013-2016. From the sales and expected lifespans, the stock was calculated. The sales and stock numbers for the entire vacuum cleaner market in scope of this study, is seen in Figure ii.

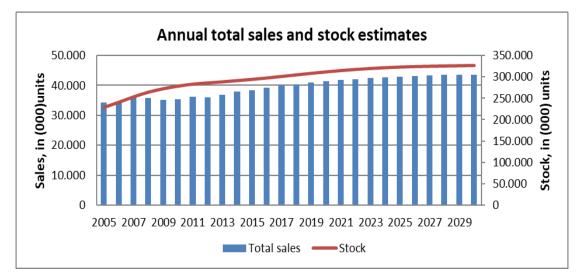


Figure ii: Annual sales and stock numbers for the total vacuum cleaner market 2005-2029

The sales for the different vacuum cleaner types included in the scope are shown in Table i. The sales data is a mix of purchased data and data form the preparatory study⁶.

Sales in millions	1990	1995	2000	2005	2010	2015	2020	2025	2030
Cylinder domestic	14,81	14,81	16,92	25,01	25,28	25,07	22,06	17,88	12,07
Cylinder									
commercial	1,78	1,78	2,03	3,00	3,03	3,01	2,95	2,95	2,95
Upright Domestic	2,61	2,61	2,99	4,41	3,44	2,91	2,56	2,38	2,01
Upright									
Commercial	0,31	0,31	0,36	0,53	0,41	0,35	0,31	0,31	0,31
Handstick mains	0,30	0,30	0,34	0,50	0,91	1,25	1,87	2,38	3,22
Handstick cordless	0,51	0,51	0,59	0,87	1,56	4,24	9,11	13,51	18,10
Robot	-	-	-	-	0,79	1,45	2,45	3,58	4,83
Total	20,32	20,32	23,22	34,33	35,43	38,28	41,32	43,00	43,49

Table is Devised sales of			f	1000 4- 3	020
Table i: Derived sales of	each vacuum	cleaner type	rrom	1990 to 2	030.

⁶ Preparatory Studies for Eco-Design Requirements of EuPs (II), Lot 17 Vacuum cleaners, TREN/D3/390-2006, Final Report February 2009, carried out by AEA Energy & Environment, Intertek, and Consumer Research Associates between November 2007 and January 2009. <u>https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/vacuum-cleaners/vacuumcleaners-ecodesign-study-final-report-eup-lot-17-final-report.pdf</u>

The total stock is split between the different vacuum cleaners as shown in Table ii.

Stock, million units	2005	2010	2015	2020	2025	2030
Cylinder domestic	172,91	209,97	217,34	206,71	179,59	140,38
Cylinder commercial	14,79	16,72	16,94	16,38	16,25	16,25
Upright Domestic	30,51	34,02	28,54	23,59	21,45	19,42
Upright Commercial	2,61	2,61	2,07	1,78	1,74	2,14
Handstick mains	3,47	5,40	8,36	12,32	16,77	22,37
Handstick Cordless	4,81	7,55	14,19	39,19	68,58	98,07
Robot	0,00	2,21	6,71	11,69	18,38	27,82
Total	229,11	278,48	294,15	311,65	322,75	326,44

Table ii: Stock of different vacuum cleaner types in the EU

With around 220 million households in EU 2016, the penetration rate is 1.3 vacuum cleaners per household, which is lower than previous studies due to differences in the scope of the data, but fits with a consumer survey performed by the industry organisation APPLiA⁷ in collaboration with InSites Consulting⁸ in 2018.

Regarding the energy consumption, it is seen from the available market data that the energy consumption of all regulated types of vacuum cleaners have decreased around 40% from introduction of the Ecodesign and Energy Labelling Regulations in 2013 to 2016. In the same period the performance of vacuum cleaners in terms of dust pick-up and dust reemission improved as well with more than 50% of the vacuum cleaners being in dust pick-up class A on hard floor, corresponding to a dust-pickup of more than 110%. Dust pick-up results of more than 100% is possible due to the design of the hard floor test as a crevice test, which is one of the test procedures that are under evaluation.

Product prices

The retail prices for household vacuum cleaners were derived from purchased data on sales volume and value, and the data shown in Table iii is the overall sales weighted average in Europe. This average, however, covers a large price range as seen from consumer organisation tests, where between $69 \in$ and $350 \in$ are reported for cylinder vacuum cleaners and robot vacuum cleaners are found at prices up to $700 \in$. Commercial cleaners are often sold B2B and as part of larger agreements and based on this, the average price is estimated by manufacturers to be around $100 \in$. However, online retail prices were collected, which showed an average of $220 \in$ in 2016.

⁷ https://www.aplia.com/

⁸ <u>https://www.insites-consulting.com/</u>

Unit prices, EUR	2005	2010	2013	2014	2015	2016
Cylinder	133	119	110	112	121	119
Upright	210	184	169	177	196	171
Handstick mains	94	99	91	89	94	96
Commercial	302	269	250	255	274	271
Handstick cordless	216	193	180	200	225	220
Robot	323	288	268	284	317	344

Table iii: Unit retail prices in EUR for household vacuum cleaners, in 2016-prices for EU28

IV. Use patterns

In the calculation of annual energy consumption (AE) defined in the regulations, assumptions on cleaning habit is implicitly included. As seen from the current formula the assumptions are on number of strokes over the surface (4 strokes, or 2 double), surface area (87 m^2), and number of cleaning cycles per year (50):

$$AE = 4 * 87 * 50 * 0,001 * ASE * \left(\frac{1 - 0,20}{dpu - 0,20}\right)$$

Furthermore, the formula assumes that the annual energy consumption increases as dust pick-up (*dpu*) decreases, because users will spend more time cleaning. The formula has been criticised in two ways. On the one hand, it has been argued that the *dpu* should not be included in the formula at all, but the performance should instead be a separate parameter and the energy class should be based on a direct energy measurement alone as it is for other products, e.g. washing machines. However, for washing machines the cycle time is a fixed parameter for each product, which is not the case for vacuum cleaners, where the time is dependent on the end-user and their perception of when the surface is clean.

Another point of criticism, as opposed to removing the *dpu* from the equation, is that it has too little weight in the equation, which means that improving performance in terms of *dpu* is not a good strategy for improving energy rating, but only choosing smaller motors is. However, the underlying idea of the Ecodesign and Energy Labelling Regulations is indeed to save energy, and the *dpu* on both carpet and hard floor are included in the Ecodesign Regulation and on the label itself to ensure that energy is not saved at the expense of good performance.

Based on the arguments and counter-arguments for the formula and the fact that there are still large uncertainties related to the test methods, especially for dust pick-up, it is recommended not to change the formula in this revision of the Regulations, but instead focus on improving the test methods.

Commercial dry vacuum cleaners are typically used for cleaning offices, shops, restaurants and hotels. The AE for commercial vacuum cleaners is calculated using the same formula shown above in the Regulations, even though they are used for many more hours each year than household vacuum cleaners. In this study it is assumed that they are used for 300 hours per year.

Cordless vacuum cleaners

The use pattern for cordless handstick vacuum cleaners is different than that of mainsoperated vacuum cleaners, as they are intended to be used for shorter duration. A shorter duration of each cleaning cycle is therefore assumed, however the number of cleaning tasks per year is assumed to be higher. When the cordless cleaner is not cleaning or charging, it is left in 'charged and docked' or 'maintenance mode'. The assumptions regarding the use pattern per year are shown in Table iv.

Table iv: Use pattern for cordless vacuum cleaners

	Average time per week	Average time per year
Cleaning (standby of dock without cordless)	80 minutes	70 hours
Charging	15 hours	780 hours
Charged and docked	152 hours	7910 hours

In order to calculate the energy consumption of cordless vacuum cleaners in a way similar to that of mains-operated vacuum cleaners, the above use hours and the charged and docked consumption is included in the calculation, and the energy used for cleaning is based on the re-charging energy, i.e. including the efficiency of the dock and charger.

Robot vacuum cleaners

As the robot vacuum cleaners are working autonomously and can be set to start on a timed schedule or via an app, the number of cleaning cycles per year is assumed to be higher than both mains-operated and cordless cleaners, which are both operated by a person. Also, the cleaning time is longer for a robot, both because it often takes a long time to cover a given surface area and because it will often be programmed to clean until the battery is almost discharged. The assumptions for annual use hours for robot cleaners are shown in Table v and will be used in the energy calculations, including the chard and docked consumption.

Table v: Use pattern for robot vacuum cleaners

	Average time per week	Average time per year
Cleaning (standby of dock without cordless)	120 minutes	100 hours
Charging	22,5 hours	1125 hours
Charged and docked	143,5 hours	7535 hours

End of Life behaviour

The end of life behaviour in terms of how obsolete vacuum cleaners are handled, is based on average statistics of small household equipment in the EU, as vacuum cleaners identify as such. The average collection rate for the EU was below 40% in 2014. The collection rate should be improved to 65 % in 2019. The low collection rate of vacuum cleaners cannot be addressed in the Ecodesign Regulation, but should be addressed by each EU country who should decide how to fulfil their obligation regarding the WEEE directive.

The most common failures of both upright vacuum cleaners and cylinder vacuum cleaners are related to suction and blocked filters as shown in Table vi. These problems can be interconnected and also related to the lack of maintenance as filters should be changed regularly.

Upright vacuum cleaners, Faults experienced	%
Suction deteriorated	24.3%
Blocked filters	21.7%
Belt broken (drive-belt rotating brush)	16.9%
Split hose	13.7%
Motor broken	13.4%
Brush not working properly	12.0%
No suction	10.0%

 Table vi: fault rates and causes for upright and cylinder vacuum cleaners⁹.

Cylinder vacuum cleaners, Faults experienced	%
Suction deteriorated	19.5%
Blocked filters	17.8%
Other	15.7%
Broken accessories	12.2%
Brush not working properly	10.8%
Casing cracked/chipped/broken	10.1%

Consumer relevant testing

In order to have the best information to consumers as possible, it is important that test standards and measurement methods have a high degree of resemblance to the real-life use situation while yielding reproducible and repeatable results.

There are several initiatives aiming at improving the current test standards for vacuum cleaners to achieve a more consumer relevant (accurate) testing and better repeatability and reproducibility (precision). Recently, a new WG 22 Ad-hoc Group Consumer relevant testing was established at CENELEC TC 59X to support standard makers how to assess standards to reflect 'real-life conditions' while also being suitable for producing measurement protocols with the required repeatability and reproducibility necessary to support Ecodesign and Energy Labelling legislation. Vacuum cleaners are among the examples mentioned in this draft document.

⁹https://www.vhk.nl/downloads/Reports/2016/VHK%20546%20FINAL%20REPORT%20VC%20Durability%20Test%2020160623 .pdf

The working group WG 6 at CENELEC TC 59X are working to improve the test standards and overcome issues with for example carpet type, motion resistance on carpet, hard floor crevice test vs. flat floor test, and receptacle load. Test experience with the new improved standards need to be obtained and the regulation limit values changed accordingly if this proves necessary.

Commercial vacuum cleaner manufacturers have proposed a new test standard for the commercial cleaners with another carpet types and which include debris test on hard floor in addition to the current crevice test.

In order to increases the consumer relevance of the testing, it is suggested to add a debris test to the hard floor crevice test and a fibre pick-up test to the current carpet dust pick-up test. For the performance tests on each floor type (i.e. hard floor vs carpet) the nozzle and nozzle settings must not be changed. This ensure that the nozzle is designed to different types of cleaning on the same floor and is assumed to reduce or completely eliminate the current problems with test-optimised nozzles. Each of the performance parameters (dpu_c and dpu_{hf}) should be an average of the results of the two tests performed on that floor type.

Uncertainties of test methods

In addition to making the tests more consumer relevant, the standardisation groups have also been investigating the expanded uncertainties of the dust pick-up methods, and preliminary results point to especially the carpet dust pick-up testing being a problem, because the expanded uncertainties are larger than the class width. Also for the hard floor crevice test and the dust re-emission test this is a problem, even though it is not as significant. However, in order to solve this issue on the short term, before new test methods can be developed and valuated, a possible solution could be to reduce the number of dust pick-up classes to 4, i.e. from A to D.

V. Technology overview

Each component of a vacuum cleaner is important for the overall energy consumption and performance. Based on a component analysis and data from APPLiA and GfK, the average technology and best available technologies were determined for each of the following vacuum cleaner types:

- Mains-operated domestic vacuum cleaners
- Commercial vacuum cleaners
- Cordless vacuum cleaners
- Robot vacuum cleaners

For each product type, the energy, performance and material consumption in each life cycle phase is presented.

Mains-operated domestic vacuum cleaners

This category includes mains-operated cylinder, upright and handstick vacuum cleaners, which are all covered by the current Ecodesign and Energy Labelling Regulations.

Mains-operated domestic vacuum cleaner models are available in the highest energy label classes for energy efficiency (A+++) and performance classes (A), but never for the same model. This illustrates that there is a clear inverse relationship between carpet cleaning performance dpu_c and energy efficiency. This cannot be said about the hard floor cleaning performance. Rather, every type of vacuum cleaner, even with very low suction power, can get a good hard floor cleaning dpu_{hf} rating with the current crevice test. In the energy efficiency rating of the general purpose vacuum cleaner, the most popular type, both the dpu_c and dpu_{hf} play an equal role and the dpu_{hf} thus tends to 'soften' the inferior carpet cleaning performance of some products.

Table vii: BAU BAT and BNAT of domestic mains-operated vacuum cleaners in terms of energy and performance

	BAU	BAT	BNAT
Rated power	900	300	300
dpu _c	0,81	0,81	0,91
dpu _{hf}	1,08	1,11	1,11
ASE _c [Wh/m2]	2,0	0,67	0,67
ASE _{hf} [Wh/m2]	2,0	0,67	0,67
AE (kWh/year)	33,5	12,7	11,7
Price incl. VAT, €	122	380	430

Table viii: Domestic mains-operated vacuum cleaners' materials (product-life 8 years,
package 0.08 m³)

Life Cycle materials	Product	tion	Use	End of life			
Impacts per product	Virgin + recycled	Only recycled		Disposal	Recycle	Recover	Stock
Materials	g	g	g	g	g	g	g
Bulk Plastics	3 490	873	35	1 056	1 034	1 426	0
TecPlastics	596	0	6	181	177	244	0
Ferro	1 192	477	12	60	1 144	0	0
Non-ferro	451	181	5	23	435	0	0
Electronics	21	5	0	10	11	0	0
Misc.	1 333	1 199	13	458	888	7	0
Auxiliaries	n/a	0	1 536	845	537	154	0
Total weight	7 082	2 734	1 607	2 632	4 227	1 831	0

Commercial vacuum cleaners

Commercial dry vacuum cleaners are generally not very different from domestic vacuum cleaners, except that they generally have a sturdier construction and larger receptacle (8-15 litres) allowing them to operate for 300 hours per year, i.e. 6 times more than domestic vacuum cleaners. The sturdy construction also is evident from the bill-of-materials

Table ix: BAU BAT and BNAT of commercial vacuum cleaners in terms of energy and
performance

	BAU	BAT	BNAT
Rated power	900	300	300
dpu _c	0,81	0,81	0,91
dpu _{hf}	1,08	1,11	1,11
<i>ASE_c</i> [Wh/m2]	2,0	0,67	0,67
ASE _{hf} [Wh/m2]	2,0	0,67	0,67
AE (kWh/year)	48,70	12,71	11,63
Price incl. VAT, €	331	380	430

Table	x: Commercial vacuum	cleaners' mater	ials (product-life 5	years, package 0.1 m ³)
		eleaners mater	iaid (produce into b	, care, package er in)

Life Cycle materials	PRODL	JCE	USE		END C	OF LIFE	
impacts per product	Virgin + recycled	only recycled		Disposal	Recycle	Recover	Stock
Materials	g	g	g	g	g	g	g
Bulk Plastics	5 795	1 449	58	1 613	1 582	2 182	475
TecPlastics	144	0	1	40	39	54	12
Ferro	1 436	575	14	67	1 266	0	118
Non-ferro	2 102	841	21	98	1 853	0	172
Electronics	2	0	0	1	1	0	0
Misc.	1 631	1 468	16	515	983	16	134
Auxiliaries	n/a	0	3 600	1 819	1 158	331	292
Total weight	11 110	4 332	3 711	4 153	6 883	2 583	1 202

Cordless vacuum cleaners

Cordless vacuum cleaners are assumed to follow the same use pattern as mains-operated vacuums. However, most cordless vacuums often would not have sufficient run time, as most cordless vacuum cleaners have a battery life of 15-40 minutes while only a few can run for up to 60 minutes at the lowest power setting¹⁰. Hence, the cleaning is assumed to be spread out on more cycles per week.

Also, the capacity of a cordless is smaller than that of a normal vacuum cleaner, i.e. in the range of 0.2-0.8 litres compared with around 2-3 litres for an average-sized standard vacuum cleaner according to Which?¹¹. The same source also finds that, while a carpet

¹⁰ http://www.which.co.uk/reviews/cordless-vacuum-cleaners/article/corded-vs-cordless-vacuum-cleaners
¹¹ https://www.which.co.uk/

dust pick-up of 79% is average for a cylinder vacuum cleaner the cordless handstick vacuum cleaner only reaches 47%. In other words, the average cordless would not meet the 2017 Ecodesign requirements for carpet cleaning (minimum dpu_c 75%) and possibly could only enter as a hard-floor only model (minimum dpu_{hf} 98%).

Especially over the last 5 years there has been large progress in performance, and battery capacity, and life for cordless vacuum cleaners. But there are also typical 'sweepers' and 'electric broom' types, i.e. a rotating brush without filtration and a 10-15 W suction power¹² that is just enough to keep the dust from falling out of the small bin next to the brush. If their performance allows they could be in scope of a revised regulation as 'hard-floor only'.

Table xi: BAU BAT and BNAT of cordless vacuum cleaners in terms of energy and performance

	BAU	BAT	BNAT
Maintenance mode consumption; charged and docked [W]	2,6	1,0	0,5
Standby consumption, dock, when cleaning [W]	1,7	0,5	0,5
dpu _c	0,47	0,75	0,80
dpu _{hf}	0,98	0,98	0,98
ASE _c [Wh/m2]	0,6	0,56	0,56
ASE _{hf} [Wh/m2]	0,6	0,56	0,56
AE (kWh/year)	40,48	20,70	15,86
Price incl. VAT, €	221	500	630

Life Cycle materials	Life Cycle materials PRODUC				END	OF LIFE	
Impacts per product	Virgin + recycled	Only recycled		Disposal	Recycle	Recover	Stock
Materials	g	g	g	g	g	g	g
Bulk Plastics	3 035	759	30	643	630	870	923
TecPlastics	426	0	4	90	88	122	129
Ferro	1 120	448	11	40	751	-	340
Non-ferro	1 428	571	14	50	958	-	434
Electronics	2	1	-	1	1	-	-
Misc.	824	742	8	198	377	7	250
Total weight	6 835	2 520	68	1 022	2 806	999	2 077

Table xii: Cordless vacuum cleaners' materials (product-life 6 years, package 0.05 m³)

CRM included in non-ferro:

Cobalt 0.075

¹² E.g. <u>https://www.gtech.co.uk/cordless-vacuum-cleaners/sw20-premium-cordless-floor-sweeper.html</u>, featuring 7.2V battery and a 60 minutes runtime.

Robot vacuum cleaners

Robot vacuum cleaners perform cleaning autonomously, i.e. without human intervention. The cleaning algorithm determines the pattern in which the robot moves across the floor and varies from brand to brand and model to model. The pattern can be random or mapped following a zig-zag, crisscross, or spiralling pattern¹³, or it can be controlled by simultaneous localisation and mapping (SLAM), which requires more processing power.

The top-three robot models in a recent German consumer test reveal a hard floor cleaning performance almost as good as that of an average (150-200 Euro) cylinder vacuum cleaner, while carpet cleaning performance is only half as good in comparison. The dust-retention of a robot cleaners is considerably worse than that of a standard vacuum cleaner.

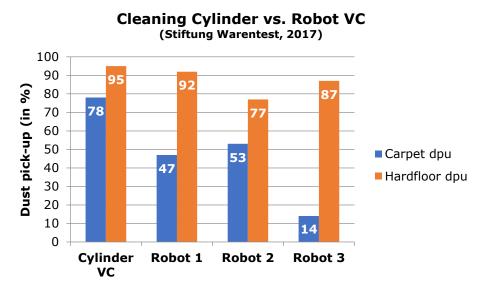


Figure iii: Dust pick-up for an average cylinder cleaner and the three best robot cleaners (source: Stiftung Warentest 2017).

The high-end robot vacuum cleaners advertise 20 'Airwatts' suction power (qv 5-13 dm³/min and dP 1-1.8 kPa), which is only 5-18% of that of an average cylinder vacuum cleaner. The relatively limited suction power is a key factor in the relatively low dust retention performance.

Cleaning performance not only depends on suction power. Whereas most of the cylinder vacuum cleaners have a 'passive nozzle', robot vacuum cleaners heavily rely on the use of rotating brushes and other 'active' devices to pick up dust and fibres. Consumer association tests show that many robot cleaners have problems cleaning tight corners and that especially low-end models skip parts of the designated floor area. In those cases, secondary (vacuum) cleaning will be needed. In any case, many manufacturers indicate

¹³ https://www.vacuumcleanerbuzz.com/articles/how-does-a-robot-vacuum-cleaner-work/

that their robot cleaners are only suitable for hard-floor and low-pile (<1 cm) carpet cleaning.

	BAU	BAT	BNAT
Maintenance mode consumption; charged and docked [W]	4,68	2,0	0,5
Standby consumption, dock, when cleaning [W]	0,99	0,50	0,55
' <i>dpuc</i> ' – calculated	0,39	0,50	0,80
'dpu _{hf} ' – calculated	0,98	0,98	0,98
Cleaning cycle energy, test room [Wh/cycle]	42,50	26,00	33,00
Cleaning cycle energy, hard floor only [Wh/cycle]	37,80	26,00	33,00
Room coverage factor	95%	95%	95%
Average AE [Kwh/year]	128,18	56,88	37,69
Average AE [Kwh/year] – hard floor only	70,85	39,54	34,82

Table xiv: Robot vacuum cleaners' materials (product-life 6 years, package 0.05 m³)

Life Cycle materials	PRODL	JCE	USE	END OF LIFE				
impacts per product	Virgin + recycled	Only recycled		Disposal	Recycle	Recover	Stock	
Materials	g	g	g	g	g	g	g	
Bulk Plastics	1 390	348	14	54	53	72	1 225	
TecPlastics	195	0	2	8	7	10	172	
Ferro	398	159	4	3	49	0	351	
Non-ferro	573	229	6	4	70	0	505	
Electronics	227	57	2	14	15	0	200	
Misc.	309	278	3	14	25	1	272	
Total weight	3 092	1 071	31	95	218	84	2 726	

CRM included in non-ferro: Cobalt 50g (50% Li-ion, 20% Co) Gold <0,005

VI. Environmental and economic impacts

For vacuum cleaners, the use phase has the highest impacts regarding energy consumption and emission of greenhouse gases. The energy consumption and emission of greenhouse gases during the lifecycle for the different base cases are:

- BC 1: Energy consumption 3290 MJ, emission of CO₂-eq 150 kg
- BC 2: Energy consumption 12350 MJ, emission of CO₂-eq 540 kg
- BC 3: Energy consumption 3010 MJ, emission of CO₂-eq 140 kg
- BC 4: Energy consumption 5050 MJ, emission of CO₂-eq 230 kg

The life cycle impacts of the base cases will serve as a baseline or reference for the improvement options and policy scenarios assessment in Task 6 and 7. The comparison between the annual impacts of all vacuum cleaners and the EU total impacts (from all energy-related products) reveals that vacuum cleaners are responsible for 0.82% of the

total EU electricity consumption and 0.22% of the total EU emitted greenhouse gases. These are the categories with the highest share and are mostly related to the electricity consumption in the use phase. In total, all EU vacuum cleaners over a lifetime account for 159 PJ of energy consumption, which leads to 7 Mt greenhouse gases released to the atmosphere.

The life cycle costs for vacuum cleaners reveal that the highest expenses are related to the purchase of vacuum cleaners. Within the EU, all consumers are spending 12,3 billion euros annually in the purchase and operation of their products. Approximately 20% (2.6 billion euros) are related to electricity expenses.

The critical raw materials consumed during production have limited impacts and constitutes below 1% of the impacts imposed by vacuum cleaners over a lifetime. In the EU stock, the raw materials (gold, copper and cobalt) embedded account for an energy consumption of 4,2 PJ and an emission of 0,4 million tonnes of greenhouse gases. The combined value of copper, gold and cobalt in the stock amounts to more than 0,55 billion euros.

VII. Design options

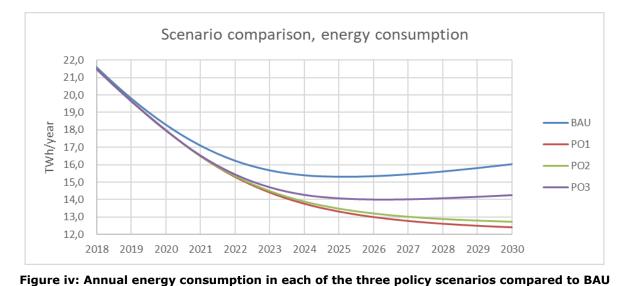
Five different design options are presented in task 6:

- More stringent energy efficiency limits: Setting 750 W power limit for mainsoperated and setting energy requirements for cordless and robot vacuum cleaners.
- More realistic performance: including debris and fibre pick-up tests in the performance parameters, which will indirectly improve the energy efficiency.
- Recycled content and/or light weighting: increasing the amount of recycled content or decrease the total product weight in order to save materials and reduce environmental impacts of material production.
- Increased product life: Different options for including the lifetime of products exist, including increase the technical life, especially of components often experiencing failure, make it easier to repair products and thus increase the re-use of products.
- Recycling: increasing the share of materials form the vacuum cleaners that is recycled at end of life, for example by using materials that are easily recyclable. This is also linked to the option of including more recycled material in the new products.

Each of the options are considered for each base case, and the economic impact on the end-user is given. In general it is not economical to set stricter energy efficiency requirements for the products include din scope of the current regulations, since the price premium is too high compared to the energy savings, especially for domestic mainsoperated vacuum cleaners, sue to the relatively low usage hours per year. Efficiency requirements for cordless and robot vacuum cleaners, however, especially related to decreasing the maintenance mode consumption is economically beneficial to end-users. Also all the resource efficiency options are economically beneficial to end-users, since neither causes high increases in product prices.

VIII. Scenarios

Scenarios are calculated for five different policy options, three for energy and performance requirements, two for resource efficiency. All scenarios include cordless and robot vacuum cleaners, however the impacts are calculated for each of the base cases separately, so it is possible to see the impact of including cordless and robot vacuum cleaners specifically.

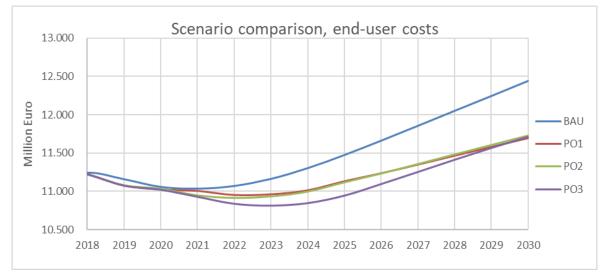

Energy efficiency scenarios

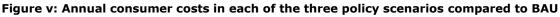
The Requirements considered in the policy options are shown in Table xv. PO1 and PO2 includes both Ecodesign and Energy Labelling Regulations, while PO3 is an Ecodesign-only scenario.

Ecodesign Parameter	Requirements forRequirements formains-operatedcordless		Requirements for Robot
	Common parameters fo		2
<i>dpu_{hf}</i> (new test)	≥0,98	≥0,98	_ ≥0,98
<i>dpu_c</i> (new test)	≥0,75	≥0,6 in tier 1	≥0,6 in tier 1
		≥0,75 in tier 2	≥0,75 in tier 2
Dust re-emission	≤1,00%	≤1,00%	≤1,00%
Noise	≤80 dB(A)	≤80 dB(A)	≤80 dB(A)
Run time		≥30 minutes	≥30 minutes
Maintenance power		≤1 W	≤1 W
Coverage factor			≥95,00%
	Policy O	ption 1	
Annual Energy	≤36 kWh/year	≤36 kWh/year	≤50 kWh/year in tier 1
			≤36 kWh/year in tier 2
Rated power	≤750 W	≤750 W	≤750 W
	Rescaling of	energy label	
	Policy O	ption 2	
Annual Energy	≤43 kWh/year	≤43 kWh/year	≤43 kWh/year
Rated power	≤900 W	≤900 W	≤900 W
	Rescaling of	energy label	
	Policy O	ption 3	
Annual Energy	≤36 kWh/year	≤36 kWh/year	≤50 kWh/year in tier 1
			≤36 kWh/year in tier 2
Rated power	≤750 W	≤750 W	≤750 W
	No Energy Lab	el Regulation	

Table xv: Requirements in Policy Options 1, 2 and 3

Based on the data compounded in task 1 through 6, the environmental and economic impact of each of the scenarios was calculated until 2030. As seen in the graph below PO1 resulted in that largest energy savings compared to BAU, however, with very similar savings in PO2, while PO3 resulted in only around half of the savings as the other two scenarios.


The Energy savings in all scenarios are largely linked to the cordless and robot vacuum cleaners, especially due to the large energy saving potential of setting maintenance mode requirements. As seen in table xvi, around 3,6 TWh/year can be saved in the strictest policy option, PO1, corresponding to 1,2 Mt CO₂-eq/year by 2030. The quite similar savings in PO2, show that setting stricter Ecodesign requirements does not have a significant impact on the energy efficiency, because many products already have a much higher efficiency than the current Ecodesign limit values, due to the market pull of the energy label and the fact that already now, 50% of products are in energy label class A.


The significantly lower savings in PO3 (around half of PO1 and PO2) shows that removing the energy label would result in higher average AE values for the products that previously were labelled, even when setting stricter Ecodesign requirements (750 W), which decreases the obtainable savings. Hence, even if the savings for cordless and robot vacuum cleaners s similar in PO3 to that in PO1 and PO2, the increase in energy consumption for mains-operated domestic and commercial cleaners, has a negative impact on the savings.

	2030 energy consumption, TWh			2030 Annual savings, TWh			2030 Annual savings, %			
	BAU	PO1	PO2	PO3	PO1	PO2	PO3	PO1	PO2	PO3
Domestic mains	6,34	6,19	6,31	7,13	0,15	0,04	-0,79	2%	1%	-12%
Commercial	2,82	2,78	2,82	3,39	0,04	-	-0,57	1%	0%	-20%
Cordless	4,90	2,45	2,45	2,60	2,45	2,45	2,30	50%	50%	47%
Robots	1,97	0,98	1,15	1,15	0,99	0,82	0,82	50%	42%	42%
Total	16,03	12,40	12,73	14,27	3,63	3,30	1,76	23%	21%	11%

Table xvi: 2030 energy consumption and savings in PO1, PO2 and PO3

Even though the energy savings are only around half in PO3, the expenditure for endusers is more or less the same in all three policy scenarios, as seen in Figure v.

Based on the results obtain in the scenario analysis, it is recommended to continue with the current Ecodesign requirements, but include cordless and robot cleaners in scope of both regulations. This corresponds to PO2. Even though larger savings can be obtained in PO1, it is doubly economic for the end-users, as shown in task 6. The specific requirements in PO2 is discussed in more detail in task 7.

Energy label rescaling

Besides the Ecodesign Regulation, changes are also recommended for the Energy Label Regulation. According to the Energy Label Framework Regulation, the energy label should be rescaled to the A-G scale and class A should be empty at entering into force of the regulation. Today only a few vacuum cleaners are in the A+++ class, and these are not in the top classes for the dust pick-up and dust re-emission parameters. Hence no A+++/AAA vacuum cleaner yet exists. It is therefore recommended to simply rename the current

categories with the A-G labels as demonstrated in Table xvii, where the assumed market distribution of vacuum cleaners in the energy label classes after tier 1of PO2 is also shown.

Current label	Interval	New label	Assumed tier 1 market distribution				
classes		class	Mains domestic	Commercial	Cordless	Robots	
A+++	≤ 10	А	0,0%	0,0%	4,0%	0,0%	
A++	10 < AE ≤ 16	В	0,0%	0%	5%	0%	
A+	16 < AE ≤ 22	С	0,4%	0%	10%	0%	
А	22 < AE ≤ 28	D	10,2%	1%	16%	1%	
В	28 < AE ≤ 34	E	40,8%	5%	26%	1%	
С	34 < AE ≤ 40	F	21,0%	20%	39%	3%	
D	40 < AE	G	27,6%	74%	4,0%	95%	

Table xvii: Expected market distribution of energy label classes with the rescaled label

In order to solve the current issue with large test uncertainties for dust pick-up tests on the short term, it is recommended to rescale the performance classes (dust pick-up on hard floor and carpet, and dust re-emission) to only four class-scales from A to D with the intervals shown in table xviii.

Table	xviii:	Suggested	performance	classes
-------	--------	-----------	-------------	---------

Performance class	dust pick up on carpet (<i>dpu_c</i>)	dust pick up on hard floor (<i>dpu_{hf}</i>)	Dust re-emission (<i>dre</i>)
A	<i>dpu</i> _c >0,91	<i>dpu_{hf}>1,11</i>	<i>dre</i> ≤0,02%
В	0,85≤ <i>dpu</i> _c <0,91	1,06≤ <i>dpu</i> _{hf} <1,11	0,02%< <i>dre</i> ≤0,2%
С	0,80≤ <i>dpu</i> _c <0,85	1,00≤ <i>dpu</i> _{hf} <1,06	0,20%< <i>dre</i> ≤0,60%
D	<i>dpu</i> _c <0,80	<i>dpu_{hf}</i> <1,00	dre>0,60%

Resource efficiency scenarios

The resource Requirements considered in the policy options are shown in Table xix. PO4 and PO5 includes both measures to facilitate increased lifetime, while PO5 also includes requirements on the maximum content of virgin plastic in the product, corresponding to around 35% of the plastics used in an average product. This corresponds with the WEEE Directive targets of a 65% recycling rate, but where the WEEE Directive targets the end of life aspects (collecting and recycling) the Ecodesign targets the design phase and thus the products placed on the market. Since metals are already recycled at high rates, this requirement is based only on the plastic, which so far has much lower recycling rates.

Table	xix:	Requirements	in	Policy	Options	4 and 5
-------	------	--------------	----	--------	---------	---------

Ecodesign Parameter	Requirements for mains-operated domestic and commerical	Requirements for cordless	Requirements for Robots							
	Common parameters for Policy Options 4 and 5									
Motor life Hose oscillation	550 hours 40,000 oscillations	600 hours 40,000 oscillations when a hose is present	600 hours							
Battery lifetime		600 cycles and maintain 75% capacity	600 cycles and maintain 75% capacity							
Spare part availability	8 years (domestic) 5 years (commercial)	6 years	6 years							
Easy changeable repair-prone parts	Hose Power cord roll-up Wheels Filters Handle	Wheels Battery	Wheels Battery Brushes							
Information requirements on repair	How to repair/change repair-prone parts	* How to repair/change repair-prone parts and how to best ensure battery longevity	How to repair/ change repair- prone parts and how to best ensure battery longevity							
	Policy Opti	on 5								
Maximum virgin material	1,4 kg for domestic mains 2,0 kg for commercial	1,2 kg	0,5 kg							

Based on the above requirements and the data presented throughout the study, the impact of PO4 and PO5 has been derived and compared to the BAU scenario. As seen from Figure vi, the material energy in both scenarios is lower than in the BAU scenario from 2026. The savings in PO4 is roughly half of the savings in PO5 in 2030.

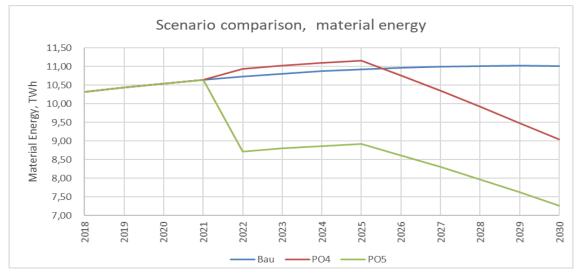


Figure vi: GHG emissions in PO4 and PO5 compared to BAU from 2018 to 2030

The savings in PO4 and partly PO5 are caused by an assumed increase in the lifetime of vacuum cleaners of 25%. However, this means that more material (spare parts) are used per vacuum cleaner and that the vacuum cleaners will miss out a potential energy improvement according to the longer lifetime. In PO5 the potential reduction in material energy is already visible in 2022 as recycled materials consists of less embedded energy and will emit less greenhouse gases during the manufacturing. The material energy savings for each base case in 2030 is presented in Table xx.

	2030 Material energy, TWh			2030 Savings, TWh		2030 Savings, %	
	BAU	PO4	PO5	PO4	PO5	PO4	PO5
Domestic mains operated	4,26	3,44	2,71	0,82	1,55	19%	36%
Commercial	1,23	0,99	0,78	0,24	0,45	20%	36%
Cordless	4,21	3,51	2,85	0,70	1,36	17%	32%
Robots	1,32	1,10	0,93	0,23	0,39	17%	30%
Total	11,02	9,04	7,27	1,98	3,75	18%	34%

Table xx: Material energy savings for each base case in 2030 for PO4 and PO5

The energy saving potential is higher in PO5 than in PO4, which also is reflected in the monetary savings for the end-users compared to the BAU scenario. Figure 69 For all the scenarios, the consumer expenditure is lower than in the BAU, as seen in Figure vii.

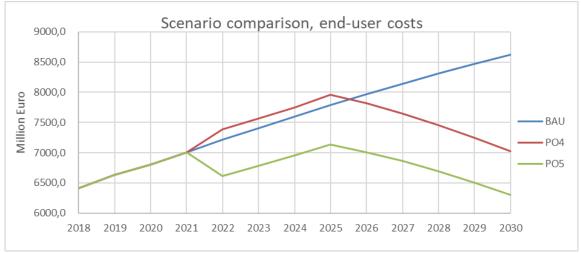


Figure vii: End-user expenditure for all vacuum cleaners in EU each year from 2018-2030.

Based on the results obtained in the scenario analysis, it is recommended to include the resource requirements of PO5 in the Ecodesign Regulation in combination with the energy and performance requirements of PO2 in order to achieve the largest environmental impact improvements and ensure that no excessive costs are placed on end-users or market actors.

1. Scope

Task 1 follows the MEErP methodology and includes the following:

- Product scope: Identification and description of relevant product categories and definition of the product scope based on regulations and previous studies, market terms etc, including potential scope extensions.
- Legislation: update of relevant legislation on EU, Member State and third country level.
- Test standards: update and description of relevant test and measurement standards on EU, Member State and third country level.

1.1 **Product scope**

The review study builds on the scope of the regulations, which is the same for the Ecodesign (666/2013) and the Energy Labelling Regulation (665/2013). The current scope of the regulations covers electric mains-operated and hybrid vacuum cleaners for indoor use for both household and commercial purposes.

Exempted from the scope of the regulation are all types of wet or wet and dry vacuum cleaners, industrial and central vacuum cleaners, as well floor polishers and outdoor vacuum cleaners.

Battery operated and robot vacuum cleaners are also currently exempted from the regulations, but the review clause (article 7) of both regulations state that it should be assessed whether full size battery operated vacuum cleaners should be included in the scope, and robot vacuum cleaners will be considered as well.

1.1.1 Definitions from the regulations

The terms and definitions employed in the Ecodesign and Energy Labelling Regulations for vacuum cleaners, will form the basis of the terminology of the review study. The definitions of products from regulations are listed below:

Vacuum cleaner means an appliance that removes soil from a surface to be cleaned by means of an airflow created by negative pressure developed within the unit;

Hybrid vacuum cleaner means a vacuum cleaner that can be powered by both electric mains and batteries.

Water filter vacuum cleaner means a dry vacuum cleaner that uses more than 0,5 litres of water as the main filter medium, whereby the suction air is forced through the water entrapping the removed dry material as it passes through;

Household vacuum cleaner means a vacuum cleaner intended for household or domestic use, declared by the manufacturer as such in the Declaration of Conformity pertaining to Directive 2006/95/EC of the European Parliament and of the Council (2);

General purpose vacuum cleaner means a vacuum cleaner supplied with a fixed or at least one detachable nozzle designed for cleaning both carpets and hard floors, or supplied with both at least one detachable nozzle designed specifically for cleaning carpets and at least one detachable nozzle for cleaning hard floors;

Hard floor vacuum cleaner means a vacuum cleaner supplied with a fixed nozzle designed specifically for cleaning hard floors, or supplied solely with one or more detachable nozzles designed specifically for cleaning hard floors;

Carpet vacuum cleaner means a vacuum cleaner supplied with a fixed nozzle designed specifically for cleaning carpets, or supplied solely with one or more detachable nozzles designed specifically for cleaning carpets;

Commercial vacuum cleaner means a vacuum cleaner for professional housekeeping purposes and intended to be used by laymen, cleaning staff or contracting cleaners in office, shop, hospital and hotel environments, declared by the manufacturer as such in the Declaration of Conformity pertaining to the Directive 2006/42/EC of the European Parliament and of the Council (1);

Wet vacuum cleaner means a vacuum cleaner that removes dry and/or wet material (soil) from the surface by applying water-based detergent or steam to the surface to be cleaned, and removing it, and the soil by an airflow created by negative pressure developed within the unit, including types commonly known as spray extraction vacuum cleaners;

Wet and dry vacuum cleaner means a vacuum cleaner designed to remove a volume of more than 2,5 litres, of liquid, in combination with the functionality of a dry vacuum cleaner;

Battery operated vacuum cleaner means a vacuum cleaner powered only by batteries;

Robot vacuum cleaner means a battery-operated vacuum cleaner that is capable of operating without human intervention within a defined perimeter, consisting of a mobile part and a docking station and/or other accessories to assist its operation;

Industrial vacuum cleaner means a vacuum cleaner designed to be part of a production process, designed for removing hazardous material, designed for removing heavy dust from building, foundry, mining or food industry, part of an industrial machine or tool and/or a commercial vacuum cleaner with a head width exceeding 0,50 m;

Central vacuum cleaner means a vacuum cleaner with a fixed (not movable) negative pressure source location and the hose connections located at fixed positions in the building;

Floor polisher means an electrical appliance that is designed to protect, smoothen and/or render shiny certain types of floors, usually operated in combination with a polishing means to be rubbed on the floor by the appliance and commonly also equipped with the auxiliary functionality of a vacuum cleaner;

Outdoor vacuum means an appliance that is designed for use outdoors to collect debris such as grass clippings and leaves into a collector by means of an airflow created by negative pressure developed within the unit and which may contain a shredding device and may also be able to perform as a blower;

Full size battery operated vacuum cleaner means a battery-operated vacuum cleaner which when fully charged, can clean 15 m2 of floor area by applying 2 double strokes to each part of the floor without recharge;

1.1.2 Definitions from preparatory study

Besides the above definitions from the regulations, the preparatory study sets out a number of relevant definitions, which defines vacuum cleaners across the above categories:

Mains Powered means a vacuum cleaner connected to a mains voltage electrical supply during its operation.

Cordless means a vacuum cleaner with integrated electrical supply (usually low voltage DC) using rechargeable battery storage of electricity for operational use. It is only connected to the mains electrical supply for the purpose of recharging the batteries.

Bagged vacuum cleaner means a vacuum cleaner that employs a disposable bag as receptacle, which is disposed of with the soil inside once it is full and replaced by a new, similar receptacle.

Bagless vacuum cleaner means a vacuum cleaner that employs a reusable container as receptacle, which is sold as part of the vacuum cleaner and is often rigid in form. When the receptacle is full, only the soil inside is disposed of, and the container is used again.

Upright Cleaner is a vacuum cleaner with the cleaning head forming an integral part of or permanently connected to the cleaner housing, the cleaning head normally being provided with an agitation device to assist dirt removal and the complete cleaner being moved over the surface to be cleaned by means of an integral handle. It is suited to cleaning carpet and floor areas.

Canister/ Cylinder/Suction Cleaner is a vacuum cleaner with the cleaning head separated from the vacuum generator (fan) and soil storage facility, usually by means of a flexible hose. The dirt is normally removed using suction power only. This type of cleaner is better suited to cleaning above floor level, e.g. upholstery, stairs etc., but is also used for cleaning carpets and floors however.

Stick Cleaner means a lighter weight vacuum cleaner with dirt storage facility and vacuum generator (fan) mounted centrally on a handle and integrated with a rigid connection to the cleaning head. The dirt is normally removed using suction power only.

Handheld vacuum cleaner means a lightweight vacuum cleaner with cleaning head, dirt storage and vacuum generator integrated in a compact housing allowing the cleaner to held and operated whilst being held in the hand. It may or may not have an agitation device incorporated.

The definitions of specific vacuum cleaner types such as cylinder, upright and handstick are not defined in the current regulations. For the purpose of energy efficiency requirements this is not necessary, however, when considering resource efficiency requirements, it might be necessary to introduce legal definitions for the different vacuum cleaner types.

1.1.3 Definitions from standards

Even though the regulations do not differentiate between different types of mains-operated dry vacuum cleaners, the harmonised standard EN 60312-1:2017 includes the following definitions:

Dry vacuum cleaner: Electrically operated appliance that removes dry material (e. g. dust, fibre, threads) from the surface to be cleaned by an airflow created by a vacuum developed within the unit, the removed material being separated in the appliance and the cleaned suction air being returned to the ambient air.

Upright cleaner: Self-standing and floor-supported vacuum cleaner with the cleaning head forming an integral part of or permanently connected to the cleaner housing, the cleaning head normally being provided with an agitation device to assist dirt removal and the complete cleaner housing being moved over the surface to be cleaned by means of an attached handle. Cylinder vacuum cleaner: Portable dry vacuum cleaner having a nozzle separated from the cleaner housing by a hose so that, in use, only the nozzle is guided over the surface area to be cleaned.

Note 1 to entry: Cylinder vacuum cleaners are generally floor-supported.

Note 2 to entry: The cylinder vacuum cleaner may have detachable nozzles, attachments, and tubes for both floor and above the floor cleaning.

Note 3 to entry: The nozzle may employ a driven rotating brush to assist in cleaning.

1.1.4 Description of products

In the below sections, the four main types of vacuum cleaners identified will be described in more detail to provide explanation of the terms used in the report. The four main types are cylinder, upright, handstick and robot vacuum cleaners. The type, however, is not determining for the power source (mains electricity, batteries or hybrid) or receptacle types of the vacuum cleaners.

Cylinder Vacuum cleaners

Cylinder, sledge, barrel, tub and canister vacuum cleaner are all more or less interchangeable terms used to describe different types of vacuum cleaners. In this study, the term cylinder vacuum cleaners will be used to cover them all. Cylinder vacuum cleaners can be either bagless or bagged and be used in households or commercial surroundings on all indoor flooring types¹⁴. Common for cylinder vacuum cleaners is that the suction head is connected to the vacuum cleaner housing with a flexible hose, and the vacuum cleaner is pulled around after the user during cleaning.

The two most distinctive types of subcategories within the cylinder vacuum cleaner category are the sledge and barrel, illustrated in Figure 1 Barrel vacuum cleaners are also known as "tub" vacuum cleaners, and are the most popular for non-domestic purposes¹⁵. As opposed to the barrel vacuum cleaners that stands upright and often have 4 smaller wheels, sledge vacuum cleaners usually have 2 large wheels and one smaller in front, and are horizontally oriented rather than vertically.

¹⁴ <u>https://www.godfreys.com.au/upright-vs-barrel-vacuum-cleaners</u> ¹⁵ COMMISSION STAFF WORKING DOCUMENT - IMPACT ASSESSMENT Accompanying the documents "Commission Regulation implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to Ecodesign requirements for vacuum cleaners" and Commission Delegated Regulation supplementing Directive 2010/30/EU of the European Parliament and of the Council with regard to Energy Labelling of vacuum cleaners", Brussels 2013.

Figure 1: Left: Barrel or tub form factor. Right: Sledge form factor

Both the sledge and the barrel form factor fit the definition of Canister/Cylinder/suction cleaner from the preparatory study¹⁶. A search on Google trend¹⁷ was made on the following six terms to determine the prevalence of the terms searched for on Google:

- Sledge vacuum cleaner
- Barrel vacuum cleaner
- Tub vacuum cleaner
- Canister vacuum cleaner
- Cylinder vacuum cleaner
- Suction cleaner

The results on google trend showed that the terms "barrel", "tub" and "sledge" were used very little over the last five years, so that there was no data to show. The terms "suction cleaner" was related to other product types such as "pool suction cleaner" and mostly used in the US. The search also showed that the terms "canister" and "cylinder" vacuum cleaners both had a high popularity, but "canister" is prevalently an American term, whereas "Cylinder" is British. It was therefore decided in this study to use the term Cylinder vacuum cleaners for the product type covering all of the above six terms.

Upright vacuum cleaners

Upright vacuum cleaners are also called Beat and Brush vacuum cleaners, because of the roller brush in the head assists dirt removal from the surface, which makes it especially suited for carpet flooring. The upright vacuum cleaner form factor shown in Figure 2 is recognised by the head forming an integral part of the housing and the integrated handle above the housing, which means the entire cleaner is moved over the surface to be cleaned. This type of vacuum cleaner can be either bagless or bagged and be used in

¹⁶ Work on Preparatory Studies for Eco-Design Requirements of EuPs (II), Lot 17 Vacuum cleaners, TREN/D3/390-2006, Final Report February 2009

¹⁷https://trends.google.com/trends/explore?geo=GB&q=Barrel%20vacuum%20cleaner,Cylinder%20vacuum%20cleaner,caniste r%20vacuum%20cleaner,Sledge%20vacuum%20cleaner,Suction%20cleaner

households or intended for commercial use, and while they are primarily used for carpet floors, some models can be used on hard floors as well¹⁸.

Figure 2: Upright or Beat & Brush vacuum cleaner form factor (left) and roller brush (right)

Handstick vacuum cleaners

The handstick vacuum cleaner or the stick cleaner is a light weight vacuum cleaner which has a (small) dirt storage facility (receptacle) and a vacuum generator (fan) mounted either centrally on the handle and integrated with a rigid connection to the cleaning head or located on the stick itself close to the cleaning head, as shown in Figure 3.

Figure 3: Battery operated handstick vacuum cleaners

¹⁸ <u>https://www.godfreys.com.au/upright-vs-barrel-vacuum-cleaners</u>

The handstick vacuum cleaner differs from upright cleaners based on their weight, size and dirt storage capacity. According to the preparatory study, the handstick vacuum cleaners usually remove dust with suction power only (i.e. no movable brush in the cleaning head), however, according to updated information from industry many of the more powerful models on the market today have movable brushes in the cleaning head.

Handstick vacuum cleaners can be either mains-operated¹⁹ or battery operated²⁰. Mainsoperated and hybrid handstick vacuum cleaners are already covered by the regulations (even though they are not defined specifically), whereas battery operated handstick cleaners are not.

As shown in Figure 6 the battery-operated handstick vacuum cleaners can fall under the current definition of *full size battery operated* in the regulation, if they are capable of cleaning 15 m² floor on one charging. If not, they are not considered "full size" in the current definition in the regulation.

2-in-1 handstick vacuum cleaners

Some handstick vacuum cleaners are operated by a handheld vacuum cleaner (See Figure 4), which is attached to the stick handle itself and provides the suction power, but can also be detached and used separately²¹. These 2-in-1 handstick types can also fall under the current definition of *full size battery operated*, but not necessarily.

The 2-in-1 handstick vacuum cleaners are very similar to the cordless handsticks, with the exception that vacuum generator (fan and motor) is a detachable handheld vacuum cleaner, that can be fitted onto the handle/tube and thus be used for cleaning floors, as shown in Figure 4. According to stakeholders from the industry, especially the handstick type shown to the right in the figure, also called an all in one vacuum cleaner, is gaining popularity.

 ¹⁹ Example of mains operated handstick vacuum cleaner: Shark HV300UK, <u>http://www.argos.co.uk/product/4366269</u>
 ²⁰ Example of battery operated handstick vacuum cleaner: Bosch Athlet BCH625KTGB, http://www.trustedreviews.com/reviews/bosch-athlet-bch625ktgb

²¹ Examples of handstick vacuum cleaner converted to handheld vacuum cleaners: Dyson V6:

http://shop.dyson.dk/stovsugere/ledningsfri/dyson-v6-animalpro-exclusive-210672-94 , Nilfisk Handy Stickvac 2 in 1: https://consumer.nilfisk.dk/da/products/Pages/product.aspx?fid=16175

Figure 4: two examples of 2-in-1 handstick vacuum cleaners and the detached handheld vacuum cleaner

Robot vacuum cleaners

The robot vacuum cleaner is a battery-operated vacuum cleaner with a "self-drive" system. The system is using a sensory feedback control to clean surfaces automatically. Depending on the model of the robot vacuum cleaner different abilities are offered for the consumer. Some vacuum cleaners include both a camera and WIFI allowing the end-user to remote control the unit while other models are simpler with a more random cleaning pattern. Many robot vacuum cleaners today are equipped with a "dock" which makes the vacuum cleaner able to charge itself whenever it is needed. Robot vacuum cleaners are not included in the scope of the current regulation.

Figure 5: Example of a robot vacuum cleaner

1.1.5 Bagged vs bagless vacuum cleaners

Cylinder and upright vacuum cleaners can either be bagged or bagless, while cordless and robot are almost always bagless. The choice of a bagged or bagless vacuum cleaner depends very much on user preferences. According to a number of consumer and producer websites, the main advantages and disadvantages of each type are the ones shown in Table 1. The two categories are not distinguished in the current regulations, since the consumers should be able to get the same performance of vacuum cleaners irrespective of whether they operate with or without a bag.

	Advantages	Disadvantages
Bagged	 Hygienic: No dust exposure when emptying the bag Low maintenance of filters and less frequent emptying Higher suction efficiency than bagless vacuums when the bag is new 	 Use of bags: costs money and has environmental impact. Also the filters are often disposable Difficult to see when bag is full, though most have an indicator Performance deteriorates as bag fills for most models
Bagless	 Performance does not decrease to the same extent as for bagged, when the receptacle fills Does not need bags Possible to see the dirt and thus when the vacuum is full 	 Decrease in suction power after several fillings due to clogging of motor filter Requires more regular filter cleaning, often involving washing and drying Recommended to empty outside Exposure to dust when emptying, which is especially a problem for users with allergies

Table 1: Advantages and disadvantages for bagged and bagless vacuum cleaners²²

1.1.6 Alignment of definitions

Aside from the definitions used in the regulations a number of other terms are used to describe various types of vacuum cleaners, which are mostly based on the form factor. For the purpose of this study, especially the definitions used in the regulation and the preparatory study are important for the sake of comparison, and the definitions used by GfK are important because these will determine the segregation of data. The definitions from these three sources and how they relate are shown in Table 2, where the terms under the headline *review study* will be used throughout this study and cover the various

²² https://www.hoover.co.uk/small-appliances/vacuum-cleaners/bag-vs-bagless-vacuum-cleaners/ and

https://learn.allergyandair.com/bagged-vs-bagless-vacuum-cleaners/ and https://www.godfreys.co.nz/bagged-vs-baglessvacuum-cleaners and https://www.thespruce.com/bagless-vs-bagged-vacuum-cleaner-1901195 and http://vacuums.reviewed.com/features/how-to-buy-a-vacuum-bagged-or-bagless and

http://www.topten.eu/uploads/File/Deliverables%20ACT/D2_1_Criteria_Paper_Vacuum_cleaners.pdf

definitions also shown in this chapter. Table 2 is not meant as a full coverage of all definitions, and e.g. definitions included in standards are not shown here, but rather as a means of aligning the terminology between various sources²³.

Regulations		Preparatory study		GfK data	Review study
			Canister/	Sledge	
Electric-mains-operated, dry vacuum cleaners,		Mains-	Cylinder/Suction cleaner	Barrel	Cylinder
	hybrid vacuum	operated	Upright cleaner	Beat &	Upright
cleaners		operated opright cleaner	brush	opright	
cleaners			Stick cleaner	Handstick	Mains
				Mains	handstick
Battery	Full size			Handstick	
operated	battery		No definition	Battery	Cordless
	operated	Cordless		Dattery	
	No definition		Handheld	Handheld	Handheld
	Robot		Robot	Robot	Robot

Table 2: Vacuum cleaner product types from different sources

Based on the above definitions and terms observed in the vacuum cleaner market in general, the correlation between these definitions were developed, as seen in Figure 6. The categories marked in blue are defined in the regulations (chapter 1.1.1), whereas those marked green are only defined in the preparatory study (chapter 1.1.2) and thus not approved politically or by industry. The categories marked orange have not yet been defined, and even though the preparatory study mentions stick vacuum cleaners no distinction is made between battery powered and mains powered. The 2-in-1 handstick category refers to the stick-type vacuum cleaners powered by a detachable handheld vacuum cleaner.

The current regulation covers all electric-mains (and hybrid) dry vacuum cleaners as one collective category, whereas the preparatory study mentions for instance canister, cylinder and upright vacuum cleaners. A completely different terminology is used by GfK in their database, which is the data source used for market and stock data in this study. GfK distinguishes between sledge, barrel and beat & brush within the overall category. In the review study, it was decided to distinguish between the product types *Cylinder* and *upright*, according to the definitions set out in the preparatory study. However, there will be no difference in requirements for these two vacuum cleaner types, and thus no further definition is suggested for the regulations.

²³ The current Committee Draft (CD) of the cordless standard designated IEC 62885-4, ED1 leans on the IEC 62885-2 mainsconnected vacuum standard and defines cordless dry vacuum cleaner as a dry vacuum cleaner that is not mains operated and uses the term "Cordless" equivalent to "Battery-operated".

The mains handstick vacuums are sometimes referred to as "lightweight upright" because they are lighter, smaller and has smaller receptacle and (often) lower suction power than upright vacuum cleaners. The mains handstick will be distinguished from the upright vacuums in this study since they are generally perceived as two distinct product types by consumers and are also marketed as such. However, since they are mains-operated they are already in scope of the regulations with the same requirements as other mainsoperated vacuums, no further definition is required in the regulation.

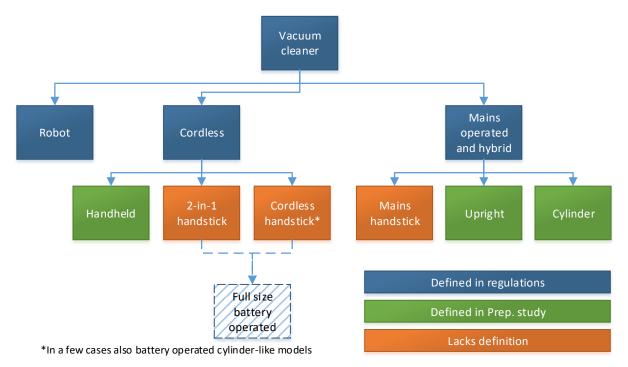


Figure 6: Overview of vacuum cleaner categories and the level to which they are defined

Robot vacuum cleaners have the same definition in all sources, and the regulations definition of robot vacuum cleaners will therefore be maintained in the review study. Even though robot vacuum cleaners have a battery as power source, they contain completely different technology and have different use patterns than other battery-operated vacuum cleaners, and they are therefore defined as a separate category apart from the cordless vacuum cleaners, which encompasses manually operated battery vacuum cleaners²⁴.

Handheld vacuum cleaners are defined in the preparatory study, but the wording of that definition would also include many handstick vacuum cleaners. In this review study, it is instead defined as "A small battery-operated vacuum cleaner with cleaning head, dirt storage and vacuum generator integrated in a compact housing allowing it to be operated

²⁴ This is predominantly battery operated "handsticks", but according to some stakeholders also some battery operated cylinder vacuum cleaners can be found in the market. It has not, however, been possible for the study team to find examples of any such models.

whilst being held in the hand, but not suitable for cleaning floors". This definition is for comprehension only, and not intended as a legal definition.

The cordless vacuum cleaners are defined in the preparatory study as "A lighter weight battery-operated vacuum cleaner with dirt storage facility and vacuum generator (fan) mounted centrally on a handle and integrated with a rigid connection to the cleaning head". While this definition fits well with cordless handstick cleaners, the cordless category in this study encompasses also other form-factors such as cylinder or upright, as long as they are manually operated and powered by batteries.

The cordless vacuum cleaners are intended to be used for vacuuming floors, and some of these will thus consequently be a *full size battery operated* vacuum cleaner if they are capable of living up to the full size definition (cleaning 15 m² floor in one charge). However, this definition exclusively based on the area vacuumed mean that many existing cordless handstick vacuum cleaners fall under this definition, even though they are not intended to be *full size*, in the sense that they are intended for lighter duty cleaning tasks. Measurements provided by Bissell show that with the smallest nozzle widths found on the market in 2014, it requires less than 10 minutes run-time to vacuum 15 m² of carpet (with 2 double strokes at 0.5 m/s), which is easily achieved by any small, utility, stick vacuum in the market today²⁵.

Furthermore, some crucial parameters are not taken into account in the current definition, which reduces the usefulness of it. For instance, the following parameters are not considered:

- The setting of the vacuum cleaner while cleaning the 15 m², i.e. suction power, which will influence the energy consumption and thus whether one charging of the battery is sufficient
- Whether the flooring is hard floor or carpet, which would also influence power consumption.
- Whether the vacuum cleaner should pick up any dust or debris during this test, and in that case how much.
- Whether the dust receptacle is large enough to clean the 15 $m^2,$ and how the vacuum cleaner should be defined in case it is not
- How it should be measured whether the vacuum cleaner can live up to the *full size battery operated* definition, e.g. by suggesting a standard or measurement method.

²⁵ Run-time calculations based on the EU 666/2013 definition, according to Bissell;

1.1.7 Recommendations

Based on the above it is recommended to change the definitions in the regulations for *battery operated vacuum cleaners* and *full size battery operated vacuum cleaners*.

In order to maintain the robot vacuum cleaners as a separate category, not related to other battery operated cleaners due to the difference in technology, it is suggested to change the current definition:

Battery operated vacuum cleaner means a vacuum cleaner powered only by batteries;

to the following:

Cordless vacuum cleaner means a vacuum cleaner powered only by batteries, other than robot vacuum cleaners;

In order to not complicate the regulations unnecessarily the sub categorisation of the cordless category should be kept to a minimum. Two scenarios for the categorisation of cordless vacuum cleaners have been discussed, which are shown in Figure 7.

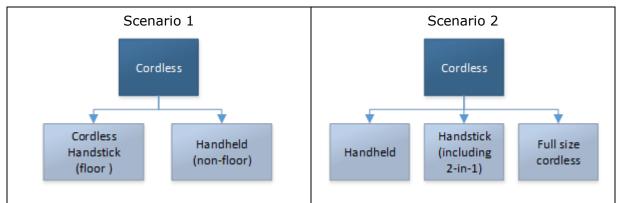


Figure 7: scenario for sub-categorisation of the cordless vacuum cleaner category

In the first scenario, the cordless category is split into only two further categories: those intended for floor cleaning (handstick) and those not (Handheld). The floor cleaner category would include the 2-in-1 stick cleaners (with a detachable handheld cleaner). It is recommended that the two categories in scenario 1 are distinguished based on the ability to vacuum floors, for example something in line with the following:

Cordless floor vacuum cleaner means a cordless vacuum cleaner that can be used for cleaning floors from an upright standing position, including handhelds fitted with any tubes, aggregates or similar that makes it possible to use them for cleaning floor from an upright standing position;

The handheld definition is suggested to be in line with that from the preparatory study:

Handheld vacuum cleaner means a lightweight cordless vacuum cleaner with cleaning head, dirt storage and vacuum generator integrated in a compact housing, allowing the cleaner to held and operated whilst being held in one hand;

Scenario 2 is based on the assumption that the cordless market is split between light duty handsticks, which have significantly poorer performance that mains-operated cleaners, and larger cordless vacuum cleaners with performance similar to a mains-operated cylinder or upright vacuum cleaner. In this scenario it has been suggested to distinguish the cordless floor cleaners into two categories based on their physical characteristics and performance.

Such physical characteristics could include the following:

- Physical size/foot print (Stick < Full Size)
- Weight (Stick < Full Size)
- Receptacle size (Stick < Full Size)
- Performance (air power, cleaning, etc.) (Stick < Full Size)
- Battery size and energy consumption (Stick < Full Size)
- Motor power (Stick < Full Size)
- Design intent (Stick = quick, convenient, light duty)

The problem with such a distinction is that manufacturers could keep their products just out of scope of the category with the strictest requirements, or which allows for a better energy label class. Another problem is how to define parameters such as e.g. receptacle size and battery size, and in general it is recommended to keep any design intent out of the definitions to prevent loopholes and grey areas.

Overall, it is recommended to use the sub-categorisation scenario 1 for simplicity and to avoid loopholes. This is based on inputs form multiple stakeholders, both from the industry and NGOs, that the market is moving towards cordless being used as primary vacuum cleaners with performances that approaches that of mains-operated vacuum cleaners.

It is recommended to include all floor vacuum cleaners in scope of the regulation, since they all have the same purpose (to remove dust from the floor) and the consumers should be able to have this purpose fulfilled with as low energy consumption as possible, no matter which technology they use. According to several stakeholders this will result in a more level playing field in the market.

1.2 **Review of relevant regulations**

1.2.1 Legislation and agreements at EU level

Vacuum cleaners may be addressed, directly or indirectly, by the following EU legislation (non-exhaustive list):

Ecodesign Directive 2009/125/EC

This Directive is relevant for vacuum cleaners as its implementing measures addresses vacuum cleaners directly (666/2013)²⁶, which is the background for this review study.

The tier 1 Ecodesign requirements were applicable from 1 September 2014, and included requirements on annual energy consumption, rated input power, and cleaning performance. In tier 2, applicable from 1 September 2017, requirements on dust reemission, noise, and lifetime of hose and motor were added. These are the same parameters shown on the energy label. The specific requirements and values are shown in Table 3.

Parameters	Tier 1, 2014	Tier 2, 2017
Annual energy consumption AE	< 62 kWh/year	< 43 kWh/year
Rated input power in W	< 1600 W	< 900 W
Dust pick up on carpet dpuc	≥ 0.70	≥ 0.75
Dust pick up on hard floor dpu _{hf}	≥ 0.95	≥ 0.98
Dust re-emission <i>d_{re}</i>		≤ 1%
Sound power level in dB(A)		≤ 80 dB(A)
Hose oscillations in #		> 40 000
Operational motor life time in h		> 500 hours

Table 3: Outline of Ecodesign requirements

Energy labelling regulation (EU) 2017/1369

Regulation 2017/1369²⁷ sets a framework for Energy Labelling and repeals Directive 2010/30/EU. Commission delegated Regulation (EU) No 665/2013 ²⁸ establishes requirements for the labelling and the provision of supplementary product information for electric mains-operated vacuum cleaners, including hybrid vacuum cleaners. This regulation is also the background for this review study.

As the Ecodesign requirements, the energy label was also introduced in two tiers, Label 1 with energy efficiency classes A to G applicable from 1 September 2014, and label 2 with

 ²⁶ OJ L 192, 13.07.2013, p. 24
 ²⁷ OJ L 198, 28.7.2017, p.1
 ²⁸ OJ L 192, 13.07.2013, p. 1

energy efficiency classes A+++ to D applicable from 1 September 2017. The two labels are shown in Figure 8.

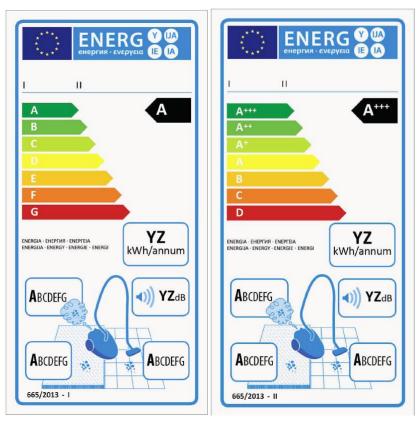


Figure 8: Label 1 (left) and label 2 (right) for vacuum cleaners

The energy efficiency class shown in the energy label is based directly on the annual energy consumption, AE, which is also shown as a value on the label (kWh/annum). The cleaning performance class is based on the dust pick up on carpet and/or hard floor, and the dust re-emission class is based on the percentage of dust that is emitted from the vacuum cleaners to the surroundings. The classification according to the different performance parameters can be seen in Table 4.

Energy Efficiency Class	Annual energy (<i>AE</i>)	Perfor- mance class	dust pick up on carpet (<i>dpu</i> _c)	dust pick up on hard floor (<i>dpu_{hf}</i>)	Dust re-emission (<i>dre</i>)
A+++	<i>AE</i> ≤10,0	Α	<i>dpu</i> _c >0,91	<i>dpu_{hf}</i> >1,11	<i>dre</i> ≤0,02%
A++	10,0< <i>AE</i> ≤16,0	В	0,87≤ <i>dpu</i> _c <0,91	$1,08 \le dpu_{hf} < 1,11$	0,02%< <i>dre</i> ≤0,08%
A+	16,0 <i><ae< i="">≤22,0</ae<></i>	С	0,83≤ <i>dpu</i> _c <0,87	$1,05 \le dpu_{hf} < 1,08$	0,08% <i><dre< i="">≤0,20%</dre<></i>
A	22,0 <i><ae< i="">≤28,0</ae<></i>	D	0,79≤ <i>dpu</i> _c <0,83	1,02≤ <i>dpu_{hf}</i> <1,05	0,20%< <i>dre</i> ≤0,35%
В	28,0 <i><ae< i="">≤34,0</ae<></i>	E	0,75≤ <i>dpu</i> _c <0,79	0,99≤ <i>dpu_{hf}</i> <1,02	0,35% <i><dre< i="">≤0,60%</dre<></i>
С	34,0 <i><ae< i="">≤40,0</ae<></i>	F	0,71≤ <i>dpu</i> _c <0,75	0,96≤ <i>dpu_{hf}</i> <0,99	0,60%< <i>dre</i> ≤1,00%
D	<i>AE</i> >40,0	G	<i>dpu</i> _c <0,71	<i>dpu_{hf} <</i> 0,96	dre>1,00%

Table 4: Vacuum cleaner energy label classifications since September 2017

The dust pick-up cleaning performances for carpet (dpu_c , measured with standard test dust applied to a test carpet according to harmonised test standard) and hard floor (dpu_{hf}) are measured after 5 double strokes²⁹. The annual energy consumption *AE* (in kWh/a) assumes specific energy use per m² (*ASE*, in Wh/m²) at two double strokes (4 passes) for an apartment of 87 m² once every week, at 50 weeks per year (2 weeks holiday/year), with Wh converted to kWh (factor 0.001) per unit of cleaning performance (dpu_c or dpu_{hf} or 50% of both) corrected with a term 0.2 to account for the fact that only 2 strokes and not 5 strokes are used in practice.

$$AE = 4 * 87 * 50 * 0,001 * ASE * \left(\frac{1 - 0,20}{dpu - 0,20}\right)$$

The parameters ASE and dpu have the suffix c when relating to carpet cleaning, hf when relating to hard floor cleaning and gp (50% c + 50% hf) when relating to general purpose.

The Average Specific Energy *ASE* (in Wh/m²) is the average power consumption *P* (in W) measured during the 5 double stroke cleaning test, increased with the average power consumption *NP* of an active nozzle battery calculated as the energy consumption *E* (in Wh) to restore a fully charged battery before the test to its original state after the test, divided by the time t_{bat} (in h) that the nozzle is active during the test, according to the manufacturer's instructions. This total power is then multiplied by the total test time *t* (in h) and divided by the test area *A* (in m²) covered in the test³⁰.

$$ASE = (P + NP) * \frac{t}{A}$$

LVD - Low Voltage Directive ³¹

The Low Voltage Directive 2014/35/EU³², covers electrical equipment with a voltage between 50 and 1000 V for alternating current and between 75 and 1500 V for direct current. For electrical equipment within its scope, the Directive covers all health and safety risks, thus ensuring that electrical equipment is safe in its intended use. Consumer goods with a voltage below 50 for alternating current or 75 for direct current are covered by the General Product Safety Directive (GPSD) (2001/95/EC).

Machinery Directive

The Machinery Directive $2006/42/EC^{33}$ (amended by Directive 2009/127/EC34 and Regulation (EU) No 167/2013) has the dual aim of harmonising the health and safety

 $^{^{29}}$ At nozzle-width on a test area at speed 0.50 m/s ±0.02 m/s, according to EN IEC 60312-1.

³⁰ According to EN 60312-1 the length of the test area is (700 ± 5) mm and the width is the nozzle-width. This area should be multiplied by 10 (eugals 5 double strokes).

³¹ http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:374:0010:0019:en:PDF

³² OJ L 96, 29.03.2014, p.357

³³ http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006L0042-20160420&from=EN

³⁴ http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0127 (with regard to machinery for pesticide application)

requirements applicable to machinery on the basis of a high level of protection of health and safety, while ensuring the free circulation of machinery on the EU market. The revised Machinery Directive does not introduce radical changes compared with the previous versions. It clarifies and consolidates the provisions of the Directive with the aim of improving its practical application. This directive applies to non-domestic products, such as commercial vacuum cleaners.

RoHS Directive

The Restriction of Hazardous Substances (RoHS) Directive 2011/65/EU³⁵ (amended by Directive (EU) 2017/2102³⁶) aims to reduce hazardous substances from electrical and electronic equipment (EEE), including vacuum cleaners, that is placed on the EU market. A number of hazardous substances are listed in the Directive along with maximum concentration values that must be met, contributing to the protection of human health and the environment, including the environmentally sound recovery and disposal of waste EEE.

REACH Regulation

The Regulation on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) ³⁷ Regulation 1907/2006/EC, addresses chemicals, and their safe use, and aims to improve the protection of human health and the environment through a system of Registration, Evaluation, Authorisation and Restriction of Chemicals. The REACH Regulation places greater responsibility on industry to manage the risks from the chemicals they manufacture, import and market in the EU. Companies are required to demonstrate how substances can be used safely and risk management measures must be reported to users. The REACH Regulation also establishes procedures for collecting and assessing information on the properties and hazards of substances and requires that companies register their substances in a central database. The entries in the database are then assessed to determine whether the risks of the substances can be managed. The REACH Regulation allows for some chemicals to be determined "substances of very high concern (SVHC)" due to their large potential negative impacts on human health or the environment. The European Chemicals Agency must be notified of the presence of SVHCs in certain products and the use of SVHCs may then be subject to prior authorisation. Substances can also be banned were risks are deemed to be unmanageable. As such, REACH encourages substitution of the most dangerous chemicals when suitable alternatives have been identified.

 ³⁵ OJ L 174, 01.07.2011, p.88
 ³⁶ OJ L 305, 21.11.2017, p.8

³⁷ http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1907-20140410&from=EN

EMC – Electromagnetic Compatibility Directive

The Electromagnetic Compatibility (EMC) Directive 2014/30/EU³⁸ has the primary aim of protecting the electromagnetic spectrum. The Directive requires products to not emit unwanted electromagnetic interference and to be protected against a normal level of interference. The vast majority of complete electrical products must comply no matter of whether they are mains or battery powered. The EMC Directive does contain exemptions for a range of components with no intrinsic function and some products that are already covered by other directives such as medical, military and communications equipment.

Packaging 94/62/EC39

The packaging directive⁴⁰ was amended by 2004/12/EC⁴¹, 2005/20/EC⁴², Regulation No 219/2009⁴³ and 2013/2/EU⁴⁴), and covers all packaging placed on the market in EU and all packaging waste, whether it is used or released at industrial, commercial, office, shop, service, household or any other level, regardless of the material used.

The WEEE Directive

The WEEE Directive 2012/19/EU⁴⁵,⁴⁶ sets selective treatment requirements for the Waste of Electronic and Electrical Equipment and its components. Vacuum cleaners fall into the scope of the WEEE Directive under category 2 "Small household appliances" of Annex I in the transitional period (from 13 august 2012 to 14 august 2018), and is specifically mentioned in the indicative list of EEE in Annex II^{47} . After the transitional period (from 15 august 2018), vacuum cleaners will fall under the category "Small equipment (no external dimension more than 50 cm)" set out in Annex III, and is specifically mentioned under the "small equipment" category in Annex IV that contains a non-exhaustive list of EEE covered by the Directive. Commercial vacuum cleaners are also covered by WEEE as noted in the FAQ⁴⁸, which notes that the preambular paragraph 9 makes it clear that the Directive covers all EEE used by consumers and EEE intended for professional use.

The WEEE Directive obligates member states to establish and maintain a registry of producers of electronic and electrical products, and the producers to register in each individual EU country. Each year, producers are required to report the amount of EEE they put on the market, as well as pay an annual registration fee, which is intended to finance

³⁸ http://ec.europa.eu/growth/sectors/electrical-engineering/directives/index_en.htm

³⁹ OJ L 365, 31.12.1994, p.10

⁴⁰ http://eur-lex.europa.eu/legal-content/en/TXT/?uri=celex%3A31994L0062

⁴¹ OJ L 47, 18.2.2004, p.26 ⁴² OJ L 70, 16.3.2005, p.17

⁴³ OJ L 87, 31.3.2009, p.109

 ⁴⁴ OJ L 37, 8.2.2013, p.10
 ⁴⁵ OJ L 197, 24.7.2012, p. 38

⁴⁶ Directive 2012/19/EU of the European Parliament And of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE)

⁴⁷ http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012L0019

⁴⁸ http://ec.europa.eu/environment/waste/weee/pdf/faq.pdf

the WEEE handling. Furthermore, Member States shall encourage cooperation between producers and recyclers and ensure that producers provide information free of charge in order to promote design that facilitates re-use, dismantling and recycling of WEEE, its components and materials⁴⁹.

The Battery Directive

The Batteries Directive 2006/66/EC⁵⁰ applies to all types of batteries and sets rules regarding placing on the market of batteries, specifically prohibiting batteries containing hazardous substances such as lead, mercury and cadmium. This means, that from January 1, 2017 it was no longer possible to place on the market battery-operated vacuum cleaners with Nickel-Cadmium batteries. Furthermore, it sets rules for collection, treatment, recycling and disposal of waste batteries.

EPS Regulation

The External Power Supply (EPS) regulation 278/2009⁵¹ is relevant to all battery-operated vacuum cleaners, including cordless handstick and robot vacuum cleaners, as they require an EPS for charging the batteries⁵². The power supply is covered by the EPS regulation, as long as it is not defined as a "low voltage external power supply", having a voltage below 6 V and above or equal to 550 mA. The regulation sets requirements for EPS no-load condition electric power consumption and average active efficiency.

Standby Regulation

The Standby Regulation 1275/2008⁵³ covers household vacuum cleaners since they fall under Annex I, point 1 "Other appliances for cooking and other processing of food, cleaning, and maintenance of clothes"⁵⁴. However, in the FAQ related to the Standby Regulation, it is stated that "The maintenance mode of the battery load in portable appliances (e.g. portable vacuum cleaners) is one of the key functions of the system (battery charge and portable appliance) to avoid discharge of the battery. This is a function beyond reactivation function and information display, and therefore not considered to be standby-mode"⁵⁵. This statement is intended to be affirmed when implementing the changes from the latest review of the regulation. It can therefore be assumed that neither cordless nor robot vacuum cleaners are covered by the Standby Regulation, which require products to switch into a low power mode after a reasonable amount of time after use and not consume more than 0.5 Watts in standby mode.

 ⁴⁹ Article 4 and 15 of the WEEE Directive, <u>http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012L0019</u>
 ⁵⁰ OJ L 266, 26.9.2006, p. 1
 ⁵¹ OJ L 093, 7.4.2009, p.3

 ⁵² http://ec.europa.eu/DocsRoom/documents/4701/attachments/1/translations/en/renditions/native

⁵³ OJ L 339, 18.12.2008, p. 45

⁵⁴ Commission Regulation (EUC) No 1275/2008, Annex 1: List of energy-using products covered by this Regulation

1.2.2 Voluntary agreements at Member State level

The German Blue Angel ecolabel is at the moment the only label active in the EU dealing with vacuum cleaners⁵⁶. This eco-label is awarded to vacuum cleaners that have the following environmental attributes:

- limit values for input power, •
- high dust pick-up and low dust re-emissions,
- low noise emissions,
- avoidance of polluting materials, durable and recyclable design ٠

These Basic Criteria apply to vacuum cleaners for both commercial and household use in line with the Ecodesign and Energy Labelling Regulations. Excluded from the scope are:

- wet, wet and dry, battery-operated vacuum cleaners, •
- robot, industrial and central vacuum cleaners.
- floor polishers, outdoor vacuum cleaners. •

The Blue Angel eco-label requires a motor service life of at least 600 hours, the suction nozzle must survive 1200 falls from as high as 80 cm, the appliance must withstand a threshold and doorpost impact test of at least 500 cycles and the suction hose must survive at least 40,000 deformations. Thereby, the Blue Angel also points the way to an extended service life of products and the corresponding avoidance of waste.

1.2.3 Legislation and agreements at third country level

Mandatory measures

An analysis of the Clasp online database⁵⁷ on measures shows that Iran, Korea, Switzerland and Turkey have introduced mandatory measures for electric vacuum cleaners.

Voluntary initiatives

In Russia a voluntary endorsement label scheme exists for electric vacuum cleaners.

⁵⁶ https://www.blauer-engel.de/en/products/home-living/staubsauger/staubsauger
⁵⁷ http://www.clasponline.org/ResourcesTools/Tools/SL_Search/SL_SearchResults?p=compressors

Economy	Product Type	Scope	Policy Name	Policy Type	Mandatory / Voluntary	Most Recent Effective Date	Test Proce- dures
Iran	Vacuum cleaner	Household Vacuum cleaner (electric)	ISIRI 10672 Household Vacuum cleaner-Technical Specifications and Test Methods for Energy Consumption and Energy Labeling Instructions	Minimum Energy Performance Standard	M	7/22/20 12	NS 5635 (2001)
			ISIRI 10672 Household Vacuum cleaner-Technical Specifications and Test Methods for Energy Consumption and Energy Labeling Instructions	Label Comparative	М	7/22/20 12	NS 5635 (2001)
		ISIRI 10672, Amendment No.1, Household Vacuum cleaner- Technical Specifications and Test Methods for Energy Consumption and Energy Labeling Instructions	Minimum Energy Performance Standard	М	1/1/201 4	-	
Korea (ROK)	Electric	Vacuum cleaner of rated power consumption of 800W ~ 2,500W, and shall be moveable (dry only) Energy Efficiency (Suction power efficiency) shall be measured by the test method in KS C IEC 60312 which is obtained from maximum suction power rate	Energy Efficiency Grade Label for Vacuum cleaners MEPS for Vaccum Cleaners	Label Comparative Minimum Energy	M M	1/1/200 9 1/1/200 9	KS C IEC 60312 KS C IEC 60312
Russia	Electric	 which is obtained from maximum suction power rate divided by power consumption. Household vacuum cleaners with dry filters, intended for cleaning of premises, clothes, carpets and furniture 	GOST 10280-83	Performance Standard Minimum Energy Performance Standard	V	1/1/198 5	GOST 27570.6- 87, art. 6.13 GOST

Switzer- land	Electric	 Applies to vacuum cleaners powered by electricity, including hybrid-type vacuum cleaners. Does not apply to: wet vacuum cleaners, battery-type vacuum cleaners, robot vacuum cleaners, industrial vacuum cleaners and central vacuum; floor polishers; vacuum cleaners for outdoor use. 	EU 665/2013	Label Comparative	M	1/8/201 4	Art 4 e and Append. II and III of (UE) n. 666/2013
	Electric	This Regulation establishes eco-design requirements for the placing on the market of electric mains- operated vacuum cleaners, including hybrid vacuum cleaners. This Regulation shall not apply to: (a) wet, wet and dry, battery operated, robot, industrial, or central vacuum cleaners; (b) floor polishers; (c) outdoor vacuums.	EU 666/2013	Minimum Energy Performance Standard	M	1/9/201 4	Art 4 e and Append. II and III of (UE) n. 666/2013
Turkey	Electric	This Regulation establishes eco-design requirements for the placing on the market of electric mains- operated vacuum cleaners, including hybrid vacuum cleaners. This Regulation shall not apply to: (a) wet, wet and dry, battery operated, robot, industrial, or central vacuum cleaners; (b) floor polishers; (c) outdoor vacuums.	Turkish Official Gazette No. 29236 (transposition of EC 666/2013)	Minimum Energy Performance Standard	M	1/14/20 15	
	Electric	This Regulation establishes requirements for the labelling and the provision of supplementary product information for electric mains-operated vacuum cleaners, including hybrid vacuum cleaners. This Regulation shall not apply to: (a) wet, wet and dry, battery operated, robot, industrial, or central vacuum cleaners; (b) floor polishers; (c) outdoor vacuums.	Turkish Official Gazette No. 29236 (transposition of EC 665/2013)	Label Comparative	M	1/14/20 15	-

1.3 **Review of relevant standards**

This section presents test standards relevant for vacuum cleaners.

1.3.1 Mandate 540

The commission published on 11 December 2015 the standardisation request for vacuum cleaners M/540⁵⁸, which aims to create a harmonized standard (or standards) which cover(s) the requirements of Regulations 666/2013 and 665/2013.

The requested new harmonised standards shall be established in particular, by revising existing harmonised standards for vacuum cleaners making them fit for purpose in the context of Ecodesign and Energy Labelling in relation to the following aspects related to the current scope and requirements of the regulations:

- durability of the hose and operational lifetime of the motor;
- water filter vacuum cleaners;

as well as the following aspects related to potential future scope and requirements for Ecodesign and Energy Labelling Regulation for vacuum cleaners:

- full size battery operated vacuum cleaners; new draft standard "IEC 62885-4 Surface cleaning appliances - Part 4: Cordless dry vacuum cleaners for household or similar use – Methods for measuring the performance" based on the EN 60312-1 for dry vacuum cleaners. The new draft standard IEC 62885-4 is currently at CD stage. It is subject to parallel voting on CENELEC level.
- robot vacuum cleaners; new standard "IEC 62885-7 Surface cleaning appliance -Part 7: Dry-cleaning cleaning robots for household use – Methods of measuring performance" amending the existing test standard IEC (EN) 62929:2014
- measurement of energy consumption, dust pick-up and dust re-emission with a • partly loaded instead of an empty receptacle; A Round Robin Test (RRT)⁵⁹ is being carried out (started November 2017)
- measurement of energy consumption, dust pick-up and sound power level with sufficiently market-representative carpet(s) and hard floor(s).

 ⁵⁸ <u>http://ec.europa.eu/growth/tools-databases/mandates/index.cfm?fuseaction=search.detail&id=561#</u>
 ⁵⁹ Seven test labs are involved

1.3.2 Safety standards

EN 60335-2-2:2010+A1:2013+A11:2012 Household and similar electrical appliances - Safety -Part 2-2: Particular requirements for vacuum cleaners and water-suction cleaning appliances The A11 amendment was prepared by CLC/TC 61: Safety of household and similar electrical appliances. This European Standard deals with the safety under the Low Voltage Directive⁶⁰ of electric vacuum cleaners and water suction cleaning appliances for household and similar purposes, including vacuum cleaners for animal grooming, their rated voltage being not more than 250 V. It also applies to centrally-sited vacuum cleaners and automatic batterypowered cleaners, to motorized cleaning heads and current-carrying hoses associated with a particular vacuum cleaner.

This European Standard EN 60335-2-2+A1:2013+A11:2012 is also the designated harmonised standard for 'rated power input' for residential vacuum cleaners in the Regulations 666/2013 and 665/2013⁶¹, but the Annex ZZ linking the paragraphs of the standard with the regulation is missing.⁶² Furthermore, although the study team did not receive specific comments from stakeholders on the issue, there is a possible loophole in the standard regarding the definition of 'booster setting', which allows (temporary) operation at a wattage higher than the rated power input. Also there is an ambiguity regarding the admissible deviation on 'rated power input' value in the standard vis-à-vis the verification tolerances in the regulations. In paragraph 3.11 there is a proposal to improve the robustness of the definition of 'rated power input' in the context of Ecodesign and Energy Label regulations for vacuum cleaners.

IEC / EN 60335-2-69:2012 Household and similar electrical appliances - Safety - Part 2-69: Particular requirements for wet and dry vacuum cleaners, including power brush for commercial use

International Standard IEC 60335-2-69 has been prepared by subcommittee 61J: Electrical motor-operated cleaning appliances for commercial use, of IEC technical committee 61: Safety of household and similar electrical appliances. The EN version has been harmonised under the Machinery Directive, which is applicable to commercial vacuum cleaners.

This International Standard deals with the safety of electrical motor-operated vacuum cleaners, including back-pack vacuum cleaners, and dust extractors, for wet suction, dry suction, or wet and dry suction, intended for commercial indoor or outdoor use with or without attachments. This standard contains also the test procedure for the determination

⁶⁰ https://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/low-voltage_en

^{61 &}lt;u>https://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/ecodesign/vacuumcleaners en</u> and see also Guidelines accompanying the vacuum cleaner regulations 666/2013 and 665/2013, European Commission, 2014.
62 The Commission remarks in the publication that "This standard needs to be completed to clearly indicate those legal requirements aimed to be covered".

of acoustical noise for the appliances within the scope. It also deals with the safety of centrally-sited vacuum cleaners, excluding the installation of the system. Furthermore, the standard includes vibration and noise test codes, which are safety related items for commercial vacuum cleaners rather than performance criteria.

1.3.3 Material efficiency standards

In December 2015 the Commission issued a standardisation request to the European Standardization organisations regarding Ecodesign requirements on material aspects for energy-related products. The standardisation work is performed in TF 4, CEN-CLC/J WG 10 under M/543⁶³. The set of standards should be ready by March 2019⁶⁴.

1.3.4 WEEE and RoHS standards

ISO 11469:2016 - Plastics - Generic identification and marking of plastics products. The EN ISO 11469 standard identifies specifies a system of uniform plastic material marking system. The standard does not cover every aspect of marking (e.g. the marking process, the minimum size of the item to be marked, the size of the lettering or the appropriate location of the marking) but the marking system described is intended to help identify plastics products for subsequent decisions concerning handling, waste recovery or disposal. The standard refers to ISO 1043-1 for generic identification of the plastics.

EN ISO 1043-2:2011 - Plastics. Symbols and abbreviated terms. Fillers and reinforcing materials. The EN ISO 1043 standard defines abbreviated terms for the basic polymers used in plastics, symbols for components of these terms, and symbols for special characteristics of plastics.

IEC TR 62635:2012 - Guidelines for end of life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment. IEC/TR 62635:2012(E) provides a methodology for information exchange involving electronic and electrical equipment manufacturers and recyclers. The standard also provides a methodology enabling calculation of the recyclability and recoverability rates of to facilitate optimized end of life treatment operations.

EN 50419:2006 - Marking of electrical and electronic equipment in accordance with Article 11(2) of Directive 2002/96/EC (WEEE). EN 50419 contains the product marking requirements needed to ensure compliance with the WEEE Directive. EN 50419 also contains additional information relating to the marking requirements, including positioning, visibility, dimensions, location and referenced documents. The marking requirements are

⁶³ http://ec.europa.eu/growth/tools-databases/mandates/index.cfm?fuseaction=search.detail&id=564 ⁶⁴ http://ecostandard.org/work-on-material-efficiency-standards-for-ecodesign-finally-kicks-off/, https://docs.wixstatic.com/ugd/39a2f0_75eb06c438494c8ea0bb578f5b2f6ef0.pdf

applicable to all manufacturers and producers of electrical and electronic equipment placing products on the EU market.

EN 50625-1:2014 Collection, logistics & treatment requirements for WEEE - Part 1: General treatment requirements. EN 50625 was prepared as part of a series of standards requested in Commission mandate 518 (detailed in section 3.2) which aim to support implementation and effectiveness of Directive 2012/19/EU (WEEE). The standard contains requirements applicable to the treatment of all types of WEEE and addresses all operators involved in the treatment (including related handling, sorting, and storage) of WEEE. In particular, the standard addresses the following issue areas:

- Management principles
 - Technical and infrastructural pre-conditions
 - Training
 - Monitoring
 - o Shipments
- Technical requirements
 - o General
 - Receiving of WEEE at treatment facility
 - \circ Handling of WEEE
 - Storage of WEEE prior to treatment
 - De-pollution (including Annex A normative requirements)
 - De-pollution monitoring (including Annex B normative requirements)
 - Treatment of non-de-polluted WEEE and fractions
 - Storage of fractions
 - Recycling and recovery targets (including Annex C & D normative requirements)
 - Recovery and disposal of fractions
- Documentation

The standard applies to the treatment of WEEE until end-of-waste status is fulfilled, or until the WEEE is prepared for re-use, recycled, recovered, or final disposal.

EN 50574 - on the collection, logistics & treatment requirements for end of life household appliances containing volatile fluorocarbons or volatile hydrocarbons.

EN 62321 series - Determination of certain substances in electrotechnical products The purpose of the harmonized EN 62321/IEC 62321 series of standards is to provide test methods that will allow determination of the levels of certain substances of concern in electrotechnical products on a consistent global basis. EN 50581:2012 - Technical documentation for the evaluation of electrical and electronic products with respect to restriction of hazardous substances

The EN 50581 standard specifies the technical documentation a producer of EEE has to collect for applicable substance restrictions in order to demonstrate compliance with Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). The technical documentation required to meet the standard includes:

- A general product description
- Documentation of materials, parts and/or sub-assemblies
- Information showing the relationship between the technical documents and respective materials, parts and/or sub-assemblies

A list of harmonized standards and/or technical specifications used to prepare the technical documents.

1.3.5 Other relevant standards

This paragraph is intended to give an overview of other standards used to test vacuum cleaners. These can standards for dry, wet or commercial vacuum cleaners, it is a non-exhaustive list that is included to show the big diversity in test standards related to vacuum cleaners.

EN 60704-2-1:2015 "Household and similar electrical appliances. Test code for the determination of airborne acoustical noise. Particular requirements for vacuum cleaners". Note that this standard does not apply to commercial vacuum cleaners, for which noise is measured according to EN 60335-2-69 as a safety criterion under the machinery directive.

This standard applies to electrical vacuum cleaners (including their accessories and their component parts) for household use in or under conditions similar to those in households. This part of IEC 60704 applies as it is to electrical vacuum cleaners operating in dry conditions.

IEC 60704-2-17 "Household and similar electrical appliances - Test code for the determination of airborne acoustical noise - Part 2-17: Particular requirements for dry cleaning robots for household use".

This standard is being developed by IEC SC 59F WG 2 to test airborne acoustical noise for dry cleaning robots and is currently in the ACD stage⁶⁵.

⁶⁵ Approved for Committee draft. http://www.iec.ch/dyn/www/f?p=103:38:4477692311473::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_PROJECT_ID:1395,20,23534

EN 60704-3:2006 "Household and similar electrical appliances - Test code for the determination of airborne acoustical noise - Part 3: Procedure for determining and verifying declared noise emission values".

This part of IEC 60704 describes procedures for determining and verifying the declared values of the noise emitted by household and similar appliances. It applies to all categories of household and similar electrical appliances covered by IEC 60704-1 and IEC 60704-2 dealing with particular requirements for special categories of appliances. It applies to appliances being produced in quantity (in series, batches, lots) manufactured to the same technical specification and characterized by the same labelled value of noise emission.

EN 62826:2014 "Surface cleaning appliances - Floor treatment machines with or without traction drive, for commercial use - Methods of measuring the performance".

This International Standard lists the characteristic performance parameters for walkbehind and ride-on floor scrubbers and sweepers and other floor cleaning machines according to IEC 60335-2-72⁶⁶. This standard does not apply to IEC 60312 series.

The intent is to serve the manufacturers in describing parameters that fit in their manuals, and in their literature. This may include all or some of the parameters listed in this definition document. When any of the parameters listed in this document are used, they are noted as being measurements made in accordance with this document.

EN 62929:2014 "Cleaning robots for household use - Dry cleaning: Methods of measuring performance". This International Standard is applicable to dry cleaning robots for household use in or under conditions similar to those in households. The purpose of this standard is to specify the essential performance characteristics of dry cleaning robots and to describe methods for measuring these characteristics. The standard describes several tests:

- Measuring the dust removal in a box (hard floor and carpets):
- Measuring dust removal in a straight line (hard floor and carpets):
- Autonomous navigation/coverage test

EN 61960-3:2017 "Secondary cells and batteries containing alkaline or other non-acid electrolytes. Secondary lithium cells and batteries for portable applications. Prismatic and cylindrical lithium secondary cells, and batteries made from them". Includes measurement

⁶⁶ Household and similar electrical appliances – Safety – Part 2-72: Particular requirements for floor treatment machines with or without traction drive, for commercial use

methods for battery performance, including electrical measurements, charge measurements and endurance testing in terms of cycle times the battery can withstand.

IEC 62885-2:2016 "Surface cleaning appliances - Part 2: Dry vacuum cleaners for household or similar use - Methods for measuring the performance". IEC 62885-2:2016 is applicable for measurements of the performance of dry vacuum cleaners for household use in or under conditions similar to those in households. The purpose of this standard is to specify essential performance characteristics of dry vacuum cleaners which are of interest to users and to describe methods for measuring these characteristics. This standard is not intended for cordless vacuum cleaners.

A new edition is currently under preparation which will incorporate the new content of EN 60312-1:2017 (like amended durability tests, water filter vacuum cleaners etc.). It should be highlighted that the draft new edition also adopts new tests reflecting better real life and being more consumer relevant. As an example the debris pick-up test from hard floor can be mentioned this is without a predecessor test.

IEC 62885-4:2016 "Surface cleaning appliances - Part 4: Cordless dry vacuum cleaners for household or similar use - Methods for measuring the performance". A standard for cordless (= battery operated) vacuum cleaners is currently under development at IEC SC 59F WG 7. The designation of this new standard will be IEC 62885-4 ED1 Surface cleaning appliances - Part 7: Cordless dry vacuum cleaners for household or similar use - Methods for measuring the performance which is at CD (Committee Draft) level. Publication is expected for 2019-09⁶⁷.

The purpose of this standard is to specify essential performance characteristics of cordless dry vacuum cleaners which are of interest to users and to describe methods for measuring these characteristics. This standard is not intended for mains-operated vacuum cleaners or cleaning robots. For safety requirements, reference is made to IEC 60335-1 and IEC 60335-2-2. This is still a draft standard and the expected date of publication is September 2018. The IEC standard will be submitted for parallel voting at CENELEC.

This standard will be a fragmented standard based on the standard for mains-operated vacuum cleaners IEC 62885-2. That means that the standard for cordless vacuum cleaners only contains the deviations from the standard for mains-operated vacuum cleaners. Most of the tests remain unchanged.

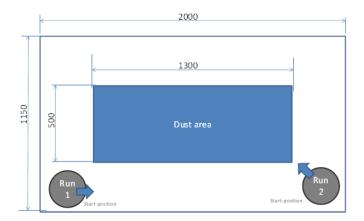
Important changes are:

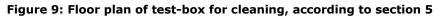
⁶⁷ https://www.iec.ch/dyn/www/f?p=103:23:23463396680231::::FSP_ORG_ID,FSP_LANG_ID:1395,25

- All tests were checked and amended where applicable regarding the duration of a test with respect to the limited runtime of a cordless vacuum cleaner (e.g. time for conditioning, running-in procedures, waiting time and alike).
- As a new test the (effective) runtime of a cordless VC introduced which is the time it takes to go from an original vacuum (negative pressure versus ambient) realised by a fully charged cordless VC, operating in accordance with the manufacturer's instructions for the cleaning performance, to a vacuum that is 40% of the original vacuum. The test shall be performed on both hard floor and carpet. This is presumed to reflect real-life runtime.
- The test cycle for measurement of the energy consumption is adapted to cordless vacuum cleaners. The outcome of this test gives the energy used to clean an area of 10 m².

IEC 62885-4 ED1 also contains a first tentative definition of a 'Non-full size battery operated vacuum cleaner', i.e. a 'handheld' that is not typically used for floor cleaning, as 'a battery operated vacuum cleaner which when fully charged, cannot clean 15 m2 of floor area by applying 2 double strokes to each part of the floor without recharge'. It is mentioned that this definition is not clear enough. Thus it should be extended/amended.

EN 62929:2014 Cleaning robots for household use - Dry cleaning: Methods of measuring performance

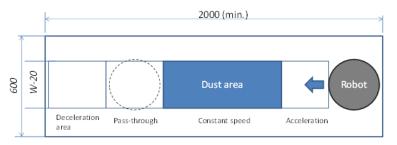

The purpose of this standard is to specify essential performance characteristics of robot vacuum cleaners which are of interest to users and to describe methods for measuring these characteristics.


The standard describes several tests:

• Measuring the dust removal in a box (hard floor and carpets):

Section 5 describes a test with a rectangular dust area of 1300 mm x 500 mm in the middle of a rectangular box of 2000 mm x 1150 mm where the robot has to find its own way in picking up the dust during a test run of 15 minutes. There are two test runs, each with a different starting position of the robot.

This test is designed to give indicative data on the dust removal capability of a robotic cleaner, while allowing it to function and move in an autonomous way in an open area with no obstacles. Navigation strategies differ, so the dust removal result shall always be reported with time taken to deliver that score, to allow for relative comparison between different products.



• Measuring dust removal in a straight line (hard floor and carpets):

Section 6 describes a straight-line cleaning test, similar to that of a mains-operated vacuum cleaner, using a dust area of 700 mm x (Nozzle width -20 mm) and appropriate acceleration and deceleration zones before and after the 700 mm long test area to ensure a constant speed.

This test is designed to isolate the dust removal system of the robot from the autonomous movement, in order to assess only the ability to remove dust. This facilitates direct comparison between robotic cleaners.

Figure 10: Floor plan of straight-line cleaning test according to section 6

Autonomous navigation/coverage test

Section 7 describes the determination of how well the robot covers a typical room area (in cumulative percentage floor area traversed), also measuring multiple floor area passes. The standardised test room configuration has a floor plan of 4 m x 5 m with full height walls, furniture and other obstacles, carpet-areas, etc.. It is described in great detail. In three test runs (each with a different starting position) the robot will get typically half an hour from each starting position to cover the area efficiently and effectively. The robot's movements are measured with a Visual Tracking System (VTS).

The purpose of the autonomous navigation/coverage test is to measure the ability of floor cleaning robots, as defined within this standard, to cover the available floor space against a standardised room configuration. The measure of performance for this test is the cumulative percent floor space traversed during a period of time. Multiple passes of the robot over the same floor space is also measured in this test.

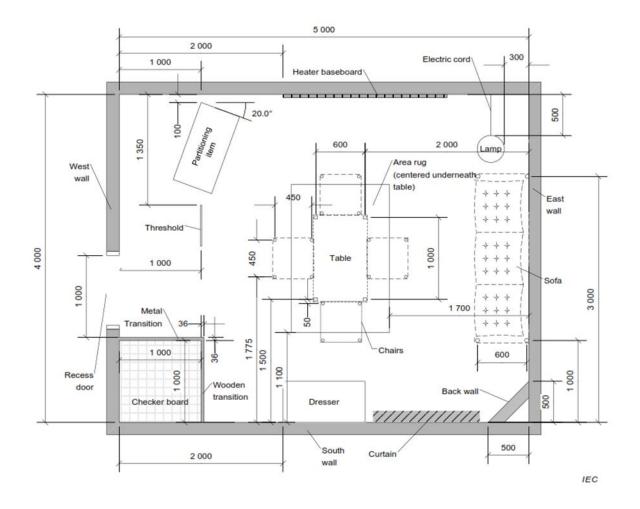


Figure 11: Floor plan for testing autonomous coverage

This standard is neither concerned with safety nor with performance requirements.

A new edition of this standard is currently under development at IEC SC 59F WG 5. The designation of this new edition will be IEC 62885-7 ED1 Surface cleaning appliances - Part 7: Dry-cleaning robots for household use - Methods of measuring performance. which is at CD (Committee Draft) level. Publication is expected for 2019-09⁶⁸.

This draft standard contains new tests like mobility, debris pick-up, fibre removal from carpet and energy consumption while the box test will be removed. Tests like corner/edge cleaning and emissions will be considered for a future edition.

The draft standard describes these new tests:

⁶⁸ https://www.iec.ch/dyn/www/f?p=103:23:23463396680231::::FSP_ORG_ID,FSP_LANG_ID:1395,25

• Mobility

Section 9 describes a variety of obstacles which can be found in a real environment at home. These include a minimum gap to go through or to go under, a maximum transition (floor height offset) and a maximum threshold to go over.

The purpose of these tests is to quantify the capability of a cleaning robot to overcome various standardised obstacles in defined configurations.

Debris pick-up

Sections 10 to 12 describe the determination of the capability of the cleaning robot to pick up debris of various size. Debris can be found in households is often organic material. For the sake of repeatability and reproducibility this organic material is replaced by synthetic material of similar size and weight which is available in defined dimensions. Therefore, set screws, screws and nuts are proposed which are distributed on carpet.

• Fibre removal

Section 13 describes the determination of the capability of the cleaning robot to remove fibre from carpets. Fibres are distributed and embedded on a certain area of the carpet. Fibre removal performance is evaluated based on visual inspection

Exemplary picture of fibre distribution before and after the test

- Energy consumption of a cleaning robot
 Section 14 describes the energy consumption of a cleaning robot in different states.
 These states are:
 - 1.) Docking station without the cleaning robot
 - Considers the energy consumption of the docking station in "stand-by".
 - 2.) Cleaning robot is charged after operating in the navigation test room Determines the energy consumption for one operation in the navigation room which is typically half an hour.
 - 3.) Fully charged robot at docking station Determines the energy consumption of a cleaning robot waiting for the next cleaning task.

State 3.) is an important part of the robot use but details about this state are not yet agreed and are under further consideration.

This test is a general method for measuring and calculating the energy consumption of cleaning robots. This method should be the basis for further definitions of annual energy consumption for cleaning robots and also mobile household robots.

Note that the CD for IEC 62885-7 ED1 is a preliminary draft that still has to go through several stages of comments and approvals and thus can be changed considerably before publication.

IEC/PAS 62611:2009 "Vacuum cleaners for commercial use - Methods for measuring performance". These test methods are applicable to vacuum cleaners for commercial use. The purpose of this PAS is to specify essential performance characteristics of vacuum cleaners being of interest to the users and to describe methods for measuring these characteristics. For safety requirements, refer to IEC 60335-1, IEC 60335-2-2 and IEC 60335-2-69.

Work recently started to replace this PAS by a new performance standard for commercial vacuum cleaners: IEC 62885-8 ED1 Surface cleaning appliances - Part 8: Dry vacuum cleaners for commercial use - Methods for measuring the performance.

1.3.6 Consumer organizations

Besides industry or Market surveillance testing, consumer organisations also do product testing. The harmonised standard EN 60312-1 has been used for many years but they also deviate sometimes and test different aspects. A detailed overview of test performed by consumer organizations is given in Annex A.

Consumentenbond is a Dutch independent consumer organization who have tested cylinder vacuum cleaners⁶⁹. Which? is an independent consumer organization based in the UK. Every year they test over 3600 products and cover the essential features of a product. They perform tests performed on cylindrical and upright vacuum cleaners⁷⁰, robot vacuum cleaners⁷¹ and Cordless vacuum cleaners⁷². Stiftung Warentest is an independent German consumer organization who tests products and services according to scientific methods in independent institutes and publishes the results in their publications. The Stiftung Warentest tested corded vacuum cleaners, battery and robot vacuum cleaners.

⁶⁹ https://www.consumentenbond.nl/stofzuiger/hoe-wij-testen

⁷⁰ http://www.which.co.uk/reviews/vacuum-cleaners/article/how-we-test-vacuum-cleaners

⁷¹ http://www.which.co.uk/reviews/robot-vacuum-cleaners/article/how-we-test-robot-vacuum-cleaners

⁷² http://www.which.co.uk/reviews/cordless-vacuum-cleaners/article/how-we-test-cordless-vacuums

2. Market data: sales and stock

In the following sections the market for vacuum cleaners is analysed in terms of sales, stock and prices. The analyses are based on purchased data from GfK on domestic vacuum cleaners, supplemented with data from stakeholders. Furthermore, assumptions from the preparatory study and the impact assessment are applied where necessary and appropriate.

2.1 Production and trade

The official source of market and stock data is the Eurostat PRODCOM database⁷³, in which data is collected form member states each year. There are a number of PRODCOM codes that relate to vacuum cleaners and associated products and are relevant for the study. However, these product categories, shown in Table 5, group the vacuum cleaner market in a different way than the regulations. This poses an issue, since the PRODCOM data encompasses more products than the scope of the regulations, for instance battery operated vacuum cleaners or wet and dry vacuum cleaners are included in the scope of the PRODCOM data, but not in that of the regulations.

PRODCOM code	PRODCOM Nomenclature (NACE Rev. 1.1, until 2006)							
29.71.21.13	Domestic vacuum cleaners with self-contained electric motor for a voltage $>= 110V$							
29.71.21.15	Domestic vacuum cleaners with self-contained electric motor for a voltage < $110V$							
	PRODCOM Nomenclature – (NACE Rev 2, from 2007)							
29.71.21.23	Vacuum cleaners with a self-contained motor of a power ≤ 1500 watt and having a dust bag or receptacle ≤ 20 litres							
29.71.21.25	Other vacuum cleaners							
29.71.30.10	Parts for vacuum cleaners							

Table 5: PRODCOM and HS6 product codes and nomenclature

New categories were introduced in the PRODCOM database 2007, changing the grouping of the market data, but not the total number of vacuum cleaners included in the database. One of the most important changes in light of this study, is that in revision 1.1 the categories specified that they covered only domestic vacuum cleaners, whereas after 2007 this distinction is not made. For both revisions, however, it is not possible to exclude vacuum cleaners that are not covered by the scope of the regulation, and thus difficult to use these categories or the data directly for this study. PRODCOM data will therefore in this study mainly be used for comparison with data from other sources, and not used for estimating sales in specific product categories.

⁷³ http://ec.europa.eu/eurostat/web/prodcom/data/database

The production and extra-EU trade data for the total of the two NACE Rev 2 categories is given in Table 6. Note that the values and prices relate to the manufacturer selling price.

		Exports			Imports		Production			Apparent consumption		
	Qty	value	price	Qty	value	price	Qty	value	price	Qty	value	price
	mill#	Mill €	€	mill#	Mill €	€	mill#	mill €	€	mill#	mill €	€
2010	9	770	86	68.8	1910	28	12.9	1034	80	72.7	2175	30
2011	9.7	820	85	67.5	2044	30	13.9	1135	82	71.7	2360	33
2012	9.6	864	90	64.6	2259	35	13.1	1098	84	68.1	2493	37
2013	10.2	933	91	67.4	2330	35	13.8	1193	87	71.0	2590	36
2014	9.9	892	90	70.6	2434	34	14.0	1200	86	74.7	2742	37
2015	8.8	862	98	74.6	3113	42	14.1	1151	82	79.9	3401	43
2016	10.3	954	93	77.3	3070	40	14.4	1158	80	81.4	3275	40
2017	6.4	591	92	43.9	1773	40	15.9	1263	80	53.4	2445	46

Table 6: Eurostat, PRODCOM, Total vacuum cleaners with self-contained motor - codes27512123+27512125. Trade data relates to extra-EU only

The table shows and apparent EU consumption of around 70 million units in the period 2010 to 2014. In 2015 and 2016, the apparent consumption jumps to approximately 80 million units, possibly because wholesalers and retailers are stocking up before the second tier of the Ecodesign measure in 2017. Then in 2017, the apparent consumption drops to 53 million units, possibly because retailers selling their stock from the previous two years. Based on this, it is concluded that 70 million units constitutes a plausible long term average apparent consumption for the relevant PRODCOM categories.

Only around half of the quantities in the table relate to vacuum cleaners in scope of the current regulation. The other half includes vacuum cleaners that are explicitly out of scope, such as wet, wet & dry, industrial and central vacuum cleaners. Based on the apparent consumption of vacuum cleaners >1500W in 2017⁷⁴ this fraction is estimated at 5.7 million units. Also out-of-scope, by definition, are small handhelds not for floors (see Chapter 1), USB- or car-battery driven gadgets with a small suction motor, etc. Based on the GfK figures of approximately 40 million products in scope⁷⁵ in recent years and the 5 million out-of-scope products mentioned above, it is estimated that the fraction of small out-of-scope items is in the order of 25 million units.

Based on these estimates the graph in Figure 12 gives a split of the apparent consumption for both categories over the period 2010-2017. Despite the large uncertainty in the

 $^{^{74}}$ the year in which the regulation certainly has eliminated all products >1500W in scope

⁷⁵ This is 35 million units in the current scope and 5 million for cordless and robot products that could possibly be in the new scope

numbers, it is reassuring that the impact of the Ecodesign and Energy Labelling Regulations is clearly visible even from the Eurostat numbers.

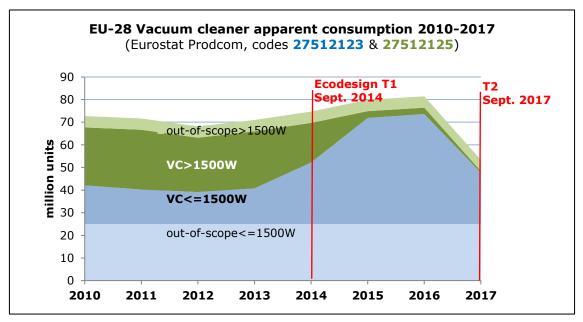


Figure 12: Apparent VC consumption 2010-2017 according to Eurostat PRODCOM, with estimated fractions of products out of scope of the regulation

Regarding production per country the PRODCOM country-specific data show many gaps, probably for reasons of confidentiality. For vacuum cleaners \leq 1500W the EU28 production in 2016 was 11.7 million units, of which Germany 3.2 million, Hungary 3.5 million, Italy 0.7 million. The production data for FR, NL, UK, SV, PL, RO and SI were withheld. For vacuum cleaners >1500W production of 2.7 million units is reported for 2016, of which Italy 0.48 million, Hungary 0.31 and the UK 0.06 million. Other data is zero or withheld.

Imports, not only of these out-of-scope items, play an important role. PRODCOM statistics for EU trade (according to HS6) are the only source to estimate the origin of EU imports and the destination of EU exports. The table and graphs below give the most important EU trade partners for vacuum cleaners in that respect.

Year	Production	Extra-l	EU import			Extra-EU	Export	*Apparent consumption
	EU28	Total	China	Malaysia	USA	Total	USA	EU
2011	669	561	346	148	35	147	20	1083
2012	636	673	408	194	43	189	24	1120
2013	710	697	392	231	51	222	24	1185
2014	808	867	569	189	59	240	28	1435
2015	811	1395	937	298	59	274	32	1932
2016	799	1370	953	267	60	309	33	1860
2017	849	1605	1197	258	67	381	33	2073

Table 7: Value of EU production and selected Extra-EU trade data 2011-2017 in million euros⁷⁶

*= There are deviations between different Eurostat codes, which may lead to deviations max. $\pm 5\%$

vacuum cleaner ≤1500W import value 2017 (total 1606 Meuro) vacuum cleaner ≤1500W export value 2017 (total 380 Meuro)

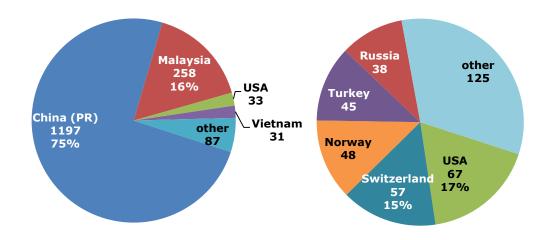


Figure 13: Vacuum cleaner \leq 1500W and <20L receptacle, EU 2017 imports by origin and EU 2017 exports by destination

2.2 Sales data

As mentioned, around half of quantities in the PRODCOM totals table relate to vacuum cleaner products that are not in the scope of the regulation. It was thus imperative to find a more robust source for the EU market. For that reason the sales volumes used for models and calculations in this study are based on purchased market data from GfK. The GfK data is based point of sales data on domestic vacuum cleaners for 22 countries (see Annex B) with an average market coverage of 87% in these countries.

⁷⁶ Eurostat, production data: Prodcom, code 27512123 −vacuum cleaners ≤1500W, ≤20 L receptacle; trade data: EU trade since 1988 by HS6, code 850811; extracted Sept. 2018

The GfK data has a high coverage of the European Market and only six⁷⁷ of the EU-28 countries, representing a total of 3% of the EU population and 1.1% of the BNP⁷⁸, are not included. Considering the coverage in each of the countries included in the dataset, the GfK vacuum cleaner data coverage on EU-level is 84% based on population and 85% based on BNP. This makes the GfK data highly reliable in the sense that it is both precise (collecting specific data from retailers) and accurate (covers a large number of retailers in each country).

The remaining 15% of sales in the EU, not included in the GfK data, was scaled based on the coverage % for each country. This means that for each country with tracked data and e.g. 87% coverage, the remaining 13% was scaled based on the average values for that specific country. For the six member states not included in the data (i.e. the remaining 3% of the population), the average data for all other countries was used to scale to 100% coverage based on population.

The GfK product categories are very much in line with those in the regulations and include the mains-operated '*Cylinder'*, '*Upright'* and '*Handstick mains'* dry vacuum cleaners as well as the battery operated categories that are considered in the study ('*Robot'* and '*Cordless'*). Aggregated EU sales are provided by GfK for the period 2006-2016⁷⁹. For the years 2013-2016 GfK gives a split per product category. GfK does not give figures on commercial vacuum cleaners, but based on corrected data from the 2009 preparatory study and inputs form manufacturers, a share of 12% commercial compared to domestic vacuum cleaners for cylinder and upright types is assumed⁸⁰.

Future sales are based on the yearly sales growth rates calculated from the GfK data from 2006 to 2016, which was 1.6% per year for the entire market including both commercial and domestic products. To make a conservative estimate of future sales, it is estimated that the 1.6% growth in total sales per year, moved toward 0% per year in 2030. However, the growth will be different for different product types.

The data shows that cylinder vacuum cleaners are the prevalent type in the EU with a market share of 68% in 2016, and upright vacuum cleaners are only sold to a lesser extent (7%). The increase in total sales primarily results from the increased sales of handstick vacuum cleaners and to a lesser extent the robot vacuum cleaners, which still make up the smallest market share (4%) despite the increasing sales trend of this category.

⁷⁷ Bulgaria, Cyprus, Latvia, Lithuania, Estonia, and Malta

⁷⁸ <u>https://europa.eu/european-union/about-eu/countries_en</u>

⁷⁹ In the scenario calculations in Task 7 a scaled down version of PRODCOM data will be used, for lack of better data

⁸⁰ The preparatory study assumed a 6% share of PRODCOM data. Because PRODCOM data are too high, it is now assumed that this translates into 11% of the GfK data.

Since the market shares of the different vacuum cleaner types are only available for the years 2013 to 2016, the market split was extrapolated to 2030. Assumptions were made for the continued development of the market shares for 2025 and 2030 based on stakeholder inputs, with linear interpolation of market shares in the years between. This yielded the market shares shown in Table 8. The 2005 market split was calculated from the preparatory study data, and is assumed unchanged for all years prior to 2005.

	2005	2013	2014	2015	2016	2025	2030
Cylinder	81%	77%	76%	71%	68%	54%	45%
Upright	14%	9%	10%	9%	8%	6%	5%
Robot	0%	4%	4%	4%	4%	9%	12%
Handstick mains	2%	4%	3%	4%	4%	6%	8%
Handstick cordless	3%	6%	8%	12%	16%	25%	30%
Total	100%	100%	100%	100%	100%	100%	100%

Table 8: Market shares of household vacuum cleaners

According to vacuum cleaner manufacturers more and more people buy cordless vacuum cleaners. Most buy them with intentions of using them for small cleaning jobs, but end up using them as their main vacuum cleaner. This is also reflected in the sales, where the market for cordless cleaners is expected to pick up speed as it becomes more accepted by users. The newest GfK data (YTD April 2017-2018) shows an accelerating trend with an 11% decrease in cylinder cleaners and a simultaneous increase in of 24% in cordless sales. Based on these data, it is expected that sales of cordless cleaners will exceed that of cylinders in around 2028.

The robot market is not increasing as fast as the cordless market, but is expected to pick up speed as well. This is, however, more uncertain, and a more conservative forecast has been made for robot sales. Based on the above, the following assessments and projections were made for household vacuum cleaners.

Since robot vacuum cleaners were not included in the preparatory study because it was a new technology at the time, the market share was assumed to be 0% for robot vacuum cleaners in 2005. This is consistent with the fact that the first robot vacuum cleaner was introduced to the market first in 1996 and then in 2001, but phased out each time due to poor functionality and high cost, respectively⁸¹. The first robot vacuum cleaner with commercial success was the Roomba, introduced in 2002⁸². It is thus assumed that the market share of robot vacuum cleaners remained in the sub-1% range for approximately

⁸¹ The Electrolux Trilobite in 1996 and the Dyson DC06 in 2001: <u>http://www.vacuumcleanerhistory.com/vacuum-cleaner-</u> development/history-of-robotic-vacuum-cleaner/ ⁸² http://www.irobot.dk/About-iRobot/About-iRobot

five years. The market split shown in Table 8 together with the total market size result in the sales figures (shown as million units) in Table 9. Sales for all years can be seen in Annex C.

Sales in millions	1990	2000	2005	2010	2015	2020	2025	2030
Cylinder domestic	14,81	16,92	29,41	26,53	26,51	22,88	17,98	12,12
Cylinder commercial	1,78	2,03	3,53	3,18	3,18	3,12	3,12	3,12
Upright Domestic	2,61	2,99	5,19	3,60	3,08	2,65	2,40	2,02
Upright Commercial	0,31	0,36	0,62	0,43	0,37	0,33	0,33	0,33
Handstick mains	0,30	0,34	0,59	0,95	1,32	1,93	2,40	3,23
Handstick cordless	0,51	0,59	1,02	1,65	4,48	9,35	13,59	18,18
Robot	-	-	-	0,24	1,53	2,51	3,60	4,85
Total	20,32	23,22	40,36	36,59	40,48	42,76	43,41	43,85

Table 9: Derived vacuum cleaner sales from 1990 to 2030

The graph below combines the PRODCOM data for vacuum cleaners out of scope with the GfK sales data.

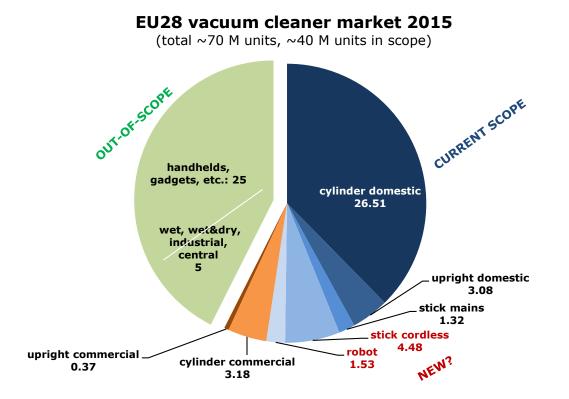


Figure 14: Vacuum cleaner \leq 1500W and <20L receptacle, EU 2017 imports by origin and EU 2017 exports by destination

No split of sales per VC type is available per EU country. Based on anecdotal data it is known that some of the product types, for example stick vacuum cleaners and upright vacuum cleaners, are sold to specific countries. The upright cleaners are primarily sold in the UK, while the handsticks are primarily sold in Italy. According to Euromonitor⁸³, 54% of the handsticks sold in 2016, where sold on the Italian market, followed by 12% in France and 11% in Germany.

2.2.1 Market values

The purchased data from GfK provides data on value of the EU vacuum cleaner market, based on point of sales data, i.e. the end-user prices. The data is shown in Table 10.

Market values, million EUR	2006	2007	2010	2015	2016
GfK market value	3 455	3 652	3 716	5 234	5 418

Table 10: Vacuum cleaner market values

PRODOM collects production data and thus corresponds to manufacturer selling price, import and export prices, whereas GfK collects point of sales data, i.e. the end-user prices. The difference in data collection point means that the calculated average unit price is available for both production and point-of-sales, leading to an estimation of the average mark-up factor, as seen in Table 11. The mark-up factor is defined as the difference in manufacturer selling price and the end-user purchase price, and are used in economic calculations.

Unit prices, EUR	2006	2007	2010	2015	2016
GfK unit price	109	109	112	147	148
PRODCOM unit price	42	49	30	43	40
Mark-up factor	2,57	2,24	3,73	3,4	3,7

⁸³ Bissell, presentation by Ken Lee

2.3 Lifespan

The lifespan of the different product categories is used to determine how long they are in use after purchase, and thus for how long they are a part of the energy-consuming stock.

In the preparatory study, it was determined that the lifetime of domestic vacuum cleaners ranged between 6.3 and 10 years according to various sources and an average lifetime of 8 years was used in that study⁸⁴. A lifetime of 8 years on average is backed up by a 2016survey made by consumer reports, but with emphasis on the variation in lifetime between brands⁸⁵. According to an Austrian study from AK Wien in 2015 the average expected lifetime of vacuum cleaners by consumers is 10.3 years⁸⁶. This does not reflect the actual lifetime, but shows that consumer might expect products to last longer than they actually do. Based on these sources an average of 8 years lifetime with a standard deviation of 2 years is used for mains-operated domestic vacuum cleaners in this study.

For commercial vacuum cleaners no sources were found that reported the lifespan. It is therefore assumed that the three times higher amount of use hours per year compared to domestic vacuum cleaners⁸⁷ will decrease the lifespan in years. One third of the lifespan would be 2.7 years, however it is also assumed that the cleaners are built more robust than domestic cleaners and thus that they can withstand a larger number of use hours over their lifetime. As no specific sources could be found, a rough estimate is that commercial vacuum cleaners can withstand around double the use hours of domestic cleaners (on average), thus leading to a lifespan of around 5 years. Since this number is based on uncertain assumptions, a standard variation of 2 years will still be used.

The lifetime for robot and cordless vacuum cleaners was more difficult to determine because these categories are relatively new in the market. The preparatory study suggested a 5-year lifetime for cordless vacuum cleaners but none for robots. A shorter life expectancy is very likely for both vacuum cleaner types, as they are dependent on a battery as power source, which will not last for a full 8 years. Depending on the battery type, they will last between 300-1000 charging cycles, which again depends on the use frequency and general maintenance. Furthermore, especially robot vacuum cleaners are

⁸⁶ https://www.arbeiterkammer.at/infopool/wien/Bericht_Produktnutzungsdauer.pdf

⁸⁴ Preparatory Studies for Eco-Design Requirements of EuPs (II), Lot 17 Vacuum cleaners, TREN/D3/390-2006, Final Report February 2009, carried out by AEA Energy & Environment, Intertek, and Consumer Research Associates between November 2007 and January 2009. https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/vacuum-cleaners/vacuumcleaners-ecodesign-study-final-report-eup-lot-17-final-report.pdf ⁸⁵ https://www.consumerreports.org/vacuum-cleaners/how-long-do-vacuum-cleaners-last/

⁽https://wien.arbeiterkammer.at/service/studien/Konsument/index.html) 87 Preparatory Studies for Eco-Design Requirements of EuPs (II), Lot 17 Vacuum cleaners, TREN/D3/390-2006, Final Report

February 2009, carried out by AEA Energy & Environment, Intertek, and Consumer Research Associates between November 2007 and January 2009. table 13, page 43. https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/vacuumcleaners/vacuum-cleaners-ecodesign-study-final-report-eup-lot-17-final-report.pdf

complex and use many small parts and advanced technologies (sensors, cameras, etc.), which might decrease the life expectancy.

The predominant battery type in cordless and robot vacuum cleaners are NiMH (Nickel metal hydride) and Li-ion (Lithium-ion) batteries⁸⁸. NiMH batteries usually last between 300-500 charging cycles⁸⁹, which might limit the vacuum cleaner lifetime, but on the other hand replacement batteries are readily available for almost all robot and most cordless vacuum cleaners. Searching the internet for user experience on robot vacuum cleaners, 4-7 years' service life is not unusual, even without replacing batteries. It is assumed that the technology has been improved since the preparatory study, also in terms of lifespans, and a 6-year lifetime is therefore used for cordless and robot vacuum cleaners in this study, but with a standard deviation of 3 years, as this is a quite uncertain approximation.

The lifespans and standard deviations (with presumed normal distribution of lifespans) used in this study shown in Table 12.

Vacuum cleaner type	Average lifespan (Years)	Standard variation (Years)
Cylinder Domestic	8	2
Upright Domestic	o	2
Cylinder Commercial	5	Э
Upright Commercial		2
Cordless	6	3
Robot	0	5

Table 12: Average expected lifetimes and assumed variations used in the stock model, in years

⁸⁸ <u>http://www.pickvacuumcleaner.com/vacuum-cleaner-battery-types.html</u>

⁸⁹ https://www.canstarblue.com.au/appliances/cleaning/vacuum-cleaners/robot-vacuum-cleaners-buying-guide/ , https://www.batteribyen.dk/batterityper-og-teknologier

2.4 Stock

The stock of vacuum cleaners in the EU-28 is calculated based on the sales figures described in section 2.2, and the expected lifespans described in section 2.3. Normal distribution of the lifetime was applied to the sales volume for each vacuum cleaner type each year, which yielded the total EU stock shown in Table 13. Stock for all years can be seen in Annex C.

Stock, million units	2005	2010	2015	2020	2025	2030
Cylinder domestic	172,91	209,97	217,34	206,71	179,59	140,38
Cylinder commercial	14,79	16,72	16,94	16,38	16,25	16,25
Upright Domestic	30,51	34,02	28,54	23,59	21,45	19,42
Upright Commercial	2,61	2,61	2,07	1,78	1,74	2,14
Handstick mains	3,47	5,40	8,36	12,32	16,77	22,37
Handstick Cordless	4,81	7,55	14,19	39,19	68,58	98,07
Robot	0,00	2,21	6,71	11,69	18,38	27,82
Total	229,11	278,48	294,15	311,65	322,75	326,44

Table 13: Stock of vacuum cleaners in EU 28 from 2005 to 2030

When looking at the sales and the stock in a compiled graph (Figure 15), it is seen that the sales (and thus the stock) increases over time, resulting in a total stock of almost 320 million vacuum cleaners by 2030. The stock based on collected data is thus a little lower than calculated in the preparatory study⁹⁰ and Impact assessment⁹¹. The sales and stock figures will be used in subsequent tasks to estimate annual energy consumption.

Assuming a total of 220 million households in EU in 2016, the penetration rate of all types of domestic vacuum cleaners in 2016 was on average 1.27 vacuum cleaners per household⁹². The second vacuum cleaners of most households with more than one, are expected to mostly be robot vacuum cleaners and cordless handstick vacuum cleaners. This fits partly with the specified stock numbers in Table 13, which shows that cordless handstick and robot vacuum cleaners make up approximately 9 % of the stock in 2016.

 ⁹² Total 220 million house holds, <u>http://ec.europa.eu/eurostat/statistics-</u> explained/index.php/File:Private_households_by_household_composition,_2006-2016 (number of households in 1 000 and %25 of household types) new.png

⁹⁰ Preparatory study: 342 million in 2005 (Table 15, Page 44)

⁹¹ Impact Assessment: 288 million units in 2005, 355 million in 2010 (domestic only), (Table 2 Page 19) COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT (2013) with regard to Ecodesign requirements for vacuum cleaners and the Energy Labelling of vacuum cleaners. http://ec.europa.eu/smart-

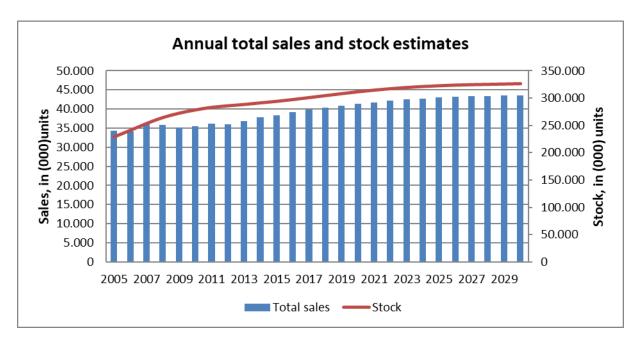
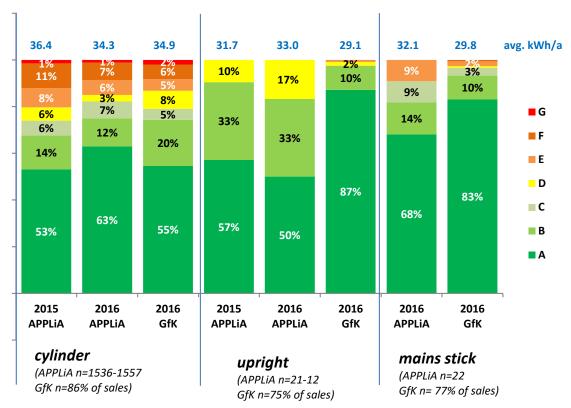


Figure 15: Total annual sales and stock of all vacuum cleaner types in EU-28

2.5 Energy and performance

For energy and performance data the study can draw on surveys by GfK 2013-2016 and the new APPLiA-database with models from 2015 and 2016. Furthermore, a confirmation of these data can be found in test-results from consumer associations like Stiftung Warentest (DE), Consumentenbond (NL) and Test Achats (BE) presented in Annex E. As far as energy is concerned, also the PRODCOM (Eurostat) findings in section 2.1 give an order of magnitude of the impact.


The GfK data is sales weighted and gives a good coverage of 80-85% of sales for 2016, but for the first year of energy labelling (2013) less than 10% of sales is covered and thus strongly biased. GfK covers cylinders ('barrel' and 'sledge' form factor), uprights and mains handsticks. The APPLIA data is based on model count, with a representative population of almost 1600 models for cylinders, but a clear underrepresentation of upright and stick models with only a few dozen models. Main characteristics of the APPLIA database are given in Table 14. In the following sections the label classifications of APPLiA for 2015-2016 and GfK 2016 are presented side by side.

	Cylinders		Upr	ight	Sti	Others	
	2015	2016	2015	2016	2015	2016	2016
Model count	1536	1557	21	12	44	35	22
Energy kWh/yr	35,3	33,4	29,6	30,9	32,7	29,5	29,9
Power W	812	774	754	767	868	730	789
Sound Power dB	77,1	76,5	88,3	86,0	81,3	80,0	83,1

Table 14: APPLIA Database 2015-2016, Model count, average energy, power and sound power

2.5.1 Energy

In 2015 there were three cylinder models in the APPLiA database with an energy use of 20 kWh/year and that, starting from September 2017, would be in the A+ class (ranging from 16-22 kWh/year). Their max power is 600 W, carpet cleaning performance C, hard-floor cleaning and dust-re-emission are class A. The best upright has an energy use of 27 kWh/year, which just puts it in the energy class A (ranging from 22-28 kWh/year). The best stick model is 23 kWh/year.

Energy Class Vacuum Cleaners 2015-2016

Figure 16: Energy Label classification energy 2015-2016 (sources: APPLiA and GfK)

In 2016 the most energy efficient vacuum cleaner was a 485 W hard-floor-only model with annual energy use of 15.8 kWh/year, available in cylinder and in stick version. After 1.9.2017 such a model would be classified as energy label class "A++", with hard-floor cleaning and dust re-emission classes both A. The most efficient general-purpose vacuum cleaner is a 550 W model with AE of 19.5 kWh/year (A+) with carpet cleaning performance class B and with hard-floor cleaning and dust re-emission classes both class A. The most efficient upright vacuum cleaner is a 700 W universal model using 23.3 kWh/year, with carpet cleaning performance class C, hard-floor cleaning performance class A, and dust re-emission class F.

Comparing the APPLIA database figures with the outcomes of the GfK research database it has to be remembered that GfK reported the residential canister/cylinder type to be dominant with 68% of 2016 unit sales (17.5 million units). Uprights held an 8% share (2 million units), robots 4% (1.1 million units), handstick mains 4% (1 million units) and the fast growing handstick cordless 16% (4.1 million units). In the APPLIA database the cylinder types represent 96% of all models. Sticks and uprights are clearly underrepresented at each 2% and have a very small sample size.

According to GfK, 55% of cylinder types sold in 2016 scored an A in energy efficiency (APPLIA 63%), 18% had a B (APPLIA 12%) and over 25% were in the lower classes (APPLIA 23%). In other words, possibly with a delay of one year, there is a fair compatibility between GfK and APPLIA data for cylinder Vacuum cleaners. For uprights and sticks, where e.g. GfK reports 87% A's for energy efficiency of uprights and 83% A's for sticks, the data do not match in any plausible way. This is probably due to the small sample size of the APPLIA database for these types.

According to GfK, calculated by multiplying sales with the lower energy label class limits, the average annual energy consumption of cylinders in 2016 was 34 kWh/a, of uprights 29 kWh/a and of handstick mains 29 kWh/a. According to APPLIA the cylinders in the 2016 model database scored 34 kWh/a, uprights 33 kWh/a and sticks 32 kWh/a.

Both data-sources are incomplete. E.g. the GfK data covers 86% of sales and for the APPLiA database that fraction will not be different. Assuming instead that the missing 14-15% represents the least efficient models (rather than following the distribution of the 85% that is covered), the average for the total sales of mains-operated vacuum cleaners would be 10% higher, i.e. a value of 38 kWh/year.

GfK and APPLiA also give an assessment of the electric power input, as is shown in Table 15. Here the two data sources are further apart, with an overall sales weighted average for all three types of 909 W according to GfK and a model count average of 771 W for Applia. In this case also the consistency with the energy consumption average of 38 kWh/year has to be taken into account and thus, as will be demonstrated in section 4.2.1 the GfK figure of 909 W makes more sense. The sales weighted average price of mains-operated vacuum cleaners is $122 \in$ (see section 2.7.2 hereafter).

GfK power class (assumed avg. W)		Cylinder	Upright	Mains handstick	Average
> 0 <= 600W	(550)	3%	3%	35%	
> 600 <= 700W	(650)	25%	22%	19%	
> 700 <= 800W	(750)	28%	19%	28%	
> 800 <= 899W	(850)	3%	22%	0%	
> 899 <= 1400W	(1150)	30%	31%	16%	
> 1400 <= 1600W	(1500)	8%	1%	3%	
> 1600W	(1700)	4%	1%	0%	
GFK average		936	718	721	909
APPLiA average		774	767	730	771
Unit sales covered GfK,	n mln.	19,59	2,09	1,16	22,84

 Table 15: Average power (in W) of mains-operated domestic VCs EU in the year 2016

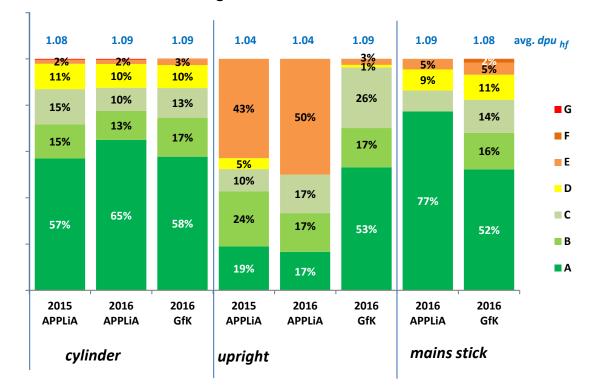

Based on the 2016 distribution of power it is possible to estimate the average power after Ecodesign Tier 2 (Sept. 2017). It is assumed that the models>899W will disappear from the population and will return according to the distribution of the remaining classes. The table below shows the results, which gives an average power of 704, i.e. 23% lower than in 2016. Comparing this e.g. to the 2018 consumer tests in Annex E (693W in NL, 709W in DE) this seems reliable.

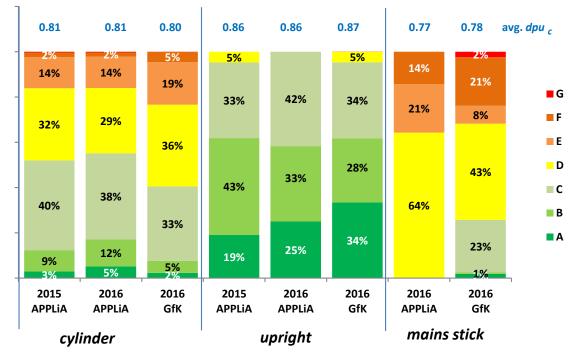
Table 16: Average power (in W) of mains-operated domestic VCs EU in the year 2018, aftertier 2 Ecodesign

GfK power class (assumed avg. W)		Cylinder	Upright	Stick	Average
> 0 <= 600W	550	4.6%	4.4%	43.0%	6.5%
> 600 <= 700W	650	42.6%	33.5%	22.9%	40.7%
> 700 <= 800W	750	47.7%	28.7%	34.2%	45.3%
> 800 <= 899W	850	5.2%	33.4%	0.0%	7.5%
GFK average in W		703	741	641	704
Unit sales covered GfK, in mln.		19.59	2.09	1.16	22.84

2.5.2 Cleaning performance

The GfK-picture for hard floor cleaning performance is similar to the one for energy: 52-56% of vacuum cleaners scored an A, 15-18% a B, for the uprights 28% featured a C while for the canister it was only 14-15% with still a significant number in lower classes in 2016. This gives a reasonable match with the APPLIA data as seen in Figure 17. The salesweighted average dpu_{hf} for mains-operated VCs, all types, is 1.08-1.09.

Hardfloor Cleaning Class Vacuum Cleaners 2015-2016


Figure 17: Energy Label classification hard floor cleaning 2015-2016 (sources: APPLiA and GfK)

For carpet cleaning the situation is different from hard-floor cleaning: According to GfK only 3% of cylinder and mains-powered handstick achieved an A-class rating versus 33% of the uprights in 2016. Especially taking into account the small sample size of uprights these results are similar to those in the APPLIA data-base

Overall, according to GfK the uprights did better in carpet cleaning, with 27% in B and 33% in C. The canister and mains-powered handsticks scored respectively 2 or 5% in B, 32 or 25% in C and the most populated class was D with 37% and 47%, respectively.

Nonetheless, given that 85-90% of mains-operated VC sales are cylinder types, the overall average dpu_c for all types is 0.81 in 2016.

Having said that, the 2016 APPLIA database features 56 'AAAA' cylinder models (A in energy and in all performance classes) and only 1 upright vacuum cleaner and 1 handstick vacuum cleaner with 'AAAA'.

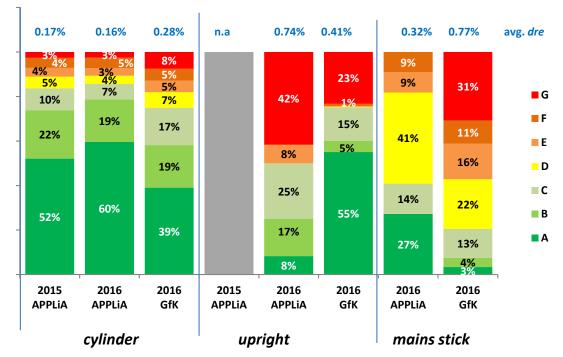

Carpet Cleaning Class Vacuum Cleaners 2015-2016

Figure 18: Energy Label classification carpet cleaning 2015-2016 (sources: APPLiA and GfK)

2.5.3 Dust re-emission

For dust re-emission the classification of cylinders and sticks by APPLiA is similar to that found by GfK, but for uprights it is completely different. In fact, GfK finds that more than 70% of uprights have a class A dust re-emission score, whereas only a few (8%) of upright vacuum cleaners in the APPLIA database have an A.

It is difficult from these data to find a convergent value for dust re-emission of all types, but –giving more weight to the more conservative GfK data— a *dre* value of 0.3% for the average mains-operated VC in 2016 is believed to be representative.

Dust Re-emission Class Vacuum Cleaners 2015-2016

Figure 19: Energy Label classification dust-re-emission 2015-2016 (sources: APPLiA and GfK)

2.5.4 Sound power

The following table gives the sound power data for the EU 2016 from GfK and APPLiA. The values between the data sources are converging, with the cylinder type the most silent and the uprights the noisiest. Taking the more conservative data from GfK as a yardstick it is estimated that the overall sales-weighted average for the EU 2016 is 79 dB(A).

Table 17: Sound power mains-operated domestic vacuum cleaners EU 2016

Noise power classes GfK	Cylinder	Upright	Mains handstick
< 70 db	7%	0%	0%
70-75 db	10%	0%	3%
75-80 db	40%	3%	21%
>=80 db	42%	96%	76%
Coverage (% of the whole population)	92%	75%	81%
GfK Linear average*	79	83	82
APPLiA linear average	77	86	81

*= at class values of assumed 67, 73, 78, 83 dB(A)

2.6 Market structure and -actors

2.6.1 Industry

The household vacuum cleaner market is characterised by a large number of manufacturers, with the main players being Dyson, TTI group (VAX, Hoover and more), Electrolux (including AEG), Miele, Bosch/Siemens, and Philips as well as far east brands such as LG, Panasonic, and Samsung⁹³. The cordless vacuum cleaner market is largely dominated by the same brands.

The robot vacuum cleaner market is to a larger extend dominated by specialised manufacturers such as iRobot, Neato and Eufy RoboVac, even though many of the abovementioned brands today have a robot model.

The European industry association for household vacuum cleaners is APPLiA⁹⁴. Consumers associations are represented at EU-level by ANEC/BEUC. Other NGOs include ECOS, EEB, TopTen, CLASP.

The commercial vacuum cleaner market is characterised by fewer large manufacturers. The main players are Nilfisk, Kärcher, and Numatic, but also Hako, Tennant and FIMAP produce commercial vacs, even though most are wet/dry cleaners, which are not covered by the regulations. The European industry association for commercial cleaning is EUnited cleaning.95

As mentioned in the preparatory study 96, the majority of vacuum cleaners are manufactured in China or other far east countries, and this has not changed. Many of the large manufacturers have their own Chinese-based production facilities, while others purchase from OEM (Original Equipment Manufacturer) companies. The most significant production companies located in western Europe is Numatic⁹⁷, who continues to produce in the UK, and Miele who has a large automatized vacuum cleaner production in Germany. Some brands including VAX, Electrolux and Nilfisk also have production in the US and Mexico.

⁹³ Preparatory Studies for Eco-Design Requirements of EuPs (II), Lot 17 Vacuum cleaners, TREN/D3/390-2006, Final Report February 2009, carried out by AEA Energy & Environment, Intertek, and Consumer Research Associates between November 2007 and January 2009. https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/vacuum-cleaners/vacuumcleaners-ecodesign-study-final-report-eup-lot-17-final-report.pdf + http://www.grandviewresearch.com/industryanalysis/household-vacuum-cleaners-market 94 www.applia-europe.eu

⁹⁵ https://www.eu-nited.net/cleaning/

⁹⁶ Preparatory Studies for Eco-Design Requirements of EuPs (II), Lot 17 Vacuum cleaners, TREN/D3/390-2006, Final Report February 2009, carried out by AEA Energy & Environment, Intertek, and Consumer Research Associates between November 2007 and January 2009. https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/vacuum-cleaners/vacuumcleaners-ecodesign-study-final-report-eup-lot-17-final-report.pdf 97 https://www.numatic.co.uk/about.aspx

There are no SMEs making residential VCs. There are two smaller companies, SEBO and Fimap, that have some commercial dry cleaning VC models in their catalogue, probably as a distributor and not a manufacturer

The following gives an (incomplete) overview of VC companies, headquarters (HQ), most recently published revenue and number of employees as well as brand-names where they differ from the company name:

- TTI (Hong Kong HQ, 6 bn turnover, 22,000 staff, power tools & floor care, VC brands Hoover, Dirt Devil, Oreck, etc.; power tools brands Ryobi, AEG)
- Midea group (China HQ, home appliances & lighting, 100,000 employees, VC brand Eureka since 2016)
- Nilfisk (Denmark HQ, 5,800 employees, >1 bn euros)
- Electrolux (Sweden HQ, 82,000 employees, VC production in Hungary; residential and commercial VC brands AEG, Electrolux, Sanitaire; industrial VC brand Husqvarna)
- Bissel (US, 2,500 employees, \$800 million, market leader US)
- Kärcher (Germany HQ, 12,304 employees, >2.5 bn euros)
- Miele (Germany HQ, 3.9 bn euros, 19,500 employees)
- Dyson (UK HQ, turnover £3.5bn (US\$4.82bn), >8500 employees)
- BSHG (Germany HQ, turnover 13.8 bn, 60,000 employees, VC brands Bosch, Siemens)
- SEB (France HQ, 6.5 bn euros, 33,600 employees, VC brands: Rowenta,
- Fakir (Turkey HQ, site in Germany, VC brands: Fakir, Nilco)
- SEBO (Germany HQ, commercial VCs, small)
- Arçelik (Turkey HQ, 30,000 employees, 4.57 bn euros, VC brand: Grundig)
- Vorwerk (Germany HQ, 12,000 employees, 2,9 bn euros, VC brands: Kobold, Neato Robotics)
- Philips (Netherlands HQ, 74,000 employees, 17,8 bn euros)
- LGE (S-Korea HQ, 56 bn euros, 77,000 employees)
- Samsung (S-Korea HQ, ca. 180 bn euros, 320,000 employees)
- Numatic (UK HQ, 885 employees, 124 million GBP (2013), VC brand: Henry)
- Hako (Germany HQ, only one commercial dry cleaner model in scope)
- Tennant (US HQ, 1 bn \$, 4297 employees, some commercial dry cleaning VCs in scope)
- Fimap (Italy HQ, 100-250 employees, some commercial VC models)
- ECOVACS (China HQ, 5,000 employees, \$270 mln)
- iRobot (US HQ, 920 employees, revenue \$883.9 mln)

Distributor brands, amongst others: Clatronic (DE), Inventum (NL), Princess (NL), Bestron (NL)

2.6.2 Distribution structure

Vacuum cleaners are sold through traditional retail channels, the internet and door-todoor.

In the traditional retail sector the position of larger retail chains such as Metro (Media Markt), Carrefour, etc. is increasing. The European trade sector is represented by Eurocommerce.

According to GfK the internet sales of 'small domestic appliances' (SDA), including (robot) vacuum cleaners, is increasing rapidly. In 2015 the SDA-internet sales value rose 22.8% compared to 2014, whereas traditional retail sales value increased only 2.8%. ⁹⁸

Vorwerk is employing the services of 633,000 independent (door-to-door) advisors to sell its products.

2.6.3 Other actors

Consumers associations are represented at EU-level by ANEC/BEUC. Other NGOs include ECOS, EEB, TopTen, CLASP.

2.7 Consumer expenditure base data

The average consumer prices and costs experienced by the end-user throughout the product lifetime are determined by unit prices in the following categories:

- Purchase price
- Repair and maintenance costs
- Electricity costs
- End of life cost

As there are no installation costs for the types of vacuum cleaners included in the study scope, this will not be included. Each of the other costs are explained in the following subsections. The costs are shown as unit prices for each product, maintenance event, kWh electricity and so on. The total life cycle costs, which also depend on use patterns and frequency of events, is discussed in task 5.

⁹⁸ GfK, ONLINE VS. TRADITIONAL SALES: KEY FACTS FOR TECHNICAL CONSUMER GOODS (TCG) IN EUROPE, Infographic, 2016.

2.7.1 Interest and inflation rates

All economic calculations will be made with 2016 as base year, as this is the latest whole year for which data is available. HICP inflation rates from Eurostat⁹⁹ will be used to scale purchase price, electricity prices etc. to 2016-prices. Furthermore, a discount rate of 4% will be used in accordance with the MEErP methodology.

2.7.2 Consumer purchase price

The consumer price including VAT was calculated from the data on unit sales and total market value collected by GfK. The data was available for the years 2013-2016 and was extrapolated back to 2005 based on the total average. The unit prices reported in the preparatory study were 110 \in for all domestic vacuum cleaner types in 2005 (excluding robots. The average unit price for each vacuum cleaner type, corrected for inflation¹⁰⁰ to be in 2016-prices, are shown in Table 18.

Unit prices, EUR	2005	2010	2013	2014	2015	2016
Cylinder	133	119	110	112	121	119
Upright	210	184	169	177	196	171
Handstick mains	114	99	91	89	94	96
Sales weighted average of mains-						
operated vacuum cleaners	145	126	116	118	128	123
Commercial ¹⁰¹	302	269	250	255	274	271
Robot	216	193	180	200	225	220
Handstick cordless	323	288	268	284	317	344

Table 18: Unit retail prices in EUR for household vacuum cleaners, in 2016-prices for EU28

As seen from the table the prices decreased from 2005 to 2010 (actually the decrease happened from 2006 to 2009), which is assumed to be due to the economic crisis. From 2013 to 2015 the price increased, however, in 2016 the prices actually decreased for cylinder, upright and handstick vacuum cleaners.

The increase in price from 2013 to 2015 is likely to be a result of implementing the Ecodesign and Energy Labelling Regulations, which caused a shift in design criteria from high wattage to low wattage and high dust pickup¹⁰². Such a shift is likely to cause a price increase due to increases in R&D costs, using higher efficiency electric motors and other parts. The small decrease in prices from 2015 to 2016 could be the result of saturation of

⁹⁹ <u>http://ec.europa.eu/eurostat/statistics-explained/index.php/File:HICP_all-items, annual_average_inflation_rates, 2006-2016_(%25)_YB17.png</u>

¹⁰⁰ Using the HICP index from Eurostat

¹⁰¹ Based on an online survey and prices from 58 different commercial vacuum cleaners.

¹⁰² According to the preparatory study, "manufacturers have developed products with higher and higher input wattage. These have been marketed to consumers on the basis that the higher the wattage the better the product cleans to the point that consumers now associate power rating with cleaning efficiency."

the market with high-efficiency products and maturation of technologies allowing for lower manufacturing costs and thus increased competition on price in the market.

It should be noted that the prices in Table 18 are the sales weighted averages of the entire EU, but that the average price covers a larger price variety. An example of this price variation is seen from the prices of the vacuum cleaners tested by the consumer organisations Consumentenbond, Test Achat and Stiftung Warentest, which are listed in Annex E, and range from $69 \in to 335 \in 10^3$. It is thus reasonable to assume that the average price for each country differs significantly, and that on average, the cheaper vacuum cleaners are often chosen by end-users.

For the commercial cleaners, the numbers are more uncertain, as there are only 3 major players in Europe, and thus no sales numbers directly available. Furthermore, most of the far majority of the products are sold as B2B and a fair share with a service/maintenance package, which reduces the sales price of commercial vacuum cleaners significantly. According to the chairman of EUnited cleaning¹⁰⁴ an average unit sales price of 100 EUR for commercial cleaners is consistent with the reported annual sales and total annual turnover in the commercial vacuum cleaner industry. However, based on an online survey the price of commercial vacuum cleaners is assumed to be 331 euro, based on 58 different models, from different countries.

2.7.3 Electricity cost

The annual electricity prices from the PRIME Project ¹⁰⁵ was used for the economic calculations in this study. The electricity prices were reported as \notin /toe (ton of oil equivalent) in fixed 2015-prices. They were therefore converted to \notin /kWh and corrected for inflation to fixed 2016-prices as shown in Table 19. The electricity prices were given for every fifth year and linear interpolation was used in between.

	Price in €/toe (2013-prices)		Price in €/kW	h (2016-prices)
Year	Households	Services	Households	Services
2005	1816	1472	0,159	0,127
2010	1995	1722	0,175	0,151
2015	2207	1820	0,194	0,160
2020	2362	1986	0,207	0,174
2025	2431	2046	0,213	0,179
2030	2467	2081	0,216	0,183

Table 19: Electricity prices with 2016 as base year will be used

¹⁰³ Note that price can be much higher, especially for robot vacuum cleaners

 ¹⁰⁴ <u>http://www.eu-nited.net/cleaning/association/technical-committee/index.html</u> (Chairman: Charalambos Freed, Nilfisk A/S)
 ¹⁰⁵ <u>https://ec.europa.eu/eurostat/cros/content/prime_en</u>

2.7.4 Repair & maintenance costs

Regarding repairs, only few repair shops exist for vacuum cleaners expect those who handle warranty repairs. Also, according to various forums and websites, most vacuum cleaner repairs (exchanging hose, suction head or other external parts) can be performed by the end-users themselves¹⁰⁶. However, some internal repairs (e.g. motor and wiring) requires professional expertise. Therefore, the cost of repair can vary greatly depending on the type of repair.

An internet search was made for various vacuum cleaner spare part providers, to find the retail prices of various spare parts, which are shown in Table 20.

Besides repairs when the vacuum cleaner is broken, a general maintenance is also needed. This consists primarily in changing bags and filters and cleaning the brushes. The price for bags and filters included in the table are thus considered maintenance rather than repair costs. The bags are often sold in packs of different sizes, and according to the data found, the most common is five bags per pack, with a new filter in approximately half of them.

For bagless vacuum cleaners there is no need for purchasing new bags, but the receptacle should be emptied regularly, and for upright vacuum cleaners also the belts should be checked. Furthermore, inspection of the vacuum tube or hose and power cord is recommended. The cost of the regular maintenance is the bags and filters, which vary depending on the vacuum cleaner type. Furthermore, the upright and robot vacuum cleaners especially, would need new brushes and belts as part of the maintenance.

¹⁰⁶ https://www.nettoparts.dk/shop/svaerhedsgrad-stoevsuger-14550c1.html

		Price					
Spare part type	Min	Max	Average				
Wheels	2,3	50,9	18,8				
Switch	3,7	46,9	14,6				
Cable/rewind	9,5	96,7	31,1				
Motor	20,0	147,7	54,8				
Carbon brush	5,4	53,5	12,6				
Heads	9,3	137,0	48,9				
Bag frame	4,0	36,2	17,5				
Hose and grips	18,1	107,4	48,2				
Belts (upright)	2,3	18,9	6,7				
Brush (uprights)	6,8	35,7	18,1				
Batteries (robot)	17,1	120,8	59,0				
Brush (robot)	13,3	45,9	27,6				
Filters (Robot)	18,7	26,7	24,1				
Battery charger	5,0	88,9	23,8				
Bags 5-pack			8,6				

Table 20: Vacuum cleaner spare part retail prices

In cases where vacuum cleaners need to be repaired by a professional, the average EU average labour cost in the category "*Industry, construction and services (except public administration, defence, compulsory social security*)" is used, as shown in Table 21. The labour cost levels are based on the latest Labour Cost Survey (currently 2012) and an extrapolation based on the quarterly Labour Cost Index (LCI). The data covered in the LCI collection relate to total average hourly labour costs¹⁰⁷.

	2005	2010	2011	2012	2013	2014	2015	2016
EU-28 countries, EUR/h	24,5	24,6	24,5	24,5	24,4	24,6	25,1	25,3

For bags and filters, it is assumed that bagged vacuum cleaners use two bags per year, while bagless cleaners use two filters in their lifetime, assuming that the filters can be cleaned instead of exchanged for most of the time.

The overall lifetime expenses connected with repair and maintenance are assumed to be 20 euro per year for domestic mains-operated vacuum cleaners and 31 euro for commercial cleaners. These prices do not include the price of bags and filters, which is expected to be

¹⁰⁷ http://ec.europa.eu/eurostat/cache/metadata/en/lc_lci_lev_esms.htm#unit_measure1475137997963

25 € and 40 €, respectively. The repair and maintenance cost can be difficult to quantify as some products are never repaired and others may be repaired more than once.

2.7.5 End of life costs

Since vacuum cleaners are covered by the WEEE Directive and producers are responsible for paying a WEEE tax or in some other way finance the EOL treatment, it is assumed that end-users will not experience any further EOL costs. The WEEE tac paid by manufacturers is assumed to be reflected in the sales prices of vacuum cleaners to end-users. In the enduser life cycle cost calculations, EOL cost will therefore be set to zero.

2.8 Conclusions/Recommendations

Based on the availability of data and increasing market shares of the cordless and robot vacuum cleaner types, the results from Task 2 does not give rise to refining the product scope of the study.

3. Users

Task 3 looks at the consumer side of the products and describes the use patterns in terms of how and how much end-users use the different types of vacuum cleaners. It also compares the use patterns to the test methods, to assess how well the test methodologies reflect the user needs and how relevant they are to end-users.

3.1 Use pattern of mains-operated cleaners

The use pattern for the vacuum cleaners included in the scope of the current regulations (i.e. the mains-operated vacuum cleaners), was determined in the preparatory study with the following parameters:

- Average floor area covered per cleaning cycle: 87 m2
- Average strokes over floor: 2 double (floor covered 4 times)
- Average cleaning cycles per year: 50
- Average duration of cleaning cycles: 1 hour
- The performance will influence the time spend cleaning

These parameters lead to the following formula for calculating annual energy consumption:

$$Annual \, Energy = 4 * 87 \, m^2 * 50 * 0,001 \, \frac{kWh}{Wh} * Average \, Specific \, Energy \, \frac{Wh}{m^2} * \left(\frac{1 - 0,20}{dpu - 0,20}\right)$$

The assumed average floor space for European homes of 87 m² seems to have increased based on 2012 statistics, which showed the average dwelling size was around 96 m^{2 108}. Also the 2014 study on building heat load for HVACs¹⁰⁹ showed that the floor area was 4.8% higher than in the vacuum cleaner impact assessment (corresponding to around 92 m²). However, it is not recommended to change the formula in the regulations based on a this relatively low difference, considering the uncertainties in the numbers, the complications it would create to go from one formula to another, and the fact the energy labels and Ecodesign limits would be scaled accordingly, meaning that there would be no de facto change in the requirements in terms of Wh/m². Throughout this study calculations are made with the existing formula and 87 m².

The behavioural aspects such as the number of cleaning cycles per year, number of times the nozzle passes over the floor (4 in the formula), and the assumption regarding prolonged cleaning time with lower dust pick-up are more difficult to measure quantitatively. However, a large survey was conducted by the industry organisation APPLiA that considered these aspects. Both industry members and consumer organisations have

¹⁰⁸ <u>https://ec.europa.eu/eurostat/statistics-explained/images/1/1e/CH3_PITEU17.xlsx</u> and

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=People_in_the_EU_-_statistics_on_housing_conditions ¹⁰⁹ https://ec.europa.eu/eurostat/statistics-explained/index.php?title=People_in_the_EU_-_statistics_on_housing_conditions

had the opportunity to comment on the aspects questioned in the survey in order to achieve robust results, and the survey itself was conducted by InSites Consulting. Compared to the values determined in the preparatory study, the APPLiA survey showed the following:

- Average floor area per home: 70% between 51 m^2 and 150 m^2
- Percentage vacuuming the house at least once per week: ~85%
- Average duration of vacuum cleaning per weeks: 73 minutes

Even though none of the parameters are directly comparable to the ones in the formula, the results indicate that the assumptions in the formula are within the same span. The only directly comparable parameter is the time spend cleaning, which does not enter directly into the regulation formula, but is an underlying assumption. The APPLiA survey shows that the time spend vacuum cleaning is on average 73 minutes per week, compared to 1 hour assumed in the preparatory study. This is in line with the data showing increased floor area to be vacuumed.

Some stakeholders have argued that consumers often over-estimate the time spend cleaning compared to how long the vacuum cleaner is actually on. In one survey from the US where 80 families answered that they cleaned around 50 minutes per week, meters on the vacuum cleaners showed a cleaning time of around 15 minutes per week. However, the APPLiA survey applied not only a quantities survey (online), but also a qualitative ethnographic survey, where consumers kept a 'diary' of their vacuum cleaning. This qualitative survey asked more in-depth questions, which confirmed that the that the results reflected the actual cleaning time. This is considered an important difference together with the much larger number of participants and the geographic coverage. However, by not changing the formula, which is based on average area, the additional 13 minutes will not be considered in the energy calculations.

Based on the above findings the use pattern shown in Table 22 is assumed for mainsoperated vacuum cleaners in the calculations in this study. While the time spend cleaning is not used directly in energy calculations, the floor area is, which might give rise to slightly different annual energy (AE) values than calculated with the current formula.

Parameter	Value
Average floor area covered per cleaning cycle	87 m ²
Average strokes over floor	4 (2 double)
Average cleaning cycles per year	50
Average duration of cleaning cycles	73 minutes
Influence of performance on the time spend	(1-0,20)
cleaning	$\left(\frac{dpu-0,20}{dpu}\right)$

 Table 22: Use pattern for mains-operated domestic vacuum cleaners

3.1.1 Formula for calculating annual energy consumption for mains-operated cleaners While the use pattern and cleaning habits are important factors of the annual energy calculation, other factors are important as well. One is the calculation of the ASE (Average Specific Energy Consumption) and the other is the *dpu* (dust pick-up).

For general purpose vacuum cleaners, the annual energy consumption is calculated as an average of the measured carpet and hard floor energy consumptions and performances. Manufacturers can also choose to specify their products as only for hard floor or only for carpets, thus calculating the AE based on only the one relevant measurement.

It has been argued that the results are skewed towards the hard floor test, as it is possible to achieve above 100% dust pick-up in the hard floor test, but not in the carpet test. This could, however be alleviated with more consumer relevant testing by introducing also a "debris" test as described in section 3.10.2.

Another, opposing, argument has been made that *more* emphasis should be on the hard floor performance and energy consumption, and that the current 50/50 split between hard floor and carpet should be aligned with the average floor area of each type in Europe, i.e. around 80/20 split of hard floor/carpet performance. However, introducing such a difference in weight of the floor types would result in vacuum cleaners with low carpet performance being able to obtain high energy label ratings. Since carpet performance is parameter in which it is most difficult to achieve high rankings, it is not recommended to diminish its influence on the label rating, in order to not undermine the trustworthiness of the Energy Labelling. Furthermore, consumers purchasing a general purpose vacuum cleaner will most likely have both floor types in their home, and should not have to compromise with carpet performance, even if only 20% of their floor is covered with carpets.

Dust pick-up in the formula

Since the formula includes the performance of the vacuum cleaner, i.e. the dust pick-up, it indicates the efficiency, assuming that the end-user will spend longer time cleaning if the dust pick-up is lower, hence consuming more energy¹¹⁰. This makes the formula more complex, but it also gives a more realistic calculation of energy consumption than if not taking performance into account. According to the organisations Topten¹¹¹, however, it is unclear if end-users really du adjust their cleaning habits to the performance of the vacuum cleaners¹¹², or if they will continue to vacuum as per their current habits. They further argue that for other products there are precedence for not mixing the energy consumption

¹¹⁰ <u>http://www.topten.eu/uploads/File/Deliverables%20ACT/D2_1_Criteria_Paper_Vacuum_cleaners.pdf</u>

¹¹¹ <u>http://topten.eu/</u> ¹¹² <u>http://www.topten.eu/uploads/File/Deliverables%20ACT/D2 1 Criteria Paper Vacuum cleaners.pdf</u>

and performance into a single parameter. Consumer organisations have argued that the *dpu* performance could be tackled through Ecodesign requirements alone, instead of being a part of the AE formula.

The difference between vacuum cleaners and other products, such as dishwashers or washing machines, is that there is no pre-installed programme with a specific duration that can be referenced, but the cleaning time is fully dependent on the user. It therefore seems reasonable to assume that the end-user will clean until the surface is perceived as "clean", which would take longer the lower the dust pick-up performance. Since the purpose of vacuum cleaners is to remove dust, and products should be compared equally, not having the dust pickup in the formula would make it possible for vacuum cleaners with very small motors to achieve the best energy class, without actually achieving the purpose.

The opposite argument, that there is too little emphasis on the dust pick-up in the energy label formula, has been made by industry members, who argue that picking up dust is the main purpose of a vacuum cleaner. The dust pick-up is therefore considered to be an important part of energy efficiency, which is defined as the ratio between performance and energy consumption. It is argued that improving dust pick-up enough to improve the energy class of a product is so much more expensive than putting in a smaller motor, that the design strategy will almost always be the latter. Therefore there is a risk that end-users purchasing an energy label A product, might not get the performance they expect, especially considering the issues with the dust pick-up tests. The same argument is used the other way around, stating that vacuum cleaners with high performance in the *dpu* tests might have issues with high motion resistance, which also affect the user experience negatively.

Based on the above considerations it is not recommended to change the formula, but rather focus on improving the reliability of the measurements, which are used in the formula (such as the dust pickup) and to potentially add tests and Ecodesign requirements that improve consumer relevance as discussed in section 3.10.

3.2 Use patterns for commercial vacuum cleaners

In the preparatory study, the commercial vacuum cleaners were assumed to have a different use pattern than the domestic cleaners. In total it was estimated that a commercial cleaner is 1500 hours per year throughout a lifetime of 8 years. This yields an average of 187,5 hours per year. However, according to commercial vacuum cleaner manufactures this is too few hours per year, since an average year has around 260 working days, and professional vacuum cleaners are not used less than one hour per day. However, the total of 1500 hours over a lifetime might be realistic. Hence, the difference is the lifetime, which is assumed to be 5 instead of 8 years in this study, as also mentioned in

chapter 2.3. This gives 300 annual use hours, which corresponds to around 1.15 hours (~70 minutes) per workday.

Parameter	Value
Average floor area covered per cleaning cycle ¹¹³	87 m ²
Average strokes over floor	4 (2 double)
Average cleaning cycles per year	260
Average duration of cleaning cycles	70 minutes
Influence of performance on the time spend cleaning	$\left(\frac{1-0,20}{dpu-0,20}\right)$

Table 23: Use pattern for commercial vacuum cleaners

3.2.1 Formula for calculating annual energy consumption for commercial cleaners Despite of the recognition of this difference in use pattern between commercial and domestic vacuum cleaners, the same formula is used for both types of products in the current regulation. This is necessary for the sake of the energy label, in order for consumers to be able to compare products between these two categories. However, in the modelling of energy consumption and saving potentials, the commercial use pattern will be used for commercial vacuum cleaners, assuming 300 hours of cleaning per year.

3.3 Use pattern of cordless vacuum cleaners

Since cordless vacuum cleaners are often lighter in weight and designed for ease of use for the consumer, it is reasonable to assume that they are often used for lighter cleaning tasks, which implies shorter run times, but with an increase in the number of cleaning cycles. Furthermore, cordless vacuums often do not have sufficient run time to run for as long as mains-operated (50-73 minutes), as most cordless vacuum cleaners have a battery life of 15-40 minutes while only a few can run for up to 60 minutes per time, and not at the highest power¹¹⁴.

Less research exist about how cordless vacuum cleaners are used than for mains-operated, however a few sources are available, primarily from manufacturers. One survey shows that cordless cleaners are used for around 20 minutes per cleaning cycle, but several times a week. Both this and other sources agree that the average use frequency of a cordless cleaner is 4 times per week¹¹⁵. Assuming that they are used for 20 minutes each time, gives an average of 80 minutes per week (compared to the 73 minutes mains-operated are used).

¹¹⁴ <u>http://www.which.co.uk/reviews/cordless-vacuum-cleaners/article/corded-vs-cordless-vacuum-cleaners</u>
 ¹¹⁵ Based on stakeholder inputs in the study

¹¹³ This is based on the assumption that the nozzle is moved with the same speed over the floor as for domestic cleaners

While the cordless vacuum cleaners are used more frequently and a bit longer in total, it is assumed that they are used to clean the same area as mains-operated per week, since this is based on average home sizes in Europe. Also the assumptions of 2 double strokes and the influence of performance on the cleaning time are assumed to be similar to that of mains-operated vacuum cleaners.

The use pattern for cordless vacuum cleaners used for calculations in this study, based on the available information, is shown in Table 24.

Parameter	Value
Average floor area covered per cleaning cycle ¹¹⁶	87/4 = 21,75 m ²
Average strokes over floor	4 (2 double)
Average cleaning cycles per year	200
Average duration of cleaning cycles	20 minutes
Influence of performance on the time spend cleaning	$\left(\frac{1-0,20}{dpu-0,20}\right)$

Table 24: use pattern for cordless vacuum cleaners

3.3.1 Formula for calculating annual energy consumption for cordless vacuum cleaners

Besides the above factors, the fact that cordless are battery powered means that also other parameters are important for their use. One is the battery time, i.e. how long the vacuum cleaner can be used before the battery needs charging. Another is the charging time, which influences how long it takes until the vacuum cleaner can be used again. The remaining time it is assumed that the cordless vacuum cleaners are standing in the charger, fully charged, only using power for maintenance charging to make up for the battery selfdischarge.

While the cleaning time is determined by use patterns, the charging time is determined by technical characteristics. Based on inputs form stakeholders the average weekly time spend charging and in maintenance mode (seen in Table 25) has been determined. This is based on an average of hard floor and carpet cleaning.

¹¹⁶ This is based on the assumption that the nozzle is moved with the same speed over the floor as for domestic cleaners

Table 25: Average annual running hours in different modes for cordless vacuum cleaners

	Average time per week	Average time per year
Cleaning (standby of dock without cordless)	80 minutes	70 hours
Charging	15 hours	780 hours
Charged and docked	152 hours	7910 hours

In the current draft standard for the cordless vacuum cleaner test, the energy consumption is measured by running the fully charged cordless cleaner for five minutes on the carpet / hard floor (while measuring the dpu) and then measure the energy necessary for a full recharge. This way of measuring thus takes into account the efficiency of the power supply, and since the test area is known, an average ASE in kWh/m² is easily derived.

While this could be used for a simple energy calculation, it would not be comparable with the AE value calculated for mains-operated vacuum cleaners. However, using the AE formula directly would not reflect the annual consumption of cordless vacuum cleaners because of the many hours spend in maintenance mode. It is therefore suggested to add the maintenance mode consumption to the cleaning consumption of cordless vacuum cleaners, and to base the hours spend cleaning / charging / in maintenance mode on the above data. The formula would thus, without changing the area, be:

$$AE = 4 * \left(\frac{87}{4}\right) * 200 * 0,001 * ASE * \left(\frac{1 - 0,20}{dpu - 0,20}\right) + \frac{M_h * 7910}{1000}$$

Where M_h is the maintenance consumption in "charged and docked" mode in watts. In order to make the calculations comparable, the same area of cleaning per week is assumed, but spread over more cleaning cycles. Despite the difference in use pattern, the total area covered each year would be 4*87*50=17400 for mains and 4*21,75*200 = 17400 for cordless, hence ensuring the comparison of the two types. This will thus be how the energy consumption for cordless vacuum cleaners is calculated in this study.

Regarding the measurement data needed, the maintenance mode power consumption measurement is not yet part of the draft standard, but it should be one of the less complicated tests to develop. A *dpu* test has been drafted for cordless vacuum cleaners, which also gives the *dpu* in %, however, there are some differences in the measurement criteria es explained in section 1.3.

3.4 Use pattern of robot vacuum cleaners

Since robot vacuum cleaners need no human interaction during the cleaning cycle they can run at times when no one is home, which typically leads to a larger number of cleaning cycles. All robot vacuums placed on the market today has a timer setting, making it possible to schedule cleanings during for instance the work day¹¹⁷. Many users therefore run their robot vacuum cleaner every day, some run it 5 days a week, while a few runs it weekly^{118,119}. Different sources report different use patterns but in this study it is assumed that they run a full cleaning cycle (until the battery is discharged/room is fully covered) four days per week, based on the different inputs received.

Most robot cleaners have a declared run time of 60-90 minutes on a fully charged battery reported at time of sales, i.e. when the battery is new. A comparison of 20 different models showed an average declared run time of 70 minutes. However, this value does not take into account gradual deterioration of the battery or mention the load of the motor while measuring run time. Hence over the course of the lifetime of a robot vacuum cleaner and considering that it might operate at various loads, it is assumed that average cycle time is far less than the declared, around 30 minutes. Furthermore, most robots cannot cross doorsteps and thus when started in one room, cannot cross to another after the room has been cleaned. With mapping technology determining when the room has been fully covered it is assumed that the robot will finish the cleaning cycle once this happens.

Parameter	Value
Average floor area covered per cleaning cycle ¹²⁰	87/4 = 21,75 m ²
Average cleaning cycles per year	200
Average duration of cleaning cycles	30 minutes
Influence of performance on the time spend cleaning	$\left(\frac{1-0,20}{dpu-0,20}\right)$

Table 26: use pattern for robot vacuum cleaners

3.4.1 Formula for calculating annual energy consumption for robot vacuum cleaners When the robot vacuum cleaner is not active (cleaning) or charging, it is standing fully charged in the docking station. The same three power modes as for cordless vacuum cleaners are therefore relevant for robot cleaners. Since no data could be found for charging times of robots, it was assumed that the ratio between cleaning and charging

¹¹⁷ https://www.robotcleanerstore.com/pages/robot-vacuum-cleaners-frequently-asked-questions

¹¹⁸ http://www.explainthatstuff.com/how-roomba-works.html

¹¹⁹ https://www.reddit.com/r/roomba/comments/669dr5/how_often_do_you_use_your_roomba/

¹²⁰ This is based on the assumption that the nozzle is moved with the same speed over the floor as for domestic cleaners

time is the same as for cordless cleaners. The assumptions for robot cleaners are summarised in Table 27.

	Average time per week	Average time per year
Cleaning (standby of dock without cordless)	120 minutes	100 hours
Charging	22,5 hours	1125 hours
Charged and docked	143,5 hours	7535 hours

 Table 27: Average annual running hours in different modes for robot vacuum cleaners

Even though an average number of cleaning cycles per year and area covered per cleaning cycle can be found for robot cleaners, it is not directly comparable to that of cordless and mains-operated, because the robots drive around autonomously. The assumption of 2 double strokes, i.e. covering the area 4 times in total, can therefore not be assumed for robot vacuum cleaners.

As opposed to manually handled vacuum cleaners, coverage of the area is an important performance parameter for robot cleaners. How well the floor is covered depend highly on the robot navigation system. Especially some of the older navigation technologies can result in the vacuum cleaner not covering all of the floor, which of course compromise the performance in terms of cleaning. For example, if the robot does not, in an entire cleaning cycle, drive over 4 m² out of a 20 m² room, the room coverage can be said to be 80%.

Despite of the differences in how robot vacuum cleaners cover the floor in comparison to manually handled vacuum cleaners, the energy calculations still need to be comparable. Following the same logic as for the commercial and cordless vacuum cleaners, the area covered each year still needs to be comparable. However, in the calculation for robots, the room coverage should be included in a way where low room coverage leads to higher energy consumption because it de facto decreases the average cleaning area, and having to clean also this part would require extra energy. Also the maintenance mode and charging times are different for robots than for cordless cleaners as seen in Table 25 and Table 27.

Where the cordless cleaner draft test standards make it possible to calculate and ASE value (in Wh/m²) like for mains-operated vacuum cleaners, this is not the case for robot vacuum cleaners. Instead, the draft test standards specifically define a 20 m² test room, lets the robot clean it, and measure the energy consumption for charging the battery afterwards. The energy measure is thus rather energy per cleaning cycle instead of energy per square meter.

A suggestion for a formula for annual energy consumption for robot vacuum cleaners, which is used in energy calculations in this study is the following:

$$AE = \left(\frac{E_{measured}}{20}\right) * \left(\frac{87}{4}\right) * 200 * \frac{1}{RCF} * 0,001 * \left(\frac{1 - 0,20}{dpu - 0,20}\right) + \frac{SB * 7535}{1000}$$

Where $E_{measured}$ is the output from the test method, i.e. measured re-charging energy after cleaning the 20 m² test room. This number is then divided by 20 m² and multiplied with the average area assumed to be cleaned in an average robot cleaning cycle. This should be consistent with the area used for the other product types. The energy consumption is multiplied with 1/RCF, which is the Room Coverage Factor in %. A draft test method has also been developed to measure this factor. Even though the dust pick-up might not affect the robots cleaning behaviour, the dust pick-up needs to be included in the formula in a way where decreased dust pick-up gives a higher energy consumption, due to lower efficiency of performance.

Since the dust pick-up test for robot cleaners is somewhat different from those for manually handled vacuum cleaners, the inclusion of the *dpu* factor in the equation might also be included differently. However, for the sake of comparison it is kept similar for all products in this study. Furthermore, as explained in section 1.3 there are considerable differences in how the *dpu* can be measured for a manually operated vacuum cleaner and a robot, leading to different a measurement method in the draft standard, which means that the values cannot be compared directly due to differences in procedures. This might influence how the *dpu* should be included in the AE formula for robot cleaners.

As for cordless cleaners, it can also be contemplated to include the standby consumption of the docking station standing alone, while the robot is cleaning. This would then be an extra link in the formula and would require that a test standard is developed. This, however, should be a relatively easy parameter to measure, and the energy consumption is very low, so it is not critical to set a requirement. The maintenance mode power measurement is under consideration for the draft standard.

3.5 General use-determining factors

Besides the use patterns specific to each product type, some aspects are general to all vacuum cleaners. For example, the APPLiA consumer survey ranked importance of different parameters for purchasing a new vacuum cleaner, which is shown in Table 28.

Table 28: Percentage of consumers rating parameters important/very important in a purchase
situation

Parameter	Percentage answering "very important" or "important"
I expect it to last a long time	91%
Its performance	90%
The ease of use	89%
The price	87%
The ease of maintenance	86%
The type /stick, robot, canister etc.)	80%
A good filtration of the dust (allergies)	79%
The time spend cleaning	77%
The noise level	67%
The energy efficiency	67%
Having/not having a bag	66%
How technologically advanced it is (new features etc.)	64%
The availability of accessories	64%
Its look and feel	56%
The brand	45%

As seen from the table, consumers expect vacuum cleaners to be long lasting, easy to use and easy to maintain. Brand and design (look and feel) are less important than good performance, showing that users are unlikely to change them due to design or fashion, but rather change them when they break, or performance deteriorates. This is also reflected by 70% of the respondents in the APPLiA survey bought a new vacuum cleaner either because the old was broken or no longer "up to the job".

3.5.1 Floor types

The APPLiA consumer survey also investigated in detail the use conditions and habits of users. One result that is important for the regulations is the distribution of different floor types. In the following only results from the rooms that more than 50% of the respondents had in their homes, seen in Figure 20, are included.

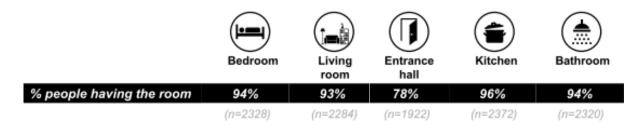


Figure 20: Types of rooms that more than 50% of the respondents in the APPLiA survey have in their homes

Figure 21 shows the distribution of flooring for each of the five room types. As seen from the graph, the room where people most commonly have a carpet is the bedroom (29%) followed by the living room (23%). The rest of the listed floor type are considered hard floor types. It should be noted, however, that even when there is hard floor in a room, many people have a rug that covers part of the floor and also needs to be vacuumed. In the bedroom and living room, 59% and 67% of respondents had a rug. In the entrance hall and bathroom 44% and 41% had a rug, while the fewest (24%) had a rug in the kitchen.

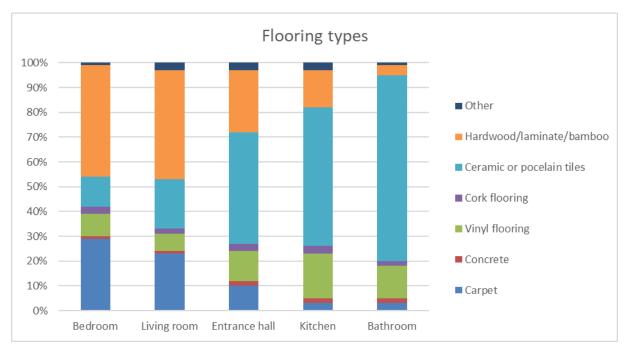
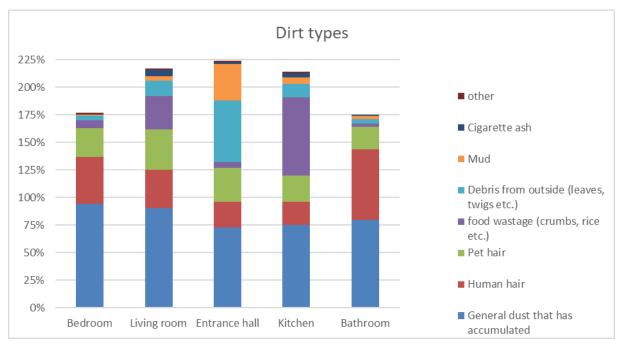
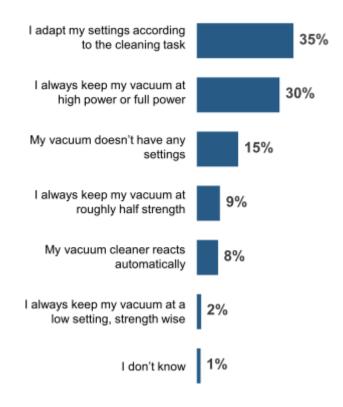


Figure 21: Flooring types in the five most commonly occurring room types

Regarding the types of dirt that is cleaned with a vacuum cleaner, by far the largest majority is identified as "general dust that has accumulated", which is experiences in all room types by more than 70% of respondents. This is, for most of the rooms, followed by human hair and pet hair, except for in the kitchen, where more than 70% encounter food wastage, and the entrance hall where 89% encounter debris and mud from outside.




Figure 22: typical dirt types in the five most commonly occurring room types

3.5.2 Vacuum cleaner settings

Another interesting finding from the APPLiA consumer survey is how people use the different functions of the vacuum cleaners while they are cleaning. For example, the survey found that around one third (36%) of the respondents changed the nozzle based on the floor type, while 32% merely changed the nozzle setting.

Regarding the different types of nozzles used, 68% of the respondents use the "universal" two-step nozzle that can be switched between carpet and hard floor setting. Around one fourth use the specialised carpet (27%) and hard floor (25%) nozzles. Furthermore 36% of respondents use the special nozzles for furniture, cars, skirting boards etc.

Many vacuum cleaners today let the user adjust the power setting according to the surface being cleaned. Figure 23 shows how respondents of the APPLiA consumer survey use the power adjustment option. This shows that 35% use the manual options, while 8% has a vacuum cleaner that adjust power automatically. Another third (30%) always keep their vacuum at full power, which is also the power setting they are tested with in the energy consumption test. 15% has a vacuum cleaner without power setting option. The remaining part of respondents keep their vacuum cleaner at medium (9%) or low (2%) power settings.

Figure 23: User behaviour regarding power settings, according to APPLiA consumer survey.

3.6 Use of auxiliary products

During the use phase many vacuum cleaners use auxiliary products in the form of bags (only in bagged vacuums) and filters (all types). Changing the bag and filters regularly is important for continued optimal operation of the vacuum cleaner, since excess amounts of dust and particles can otherwise clog the vacuum cleaner, blocking the air flow.

It has not been possible to find any cordless or robot vacuum cleaners using bags, and it is thus assumed that bags are only used in bagged mains-operated vacuum cleaners. Previously vacuum cleaner bags were often made of paper, but today the far majority is so-called fleece bags made of poly-propylene material.

Most bagged vacuum cleaners are equipped with an indicator, showing the user when the bag should be changed, however the frequency is highly dependent on the type and amount of dirt that is collected as well as user preferences. In the preparatory study, an amount of 10 bags per year was proposed based on the number of bags offered by

manufacturers in free bag schemes¹²¹, however also 6 and 5 bags per year have been suggested¹²², and in this study 6 bags per year on average is therefore used.

According to the APPLiA consumer survey results (shown in Figure 24), 46% of respondents with a bagged vacuum cleaner empties the bag only when it is completely full, while 24% change it when the bag full indicator shows it is necessary, and 13% changes it after each time either before or after vacuuming. 16% change the bag only when they can fell that the vacuum cleaner loses suction power, which can, however, also have to do with the need for changing the filter.

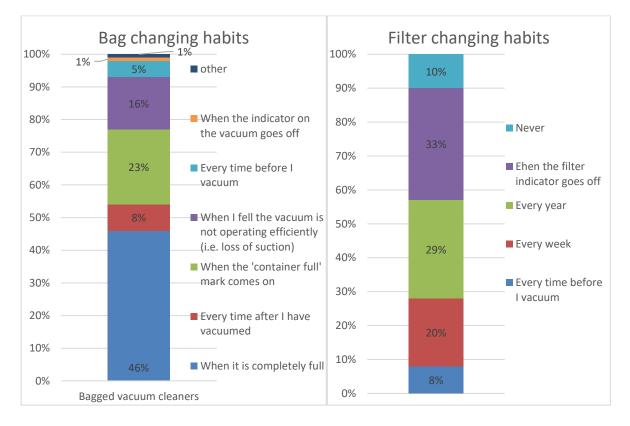


Figure 24: Consumer habits regarding changing bags and filter of their main vacuum cleaner, according to the APPLiA consumer survey.

Filters in vacuum cleaners are used to prevent dust and particles reaching the motor and returning to the room through the exhaust air. Some vacuum cleaners might have both a primary and a secondary filter, but todays fleece bags often function as filter as well, rendering the secondary filter redundant. Filters can be made from different materials such

¹²¹ Preparatory Studies for Eco-Design Requirements of EuPs (II), Lot 17 Vacuum cleaners, TREN/D3/390-2006, Final Report February 2009, carried out by AEA Energy & Environment, Intertek, and Consumer Research Associates between November 2007 and January 2009. <u>https://www.eceee.org/static/media/uploads/site-2/ecodesign/products/vacuum-cleaners/vacuumcleaners-ecodesign-study-final-report-eup-lot-17-final-report.pdf</u> page 32, according to Electrolux website accessed 1 May 2008 <u>http://www.electrolux.co.uk/Files/United_Kingdom_English/Files/Electrolux07_SpecBrochure_8pp.pdf</u> Miele UK website accessed 1 May 2008

http://www.miele.co.uk/Resources/CustomerSupport/GuaranteesWarranties/Vacuum_Guarantee.pdf

¹²² Abele et al. (2005) and Kemna et al. (2005) According to JRC report,

as cloth, foam, pleated paper, and fleece or other synthetic materials. Some vacuum cleaners are fitted with HEPA filters (High Efficiency Particulate Air), which let only through 5 (HEPA 14) to 50 (HEPA 13) particles per litre of air¹²³, for particles sizes down to 0.3 microns. HEPA filters are especially relevant for people suffering from asthma or allergies, as they remove the allergens and particulates that triggers these conditions. Of course, filters are only efficient if the vacuum cleaner is air-tight, not letting air out from the appliance before the airflow reaches the filter. As in the preparatory study, it is assumed that filters are replaced once a year. However, some models come with washable filters, which are assumed not to be replaced unless they are damaged. In that case it would count as a repair, and not as maintenance.

3.7 **Repair practice**

Repair is an important factor for increasing the product lifetime and depending on the type of repair, it can be done by either end-users or professionals. Repairs like exchanging a hose or suction head can be done by the end-users, while problems with e.g. the motor or electrical components is done by professionals for safety reasons¹²⁴. If the repair is done by professionals, the repair cost is dependent on the labour cost, which varies greatly across Europe as seen in Figure 25. Based on labour costs alone, the amount of repair by professionals is expected to be low in northern countries and higher in southern and eastern countries. Another important factor for whether the end-users chooses to repair the vacuum cleaner is its age. In the end of the lifetime, it might be perceived as too expensive to repair compared to the cost and ease of buying a new model.

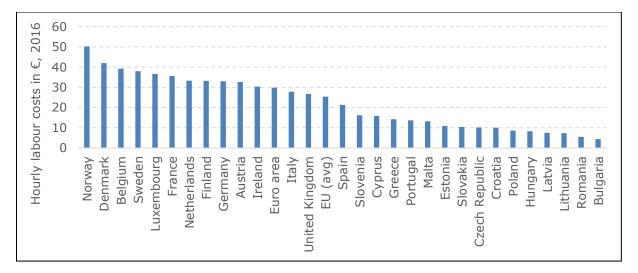


Figure 25: Hourly labour cost in €, 2016 for European countries

¹²³ https://consumer.nilfisk.dk/da/cases/About%20Vacuum%20Cleaners/Pages/Nilfisk-stovsuger-filtrering.aspx and https://www.whiteaway.com/hverdagen/post/derfor-skal-du-overveje-en-stovsuger-med-hepa-filter/ 124 http://publications.jrc.ec.europa.eu/repository/bitstream/JRC96942/lb-na-27512-en-n_.pdf

The most common failures of both upright vacuum cleaners and cylinder vacuum cleaners are related to suction and blocked filters as shown in Table 29¹²⁵. These problems can be interconnected and are also related to the lack of maintenance (such as changing bags and filters), and might in some cases be possible to solve by repairing or exchanging faulty parts. At some point the motor is also likely to fail, since universal motors are used in many vacuum cleaners¹²⁶. However, most motors are likely to function for at least 600 hours regardless of the purchase price of the vacuum cleaner¹²⁷, and at least 500 hours is required by the current Ecodesign Regulation.

Upright vacuum cleaners, Faults experienced	%	Cylinder vacuum cleaners, Faults experienced	%
Suction deteriorated	24.3%	Suction deteriorated	19.5%
Blocked filters	21.7%	Blocked filters	17.8%
Belt broken (drive-belt rotating brush)	16.9%	Other	15.7%
Split hose	13.7%	Broken accessories	12.2%
Motor broken	13.4%	Brush not working properly	10.8%
Brush not working properly	12.0%	Casing cracked/chipped/broken	10.1%
No suction	10.0%	Overheating	8.7%
Brush not working at all	9.4%	Split hose	7.7%
Casing cracked/chipped/broken	8.9%	Motor broken	6.6%
Other	8.6%	Power cutting out	5.2%
Broken accessories	8.3%	Power cable faulty	5.2%
Overheating	6.3%	No suction	5.2%
Power cable faulty	5.1%	Brush not working at all	4.9%
Wheels/castors broken	4.9%	Handle broken	3.8%
Handle broken	4.6%	Power not working at all	3.8%
Power not working at all	3.7%	Controls broken	2.4%
Power cutting out	3.1%	Wheels/castors broken	2.4%
Handle loose	2.3%	Belt broken (drive-belt rotating brush)	2.1%
Controls broken	0.60%	Handle loose	1.7%

Table 29: Faults experienced with upright vacuum cleaners and cylinder vacuum cleaners¹²⁸

128

¹²⁵ http://publications.jrc.ec.europa.eu/repository/bitstream/JRC96942/lb-na-27512-en-n_.pdf

¹²⁶ Special review study on durability tests According to Article 7(2) of Commission Regulation (EU) No 666/2013 with regard to Ecodesign requirements for vacuum cleaners FINAL REPORT Prepared by VHK for the European Commission 23 June 2016. http://www.ia-vc-art7.eu/downloads/FINAL%20REPORT%20VC%20Durability%20Test%2020160623.pdf ¹²⁷ http://publications.jrc.ec.europa.eu/repository/bitstream/JRC96942/lb-na-27512-en-n_.pdf

https://www.vhk.nl/downloads/Reports/2016/VHK%20546%20FINAL%20REPORT%20VC%20Durability%20Test%2020160623. pdf

For robot vacuum cleaners, less data is available as the technology is both new and in a transition state with frequent improvements. Based on troubleshooting guides available on the internet possible problems with robotic vacuum cleaners are related to:

- The belts and drive systems can break or be worn so the performance of the vacuum cleaner is reduced. These parts can often be replaced
- The battery performance can be reduced
- The electronics and advanced controls can be faulty after a period of time as data interrupting the function can be stored on the memory board. Sometimes a reset can fix this problem
- The motor can be faulty or damaged and has to be replaced.

To avoid break downs, it is important with proper maintenance of the vacuum cleaner and simple maintenance instructions are often provided in the user manual. In some cases, the user guide is also available online with additional drawings and exploded views¹²⁹.

Spare parts are widely available on the internet from third party dealers¹³⁰ and the manufacturers¹³¹. However, a stakeholder has mentioned that even though spare parts may seem available on the internet, it may not always be the case for independent repair centres, or it is not always possible for the consumer to receive the actual spare parts within a reasonable time and cost.

A manufacture¹³² has stated that critical spare parts (parts important for the vacuum cleaner to function) are available as long as 10 years after the last product is purchased and minimum 10 years after the production of the last product. This is not considered to be the standard availability of spare parts from manufactures, as other manufactures have different spare part policies.

It is not known how often repair actions are carried out or which types of repair are conducted. Consequently, it is not possible to estimate additional material for repair. The standard value in the EcoReport tool of 1 % of the materials are used for the amount of spare parts. 1 % of the materials corresponds 70 grams for a vacuum cleaner of 7 kilos which seems reasonable as not all consumers are expected to buy spare parts.

¹²⁹ <u>https://www.dysonspares.ie/index.php?route=information/information&information_id=70</u>

¹³⁰ https://www.partswarehouse.com/default.asp

¹³¹ https://consumer.nilfisk.com/en/products/Pages/product.aspx?fid=16718

¹³² BSH Hausgeräte GmbH

3.8 Estimated second hand use

The estimated second-hand market is based on a survey on Ebay and other similar homepages. Overall vacuum cleaners are available on the second-hand market as used consumer products and as refurbished products¹³³. Refurbished products are described in the medical device regulation as¹³⁴: 'fully refurbishing', for the purposes of the definition of manufacturer, means the complete rebuilding of a device already placed on the market or put into service, or the making of a new device from used devices, to bring it into conformity with this Regulation, combined with the assignment of a new lifetime to the refurbished device.

Vacuum cleaners are not expected to be fully refurbished as described in the medical device regulation, but only partly so the vacuum cleaners are repaired, reconditioned and tested before they are sold again by the manufactures or special repair shops. The market of refurbished consumer vacuum cleaners is limited and have no impact on the later tasks.

The regular second-hand market, where consumers are selling their old appliances to other consumers, is considerably larger and consists of a large variety of products from almost new products to products that have been in operation for many years, and premium products to low budget products.

On the internet there is also buying guides available¹³⁵ pinpointing pros and cons of second hand vacuum cleaners. Though the market exists, the impact of the second-hand market is expected to be limited as the functional operation of vacuum cleaners are expected to be unchanged. Therefore, the second-hand market is not included in later tasks.

3.9 End of life behaviour

The material consumption and resource impact from products is closely related to the end of life processing. Vacuum cleaners are collected at end of life and send to the selected facility for reprocessing. Illegal trade and sales of scrap challenge the collection rate for some product categories. The statistics from Eurostat shows products put on the market and waste collected for small household appliances. This statistic does not refine the actual number of vacuum cleaners collected so the actual collection rate can be difficult to quantify.

From 2019 onwards, the minimum collection rate to be achieved annually shall be 65% of the average weight of EEE (Electric and Electronic Equipment) placed on the market in the three preceding years in the Member State concerned, or alternatively 85% of WEEE

¹³³ http://www.ebay.co.uk/bhp/manufacturer-refurbished-vacuum

¹³⁴ http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2017:117:FULL&from=EN

¹³⁵ https://learn.allergyandair.com/buying-a-used-vacuum-cleaner/

generated on the territory of that Member State¹³⁶. In Annex D the collection rate is calculated for small household appliances based on the average weight of EEE placed on the market in the three preceding years in the Member State concerned¹³⁷. The calculated average collection rate for the EU was below 40% in 2014. The collection rate does also cover other appliances, but it is assumed that the rates are representative for vacuum cleaners. The collection rate should be improved to 65% in 2019. The low collection rate of vacuum cleaners cannot be addressed in the Ecodesign Regulation but should be addressed by each EU country who should decide how to fulfil their obligation regarding the WEEE Directive.

3.9.1 Recyclability of vacuum cleaners

After collection the electronic scrap is treated at specialised facilities which mechanically process the appliances. The expected waste process flow for vacuum cleaners are visualised in Figure 26. Note that vacuum cleaners are mixed and shredded with other types of products End of life, and the following only relates to the handling of vacuum cleaners.

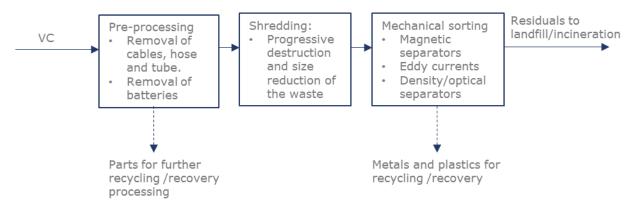


Figure 26: Expected reprocessing of vacuum cleaners at End of life

The pre-processing is the first step in the recycling process of vacuum cleaners. This first step often consists of manual removing of targeted components and/or materials for further treatment. The pre-processing is very important in connection with an effective recycling process by reducing the risk of contamination, quickly recover selected valuable materials for further reprocessing and allow compliances with current directive on hazardous substances¹³⁸ and waste¹³⁹ and prevent damage to the facility in the following steps. According to the WEEE Directive components such as electronic components (e.g. printed circuit boards, capacitors, switches, thermostats, liquid crystal displays) and batteries are additionally dismantled when present (see section below).

¹³⁶ http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_waselee&lang=en

¹³⁷ http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_waselee&lang=en

¹³⁸ http://ec.europa.eu/environment/waste/rohs_eee/index_en.htm

¹³⁹ <u>http://ec.europa.eu/environment/waste/weee/index_en.htm</u>

Next is a series of shredders, which reduces the vacuum cleaners in smaller pieces, so the different materials can be sorted. The dust is removed and captured by cyclones. When the equipment is shredded into smaller pieces (approximately 1 cm to 10 cm) different technologies handles the sorting. These technologies are often¹⁴⁰:

- Magnetic separation removing ferrous metals
- Eddy current separators removing non-ferrous metals such as copper, aluminium, and zinc
- Density separators: Different types of plastic.

The effectiveness or recycling rate of the shredder (the share of recovered, recycled, and reused materials) in this study is based on the EcoReport tool¹⁴¹ but updated regarding plastic¹⁴². The values used in the current study is presented in Table 30.

Table 30: Re-use, recycling, heat recovery, incineration and landfill rates assumed for the End of life handling of vacuum cleaners

	Fraction to re-use, (%)	Fraction to (materials) recycling, (%)	Fraction to (heat) recovery (%)	Fraction to non- recov. incineration,(%)	Fraction to landfill/ missing/ fugitive (%)
Bulk Plastics, TecPlastics*	1%	29%	40%	0%	31%
Ferro, Non- ferro, Coating	1%	94%	0%	0%	5%
Electronics	1%	50%	0%	30%	19%
Misc.	1%	64%	1%	5%	29%

*Adjusted values compared to the EcoReport tool¹⁴³

With these numbers the total recycling rate (including incineration) will be above 70 % for products that are shredded. The numbers also show high recycling rates for metals and lower rates for plastic. Traditionally it is also easier for recycling facilities to recover metals than plastic. Plastic are often mixed with other types of plastics which challenge the quality of the recycled plastic. Often recycled plastic is downgraded if it is not properly separated. In Table 31 the amount of materials reused, recycled, incinerated with and without heat recovery and landfilled are presented.

¹⁴⁰ <u>http://www.sciencedirect.com/science/article/pii/B9780128033630000031</u>

 ¹⁴¹ http://www.sciencedinect.com/science/article/pi/D2/00120030000001
 ¹⁴¹ http://ec.europa.eu/growth/industry/sustainability/ecodesign_da
 ¹⁴² Plastic Europe, Available at: http://www.plasticseurope.org/documents/document/20161014113313-plastics the facts 2016 final version.pdf
 ¹⁴³ Plastic Europe, Available at: http://www.plasticseurope.org/documents/document/20161014113313-plastics the facts 2016 final version.pdf

plastics the facts 2016 final version.pdf

Table 31: Amount of material send to re-use, recycling, heat recovery, incineration and landfillfor the different types of vacuum cleaners

	Fraction to re-use, (g)	Fraction to recycling, (g)	Fraction to heat	Fraction to non- recov.	Fraction to landfill/ missing/
		ins-operated do	recovery (g)	incineration,(g)	fugitive (g)
Bulk Plastics,	Ivia	ins-operated do		cleaners	
TecPlastics	41	1182	1630	0	1223
Ferro, Non-	11	1102	1000	.	1225
ferro, Coating	16	1545	0	0	82
Electronics	0	10	0	6	4
Misc.	13	853	13	67	386
		Commercial	vacuum cleanei	rs	
Bulk Plastics,					
TecPlastics	59	1722	2375	0	1782
Ferro, Non-					
ferro, Coating	35	3326	0	0	177
Electronics	0	1	0	1	0
Misc.	16	1044	16	82	473
		Co	ordless		
Bulk Plastics,					
TecPlastics	35	1004	1384	0	1038
Ferro, Non-					
ferro, Coating	25	2395	0	0	127
Electronics	0	0	0	0	0
Misc.	8	527	8	41	239
Robot vacuum cleaners					
Bulk Plastics,					
TecPlastics	16	460	634	0	476
Ferro, Non-					
ferro, Coating	10	913	0	0	49
Electronics	2	114	0	68	43
Misc.	3	198	3	15	90

3.10 Consumer relevant product testing

There are several initiatives aiming at improving standards with regard to a more consumer relevant testing. Recently, a new WG 22 Ad-hoc Group Consumer relevant testing was established at CENELEC TC 59X. The WG (Working Group) have prepared a draft document titled "Consumer Relevant Product Testing" which is intended to support standard makers how to assess standards to reflect 'real-life conditions' while also being suitable for producing measurement protocols with the required repeatability and reproducibility necessary to support Ecodesign and Energy Labelling legislation. Vacuum cleaners are among the examples mentioned in this draft document.

On association level, APPLIA organised four workshops since 2015 with the aim of analysing and discussing how current product testing methods could be improved to better reflect real life use of appliances by consumers. The workshops brought together the major stakeholders (policy makers, NGOs, consumer organisations, Member States representatives, market surveillance authorities, laboratory experts, consultants and industry) to discuss the topic and see practical demonstrations of what product testing is about. Vacuum cleaners were the topic of two of these workshops. Some of the issues discussed in the following sections were findings from these workshops. Standard makers were encouraged - and they agreed - to take the findings of the workshops on board for their future work.

This section looks specifically at user relevance of the tests, i.e. how well they apply to the actual use situation to the extent it is possible in a test set-up. The end-user relevance of existing tests is discussed as well as user relevant aspects of cordless and robot tests.

3.10.1 Carpet test

For the carpet cleaning tests, three cleaning cycles are performed and the measured carpet dust pick-up (dpu_m) is corrected by the dust pick-up of a reference vacuum cleaner when the carpet was new (dpu_{cal}) divided by the reference cleaner dust pick-up at the present state (dpu_{ref}):

$$dpu_{c} = dpu_{m} * \left(\frac{dpu_{cal}}{dpu_{ref}}\right)$$

The carpet used in the performance testing is a wool Wilton cut pile carpet¹⁴⁴ produced specifically for the vacuum cleaner test in order to ensure reproducible results. However, a survey made by carpet manufacturers showed that the most sold carpet types are cut pile or looped nylon carpets. Therefore, a comparable testing is ongoing to investigate the difference of performance on wool vs. nylon carpet. In the preparatory stakeholder meeting, it was noted that in the international ASTM test standard, the vacuum cleaner performance is tested on four different types of carpets, which makes it difficult for manufacturers to design product specifically to achieve high performance in the test¹⁴⁵.

In order to ensure that the test and measured performance is as relevant for consumers as possible, it is recommended to change to testing on a more representative carpet type, as long as it does not add further complications and it can be ensured that the carpet chosen does not vary considerably in quality form batch to batch. It has also been

¹⁴⁴ http://www.brintons.com.au/construction-types/

¹⁴⁵ Final stakeholder meeting preparatory study, Jan. 2009: Annex C in the Impact Assessment working document. Page 51. COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT (2013) with regard to Ecodesign requirements for vacuum cleaners and the Energy Labelling of vacuum cleaners. <u>http://ec.europa.eu/smart-</u>regulation/impact/ia_carried_out/docs/ia_2013/swd_2013_0240_en.pdf

discussed that there might be a difference in the carpets used in domestic and commercial settings. The commercial vacuum cleaner manufacturers have thus suggested a specific test for commercial vacuum cleaners, with another carpet type than the Wilton, as described in section 3.10.4. The standardisation group working with domestic vacuum cleaners are also working on developing a test with a more market representative carpet, however, such a test is far from being introduced, because one of the carpets suggested has a low durability and thus changes characteristics after just a few test runs, and another suggested carpet type needs to be investigated further.

The general reproducibility of the carpet test has been put into question by manufacturers and test labs. The low reproducibility and repeatability are caused by a number of parameters, such as the embedding of the dust to assess the in-depth dust removal, the wear of the carpet and the microclimate in the carpet, which can vary significantly. Therefore 16 labs have collaborated on a RR (Round Robin) test, were the same four vacuum cleaners were tested on the labs' own carpet, as well as a piece of carpet that was circulated between the labs¹⁴⁶. The four vacuum cleaners were also circulated between the labs, and consisted of two high performance and two low performance cleaners, one of each with active and one with passive nozzle. The test results are still being analysed and the goal is to derive the expanded uncertainty to be able to quantify the variations that has been observed for the test method. It should be noted that it is not yet known whether another carpet type alone will result in better reproducibility and repeatability of the *dpuc* test results.

Regarding the end-user relevance of the carpet performance test, it has been recommended to add a fibre pick-up test, to simulate the removal of human and pet hair form the carpet. As described in section 3.5.1, hair is indeed an often encountered type of dirt, and removing them from carpets is one of the trickier cleaning tasks. Furthermore, it has been noted by multiple stakeholders that end-users often clean based on what they can see, hence until the floor is visibly clean, rather than based on removing the embedded dust in carpets. While the in-depth cleaning is still important, the fibre pick-up test could be added to the carpet cleaning performance in order to nuance the performance criteria and make the test more consumer relevant. Such fibre pick-up tests are often used by consumer organisations when testing vacuum cleaner performance and test methods could be based on the same principles.

Motion resistance

Another major issue that has been raised by several stakeholders is the motion resistance. Motion resistance arises because the vacuum created in the nozzle, makes it stick so tightly

¹⁴⁶ See Table 32

to the carpet, that it is difficult or impossible to move. This very high motion resistance arises because nozzles specially designed for increased dust pick up on carpets are used for the test. However, it is not realistic that the end-user will vacuum with such high motion resistance, because it is simple too much of a physical effort to push the nozzle over the floor. The test rigs used for the performance testing moves the vacuum cleaner, and have a push/pull force of up to 100 Newtons, so this is often not a problem during testing. Using the specialised carpet nozzles in real life is thus inconvenient at best, and for some models might not be possible, at least without turning down the suction power. In any case the performance measured with specialised carpet nozzles featuring high vacuum is unlikely to reflect the real-life performance if the user decreases suction power or chooses to use the universal nozzle instead, which the APPLiA survey showed that most do as described in section 3.5.

The German product testing organisation, Stiftung Warentest¹⁴⁷ consider push/pull forces over 30 N to be unacceptable for users, and for commercial vacuum cleaners, acceptable pull/push forces are not a performance criterion, but a safety requirement mandatory to be fulfilled to comply with the Machinery Directive¹⁴⁸. For the commercial products the maximum allowable force is 27-30 N, however the force can be higher on certain carpets like plush carpets. In order to make the carpet performance test more relevant for endusers it is therefore suggested to either set a cap on motion resistance at e.g. 30 N, or to require the test to be performed with the universal nozzle, to ensure that the nozzle is designed for a variety of cleaning tasks and not only optimised for cleaning the specific type of carpet in used in the test.

3.10.2 Hard floor test

The hard floor performance test is based on removing a special type of standardised dust from a 3-mm wide crevice in an otherwise flat, hard floor. As with the carpet test, the hard floor test is often performed using a nozzle designed to optimise dust pick up from the crevice. This often means a nozzle with high downwards vacuum and closed around the sides with little to no openings. This in turn leads to dust pick-up above 100% as the dust in the crevice outside the nozzle itself is also picked up. In real-life situations, however, flat parts of the floor need to be cleaned, and not only crevices or grooves in the floor. The nozzles optimised for the crevice test often push debris over the floor rather than cleaning as a result of the closed sides, not allowing the dirt to be sucked in. This so-called crevice

¹⁴⁷ https://www.test.de/Staubsauger-im-Test-1838262-1838266/ (Google translate: Since 2011, the testers have also measured the dust absorption at a sliding force of 30 Newtons. This is roughly equivalent to the strength that an adult finds acceptable in dust suction. For this test vacuum cleaners with empty dust bag or container. The testers regulate the suction power of the vacuum cleaners so far that the nozzles can be pushed with 30 Newtons.) ¹⁴⁸ European standard EN 1005-4, harmonized under the MD, gives an evaluation procedure for maximum acceptable forces

test is not very consumer relevant, and has been found to result in test-optimised nozzles that are not optimal for the types of floors and dirt encountered in real life situations.

A suggestion to make the test more user relevant is to not only test hard floor dust pickup with the crevice test, but to add a standardised debris test, where larger types of debris is removed from a flat hard floor surface. Different materials have been discussed as representative of the debris found in real life situations: from organic grains such as rice or lentils, to small Lego bricks and brass nuts. In order to ensure repeatability and reproducibility of the flat floor debris test, organic types of debris have been opted out, since it is difficult ensure homogeneity because the grain size, density, shape etc. Legos and metal nuts, on the other hand, are standardised in terms of size, density and shape and small M3 brass nuts have been found by commercial vacuum cleaner manufacturers to provide for the best type of debris, as discussed in section 3.10.4.

An important aspect of the additional debris test on hard floor, is that it should be conducted with the same nozzle and nozzle settings as the crevice test to avoid suboptimisation for each for the two parts of the tests and ensure the end-users a nozzle that is useful for the full range of hard floor types they might encounter.

3.10.3 Specialised nozzles

The current test standards for the carpet and the hard floor *dpu* tests both result in specialised nozzles optimised for the specific test conditions in order to obtain good performance ratings on both parameters. However, the special designs compromise the practical usability of the nozzles as explained above: the carpet nozzles obtain too high motion resistance and the hard floor nozzle is shielded to a degree that it pushed debris around instead of removing it.

The test-optimised design of the nozzles means that they are not useful for the end-users in real-life situations, because they will often differ significantly from the test set-up. Hence, the user will not get the performance they think they buy, based on the label ratings. This is a problem for both the end-users and for the credibility of the energy label and the manufacturers.

While adding the debris test as a parameter for had floor cleaning performance and the fibre pick-up test for carpet cleaning performance will most likely result in nozzles designed for more varying situations, still 68% of users use the universal nozzle, while only one fourth use the specialised carpet (27%) and hard floor (25%) nozzles¹⁴⁹. It has therefore been suggested to make the tests even more consumer relevant by conducting both tests with the universal nozzle, only allowing for a mechanical, manual shift between the "carpet

¹⁴⁹ 2018 APPLiA consumer survey

mode" and the "hard floor mode". This will ensure that the 68% of end-users using the universal nozzle will actually experience the performance shown in the label, both on hard floor surfaces and on carpets/rugs. Such a test requirement would not prevent manufacturers to also develop nozzles specialised for specific floor types, but it would prevent putting them in the box solely to justify a performance rating.

3.10.4 Testing with part load

The empty vs. part load testing is one of the key debates regarding the performance test of vacuum cleaners. In the existing standard, the vacuum cleaners are tested as new (i.e. out of the box), without adding dust or dirt to the receptacle prior to the test. This means that the receptacle (bag or otherwise) as well as filters and crevices and nooks inside the vacuum cleaner are completely clean when initiating the test.

The main argument against this methodology is that testing vacuum cleaners while empty does not reflect real-life use conditions very well, as vacuum cleaners are almost never empty in real-life¹⁵⁰ and never completely clean from dust except when they are new. Some organisations and manufacturers therefore argue that the annual energy consumption stated on the label is not an accurate representation of real-life consumption¹⁵¹. A measurement method with partly filled receptacle has therefore been suggested to better reflect real-life usage. However, as noted in the Special Review Study on durability, half-load testing will increase the uncertainty of the test compared to empty receptacle testing, thus creating further problems with test reproducibility. In order to achieve high repeatability and reproducibility, highly trained personnel and special equipment would be needed, increasing the test cost¹⁵², which would not only imply increased cost for manufacturers (and eventually consumers), but it would also make MSAs less likely to perform tests.

Another point of criticism is that the empty receptacle testing might be favouring vacuum cleaners that use bags over the bagless vacuum cleaners, since the performance of bagless cleaners declines less with dust filling than bagged vacuum cleaners. An on-going law suit was filed in October 2013 based on the empty receptacle testing, claiming infringement of the principle of equal treatment, but it has not yet been settled. It has not been possible to retrieve any test results to prove or disprove the difference between performance of bagged and bagless cleaners with half full receptacles. A German television programme

¹⁵⁰ TOPten criteria paper

¹⁵¹ Topten criteria paper

¹⁵² Special review study on durability tests According to Article 7(2) of Commission Regulation (EU) No 666/2013 with regard to Ecodesign requirements for vacuum cleaners FINAL REPORT Prepared by VHK for the European Commission 2016. page 16. http://www.ia-vc-art7.eu/downloads/FINAL%20REPORT%20VC%20Durability%20Test%2020160623.pdf ,

from October 2017¹⁵³ addresses the issue of performance vs. receptacle load and whether the label value would be the same with both test procedures. The testing was performed by the VDE Testing and Certification Institute in Offenbach¹⁵⁴, who loaded the receptacles by 70% (according to own procedure) and repeated the dust pick-up measurements. The test included only 5 vacuum cleaners, but indicated that the loaded receptacle had only small influence on the declared values, as four of the five vacuum cleaners achieved the same performance class, and the last one just barely missed the declared value. According to these test results, even though the sample was limited, indicated that part load testing would not give additional information to the consumer. Round Robin tests are ongoing to determine the additional uncertainty imposed by testing with part load, intended to show the repeatability and reproducibility¹⁵⁵.

As described in the special review study¹⁵⁶, the motor durability test¹⁵⁷ that entered into force with tier II on 1 September 2017, is performed with half full bag/receptacle according to the regulation. Some industry experts have argued that the half load might actually be an advantage for universal motors in terms of lifetime, as the extra resistance created by a loaded receptacle decreases the airflow through the motor and thus increase the number of revolutions per minute, making it 'easier' for the motor to run, because less air has to be pushed through the system. This will in turn cause the carbon brushes on the motor to wear more slowly, decreasing the wear of the motor¹⁵⁸. At the same time, however, less air will mean less cooling of the motor, which will cause the motor to wear faster. However, there is no general way to predict how different motors will be affected by the receptacle load, and testing with half load can both increase or decrease the life time.

Definition of part load

The major problem related to the motor test, and also to the suggested part load performance test, is that the part load has yet to be defined. The lack of a definition means that the tests are currently run with empty receptacles, which is not in accordance with the standard¹⁵⁹.

The Regulation indicates that the durability test for motors should be run with half-loaded receptacle. The major problem with "half-load" or other definitions depending on a percentage load, is the difficulty of defining *full load*. If the full load of the receptacle is not known, neither is the 50% or another percentage hereof. The same problem arises when

¹⁵³ <u>https://www1.wdr.de/mediathek/video/sendungen/der-haushaltscheck/video-sauber-ohne-aufwand--wie-gut-sind-smarte-helfer-im-haushalt-100.html</u> (link to television programme, in German)

¹⁵⁴ https://www.vde.com/tic-en

¹⁵⁵ Under the standardization mandate M/540

 ¹⁵⁶ Special review study on durability tests According to Article 7(2) of Commission Regulation (EU) No 666/2013 with regard to Ecodesign requirements for vacuum cleaners FINAL REPORT Prepared by VHK for the European Commission 23 June 2016. http://www.ia-vc-art7.eu/downloads/FINAL%20REPORT%20VC%20Durability%20Test%2020160623.pdf
 ¹⁵⁷ Harmonised standard: Durability of the hose and operational motor lifetime, EN 60312-1:2013

¹⁵⁸ Special review, Annex IV, p 31

¹⁵⁹ TopTen Vacuum cleaners: Recommendations for policy design, October 2017

seeking to define partly loaded as a specific amount of standardised dust per Litre of usable volume, since the "usable volume" would have to be defined first, and this might not be the same as "full".

An obvious choice would be to define full load based on the "bag-full" indicator present on most vacuum cleaners, typically as a red bar that moves under a transparent plastic cover as the bag fills, as seen in Figure 27. Bagless cleaners often have a clear bin receptacle and the indication is typically 'max' mark on the side, indicating that when the dirt inside reach the max mark, it should be emptied.

Figure 27: Typical bag-full indicator on bagged vacuum cleaner (left) and bagless vacuum cleaner (right)

However, using the "full" indicator, poses a number of problems:

- What if the vacuum cleaner has no indicator?
 - Not all vacuum cleaners have a bag-full indicator or max filling level indicator. In that case, another definition needs to be applied.
- Which angle should bagless cleaners be held when the dust-fill level is determined?
 - Many vacuum cleaners, especially cylinder, can be in at least two positions.
 Switching from one to the other changes how the dust is placed in the bin, and how much dust is needed to reach the Max mark.
- Should the vacuum cleaner be turned on or off when the dust-fill level is determined?
 - Bagged vacuum full-bag indicators are often only activated when it is turned on
 - When bagless cleaners are turned on the dust is swirled around, distributing it in the entire bin and making it impossible to determine whether the max mark is reached. When it is turned off, the dust might not settle evenly.

In general, using the bag-full indicator for determining full load of a vacuum cleaner is very uncertain. Even if the above questions were answered, it is not unambiguously clear when the bag-full indicator is activated, or exactly when the dust reaches the max mark. The judgement will in any case be up to manufacturers, hence adding a high amount of uncertainty to the test, potentially decreasing reproducibility of the test results, depending on the influence of bag filling level on the performance. Furthermore, if this definition was used in the standard, products designed to optimise test results could be a risk, i.e. designing the indicator to show "bag full" before it actually is and thereby potentially get a better performance rating.

Another way to determine when the receptacle is full, is to base it on manufacturers declaration. However, this procedure requires that all manufacturers have the same understanding and use the same definition of full. Is it for instance when the bag has to be changed or the bagless receptacle needs to be emptied? And is it supposed to be emptied when physically full, or only at a partly full state? For instance, the max mark on bagless cleaners is not at the top of the receptacle (see Figure 27), and the bag-full indicator might not activate when the bag is completely full, but a while before. Hence this approach largely brings the same uncertainties and questions as the bag-full indicator or max mark definition.

An outdated criterion for measuring when the receptacle is full, is when the vacuum (i.e. pressure difference) has dropped to 40% of the vacuum measured when the receptacle is empty. This criterion is based on paper-bags that were previously used in most vacuum cleaners, and quite fast deteriorated the cleaning performance due to clogging. However, the far majority of bagged vacuum cleaners today use fleece bags, which are more effective and can take considerably more fine dust before losing performance. Furthermore, this criterion does not work for some types of bagless vacuum cleaners that is marketed as not losing any suction power as it fills¹⁶⁰, whereas other bagless does¹⁶¹.

Instead of basing the part load definition on a share of the full load, an approach with a fixed amount of dust can be followed, such as the one used by the German consumer organisation Stiftung Warentest¹⁶². In their vacuum cleaner performance tests, they test the vacuum cleaner performance with empty receptacle, with 200 g and with 400 g standardised DMT8 dust. If the vacuum cleaner cannot hold all the dust, the loading is stopped, and the test performed with the amount of dust that can fit into the receptacle. The main advantage of this approach is that it eliminates the need for defining what is the full load of each receptacle. It has to be resolved, however, how to handle vacuum cleaners that cannot hold the specified amount of dust. This might especially be a problem for

¹⁶⁰ <u>https://www.dyson.dk/stovsugere.aspx</u>

¹⁶¹ https://learn.allergyandair.com/bagged-vs-bagless-vacuum-cleaners/

¹⁶² Füllungen jeweils 200 Gramm, danach 400 Gramm DMT8-Staub. <u>https://www.test.de/Staubsauger-im-Test-1838262-1838266/</u>

battery operated and robot vacuum cleaners, and not so much for mains-operated. It will also have to be decided whether the amounts shall be 200 g and 400 g, or other values. The approach will increase test costs, since three tests (with different loads) have to be performed instead of one. Alternatively, just one of the filling points could be chosen.

Consequences of testing with part load

For bagged vacuum cleaners it is anticipated that a loaded receptacle test will decrease the performance because the bag itself functions as both the dust receptacle and the primary filter, and as it fills the flow is restricted and the pressure drops. In practice the user thus switches from lowest to highest air performance every time the bag is replaced. This effect can be simulated over a single filling of the dust receptacle in the test lab. Hence, somewhere in between the empty and the fully loaded receptacle is the average performance that users experience. While this average differs depending on user behaviour (how often they change bags), testing with some load would be closer to 'real life' than testing with empty receptacle for bagged vacuum cleaners. However, the influence on the results seem to be small.

Another aspect of receptacle loading that has been mentioned by consumer organisations, and which is especially crucial for bagless products is the effect of repeated loading that is experienced in real life, which result in dust accumulating in filters. Most bagless vacuum cleaners today use the "cyclone" technology to remove the majority of the dust from the airflow inside the vacuum cleaners. The dust ends up in the receptacle and does not lead to a restriction of the flow and hence no drop in pressure will appear. The share of the dust that is not removed from the airflow by the cyclone is instead captured by the secondary filters. The accumulation of dust in these filters over time restricts the airflow and reduces the performances of the vacuum cleaner. In practice the user thus switches from lowest to highest air performance every time the filter is cleaned/replaced. In order to simulate this in a laboratory test, the receptacle would need to be filled repeatedly to simulate use corresponding to half of the time before users change filters, i.e. halfway to the "filter change needed" mark or half a years' use (see Figure 24) in order to measure at the average point experienced by consumers. Furthermore such a test approach would require defining when the filter needs to be changed in order to define the halfway point. However, just as for the bagged products, the average condition actually experienced by end-users depends largely on the maintenance behaviour.

Hence, a more consumer relevant test could be achieved relatively simple for bagged vacuum cleaners by testing with partly loaded receptacles, but in order to capture the same consumer relevance for bagless products, they would need to be tested with partially dust loaded filters. This would in turn require multiple dust loadings of the receptacle, making the test substantially more time consuming and thus more expensive.

Another important factor to consider when choosing how to test vacuum cleaner performance, is that the dust receptacle volume of bagged vacuum cleaners is usually larger than that of bagless vacuum cleaners. Generally speaking, bagless cleaners have dust receptacles of around 1/2 to 1/3 the volume of bagged vacuum cleaners of similar size and weight. Hence loading with a fixed amount of dust will not represent the same level of "full" for the two types of vacuum cleaners, and could be especially problematic for cordless and robot vacuum cleaners, due to the even smaller receptacles that these vacuum cleaner types typically have. On the other hand, loading with a specific share (50%) of "full" would lead to bagged products generally being loaded with a larger amount (in absolute value) due to the larger receptacles. Hence, a manufacturer could choose to make the receptacles smaller to obtain better results, at the cost of the consumer, who would then need to empty the receptible more often.

To summarize the following five options for dust loading in the performance test has been suggested:

- Status quo: Continue to test all products as new with empty receptacle.
 This is, as explained above, not consumer relevant and according to some stakeholders it favours bagged vacuum cleaners.
- Part load option 1: Load receptacle a specific share of its volume (e.g. "half full"). This is more consumer relevant for bagged products as explained above, but according to some stakeholders it favours bagless vacuum cleaners
- Part load option 2: Load receptacle with fixed amount of dust (e.g. 200 g).
 The quantity would have to be achievable with all products, but according to some stakeholders it might favour bagless products
- 4. Part load option 3: Load receptacle until a specific drop in vacuum pressure. This would be more relevant for consumers, however, it might not be possible to measure the pressure drop for bagless products, because it depends more on the dust loading of filters.
- 5. Differentiated test procedures: Use different loading criteria for bagged and bagless products, to simulate receptacle and filter loads, respectively. This would be very time consuming and require further in-depth investigation and tests to ensure repeatability and reproducibility of both procedures as well as fairness and comparability of the results.
- Part load option 4: Load and empty receptacle a specific number of times until an adequate filter dust-load is obtained and load the receptacle following either option 1, 2 or 3. This would make the test more consumer relevant for both bagged and bagless products without differentiating the test procedure.

In order to recommend one of the above test load options, it is necessary to determine the difference in the obtained test results from testing with empty load and the different part load options, and whether testing with part load changes the results significantly. According to some stakeholders, the empty receptacle performance test is enough to discriminate fairly between models and that that part load testing will not make a difference in relative ranking of products. Others argue that empty receptacle tests favours bagged products, while loaded receptacle tests (single load) favours bagless products. It still remains unclear which effects the different options will have on test results, and whether it will change which vacuum cleaners can comply with the Ecodesign requirements and if it will change how they are ranked on the energy label. However, any test approach that systematically favours one product type (e.g. bagged or bagless) over the other should be avoided, whether it is the empty receptacle option or any of the part load options.

Based on the above the performance of a bagged product oscillates from minimum to maximum every time the bag is replaced, while the performance of a bagless product oscillates from minimum to maximum each time the filter is changed/cleaned. Hence the overall performance experienced by the user (over years of use) might be the same on average, but the frequency of the cycle from maximum to minimum is different and most likely higher for bagged vacuum cleaners (i.e. bag changed more frequently than filter). The fairest would thus be to test all vacuum cleaners at their "average" performance state, whether this point is determined by the loading of receptacle or filters. However, determining this point and adding dust to simulate this point complicates the test procedure significantly and might also increase uncertainty of the results significantly.

It can be argued that in the "as new" state both the bagged and bagless vacuum cleaners will show a better performance (in terms of air pressure) than their average performance over the lifetime. Therefore, if the differences between the different test approaches are relatively small and similar across product types, testing with empty receptacle (status quo) is recommended due to the simplicity and to avoid adding further factors of uncertainty to the test (e.g. how receptacles are loaded, the effect of dust size on filter "loading", and definition of the average performance point).

Dyson vs European Commission

The importance of good testing methods that are accurate, reliable and reproducible can be found in the example of the court case of Dyson vs the European Commission.

NOTE this is just an example why good test standards are important, it does not reflect the official opinion of the European Commission or the study team. In 2013 Dyson sued the European Commission with the claim that the tests used to establish the energy consumption of vacuum cleaners were flawed as the energy performance is measured only through tests conducted with an empty receptacle. The vacuuming performance of a vacuum cleaner with a dust-loaded receptacle and, therefore, the resulting energy efficiency may be reduced due to dust accumulation.

Initially, Dyson's case was rejected by the General Court in November 2015 saying Dyson had "failed to demonstrate that there were more reliable, accurate and reproducible tests than the one endorsed by the European Commission".

The General court stated: "... the Commission cannot be criticised for having failed to require tests conducted with a dust -loaded receptacle if, under its broad discretion, it decided that such tests were not yet reliable, accurate and reproducible.

Moreover, and irrespective of whether the Commission has broad discretion for developing tests, it must be observed that with respect to the question whether the tests conducted with a dust –loaded receptacle are reproducible, the Commission notes the absence of so-called 'circular' tests between laboratories which can be used to determine whether they are reproducible."

The Commission said it took note "that a deeper assessment of the evidence by the General Court [the lower court] is needed. The legislation covering vacuum cleaners remains applicable until the final judgment of the General Court."

Dyson went into appeal against the judgement of the General Court and argued that Article 10 of Directive 2010/30 required the method to reflect normal conditions of use and stated that "a dust-loaded test method was devised by the IEC (International Electrotechnical Commission) and has been adopted by consumer test bodies and manufacturers worldwide and has never been questioned in the 12 years it has existed."

On 11 May 2017 the European Court of Justice ruled in favour of Dyson and referred the case back to the General Court of the European Union for it to give judgment on the relevant pleas put forward at first instance's ruling. More specifically: "The General Court could not regard it as established ... that there remain doubts as to whether [the Cenelec method] is reproducible' without explaining why Dyson's challenge to that assertion by means of the elements mentioned in the preceding paragraph had to be rejected. More particularly, the General Court could not state that for a method of measurement to be reproducible 'circular' tests had to be performed, without explaining why the contrary arguments put forward by Dyson in its pleadings were not capable of disproving that statement. While the Commission did indeed contest the reproducibility of the Cenelec method before the General Court, it is clear that Dyson argued to the contrary in its

pleadings, so that it was for the General Court to rule on the point. By failing to reply to the arguments thus put forward by Dyson, the General Court infringed its obligation to state reasons under the first paragraph of Article 53 of the Statute of the Court of Justice and Article 117 of the Rules of Procedure of the General Court.

3.10.5 Commercial vacuum cleaner test

Commercial vacuum cleaners are currently tested using the same test standards as household vacuum cleaners, however commercial vacuum cleaner manufacturers argue that the actual use conditions are different and that the tests should be adjusted in order to reflect these differences. Commercial vacuum cleaner manufacturers have therefore suggested a specific commercial vacuum cleaner performance test that deviates in a number of ways from the existing standard, but with the goal of keeping the two standards aligned as far as possible.

Besides the difference in test methods, it is suggested to introduce a different additional performance parameter, namely the productivity in terms of area cleaned per time interval (often m² per hour). According to commercial vacuum cleaner manufacturers such a productivity parameter better reflects the demands from commercial end-users and is often requested by them, since the salary for professional cleaning personnel is an important cost. Even though productivity is related to the performance measured in the current test standard, the current carpet test defines performance for in-depth cleaning (i.e. the dust has to be embedded in the carpet) and features a type of carpet rarely seen in commercial surroundings such as offices. In addition the hard floor test focuses too little on visible debris.

Specific suggestions for commercial vacuum cleaner test

In the proposed standard, the hard floor crevice test is suggested to be backed by a debris test on flat floor. The debris suggested is M3 nuts and washers¹⁶³, because they are ISO standardised and readily available for purchase anywhere. The idea with this double test is to avoid nozzles specialised for the crevice test specifically, but to have one nozzle that is designed to handle both dust and debris on flat floor and floors with crevices. Therefore, a crucial condition for the suggested 3-part hard floor test is that each part should be

For the commercial carpet test the most important changes suggested are the type of carpet and not embedding the dust. The type of carpet is suggested to be chosen based on the prevailing type sold in Europe and tests of several carpets have been and are still tested. The tests are performed to ensure repeatability, reproducibility, user relevance as well as testing efficiency and distinction between good and bad products on the different

¹⁶³ M3 nuts and washers were chosen after almost 1500 tests with seven different debris combinations including paper clips, rice and lentils, 1x1 round Lego bricks, paper and cotton threads.

carpets. This would bring down the test costs significantly as the current carpet type is quite expensive (in the range of 1000 euros per test length) and also be more representative of the actual environment in which the vacuum cleaners are used. Furthermore, it is suggested to skip the step where the dust is embedded in the carpet (by rolling with a heavy roller ten times), as commercial cleaning is often based on "visibly clean" criteria and with a shorter piled carpet the embedding becomes less definitive. Furthermore, it is argued by commercial manufacturers that the embedding causes an increase in uncertainty in the test since the distribution of dust particles of different sizes within the carpet might vary.

For the carpet test, commercial vacuum cleaner manufacturers suggest setting a maximum limit for push/pull forces, since this is an important factor for especially commercial endusers, who vacuum

3.10.6 Definition of rated power input

As discussed in paragraph 1.3.2 there are some possible flaws in the use of EN IEC 60335-2-2 as the harmonised standard for 'rated power input'. There are several options for improvement. The first option is to request CENELEC to complete the standard and in Annex ZZ only refer to the main text –without the note on exceptions on booster setting-- of the clause 3.1.4 of the standard as a reference for 'rated power input'. Furthermore, to fight possible ambiguity as regards the verification tolerances, it is recommended to include explicitly the verification tolerances for 'rated power input' in a reviewed regulation and no longer leave the definition of that regulated parameter to the standard. Given that the booster setting option no longer applies and that 'the average effective power intake' during the performance test –according to EN 60312:2017—is never higher that the 'safe' 'rated power input' there should be no ambiguity. It stands to reason that the verification tolerances for the rated power input are lower than those for the energy consumption ($\pm 10\%$).

The second option is to strike EN IEC 60335-2-2 as a harmonised standard for presumption of conformity and instead use the value of 'the average effective power intake' during the heaviest performance test¹⁶⁴ according to EN 60312:2017 as the parameter to be regulated under Ecodesign.

The third option is to change the content of the standard EN IEC 60335-2-2 to make it less ambiguous, but given the time this would take (up to 5 years), this is not a practical solution.

¹⁶⁴ Currently this is the carpet cleaning test, but this may change in a future regulation. Furthermore, for 'hardfloor only' vacuum cleaners there is no carpet cleaning test and thus the power intake during the 'hard floor' cleaning test is the yardstick.

3.10.7 Cordless and robot vacuum cleaner tests

For cordless and robot vacuum cleaners, other parameters are relevant to the consumers besides those tested for mains-operated cleaners. Especially factors related to the battery are important, e.g. battery run time, charging time, maintenance consumption and battery life. This is in addition to the performance parameters discussed for mains-operated vacuum cleaners, e.g. debris pick-up on hard floor and fibre pick-up on carpets.

The standard for cordless vacuum cleaners includes specific measurement methods relevant for cordless vacuum cleaners including run time while maintaining a reasonable suction power. Such test is intended to ensure that the declared run time and suction power are measured simultaneously and thus not mutually exclusive in practice. E.g. the longest possible run time obtainable with a cordless cleaner might be while suction power is at the lowest setting, while the highest setting suction power will result in lower run times. In order for the consumer not to be misled the declared run time should thus be measured same suction power setting as the performance is measured with, in order to give the consumers a coherent picture of the cordless vacuum cleaners' capabilities.

For robot vacuum cleaners, the battery performance is also important, but in addition the factors related to autonomous operation are important such as floor coverage (i.e. navigation system) and obstacle overcome capacity. These factors are handled by setting up a test room as explained in section 1.3.

Another important factor for both cordless and robot vacuum cleaners is the energy consumption in the docking station in terms of standby and maintenance modes as discussed previously in this chapter.

3.11 Verification tolerances

The verification tolerances stated in the regulations are to be used by market surveillance authorities when testing products to account for uncertainties in the tests and variations in production. The verification tolerances are closely related to the tests and the uncertainties of them, and the standardisation group for household vacuum cleaners (CLC TC59X WG6) has performed Round Robin tests to determine the uncertainty of the test methods. These are shown in Table 32 for each parameter together with the label class width and verification tolerance set out in the regulations. The expanded uncertainties describe the uncertainties of the measuring methods alone, without the variance of the products and are expressed as \pm values. The measurements were conducted in accordance with the current harmonised standard EN 60312-1:2017, i.e. without debris or fibre pick-up and with the Wilton carpet and crevice test.

Test parameter	Verification tolerance	Label class width	Expanded uncertainty (preliminary)
Annual energy consumption, kWh/year	10% of declared value	6 kWh/year	Up to ± 3,5%*
Dust pick-up on carpet,	0,03 (3 percentage	0,04 (4 percentage	Up to ± 0,057
dpuc	points)	points)	(5,7 percentage points)
Dust pick-up on hard floor,	0,03 (3 percentage	0,03 (3 percentage	Up to ± 0,023
dpu _{hf}	points)	points)	(2,3 percentage points)
Dust re-emission, %	15% of declared	Variable intervals of	Up to ± 0,0012
Dust re-emission, %	value	0,06% to 0,40%	(0,12 percentage points)
Sound power level, dB	0%	No classes	No measurements
Operational motor life time, Hours	5%	No classes	No measurements

Table 32: Verification tolerances set out in the regulations and preliminary indication of expanded uncertainties¹⁶⁵

*Expanded uncertainty measured for average power, which is equivalent to AE

The measured expanded uncertainty shows, as indicated in the sections above, that especially the dust pick-up on carpet is subject to large uncertainties, and the 0,03 tolerances as well as the 0,04 label class width is according to multiple stakeholders not appropriate for the current test standard as it is. According to some test laboratories a difference of up to 3 carpet dust pick-up classes has been found for the same vacuum cleaner in the same laboratory, which is also shown by the expanded uncertainty.

The standardisations groups are currently looking into other carpet types to increase representativeness of the tests, but it is not guaranteed that lower uncertainties can be achieved by changing to another (lower pile) type of carpet. Furthermore, finding a carpet that is both representative and durable enough to not change properties of the course of many test runs requires a lot of test work, and according to the standardisation group a new carpet type is far from being introduced.

In general, it is recommended that actual uncertainties of the test methods are taken into account when setting the verification tolerances. For the carpet test, this means that the current tolerance and label class width is not appropriate with the current test standard, as the uncertainty (+/-) is higher than the label class width. And this is without taking into consideration the variance between products.

One stakeholder recommends removing the carpet cleaning performance entirely from both regulations, however seeing that performance is a relevant parameter for

¹⁶⁵ Source for uncertainty data: standardisation group CLC TC59X WG6 measurements in RRT including 10 laboratories.

consumers¹⁶⁶, less drastic actions could be taken to still give consumers and indication of carpet performance. For example, the number of classes could be reduced to 4 instead of 7 (as is possible with the new Energy Labelling Framework regulation¹⁶⁷) to increase the class width¹⁶⁸.

Such a solution could also be relevant for the other performance parameters (hard floor *dpu* and dust re-emission). Even though the measurement method has better repeatability, it is questionable whether the label class width may be smaller than the range of expanded uncertainty, which is a problem. Also the dust re-emission needs to be addressed, since the smallest intervals are smaller than the expanded uncertainty. The standardisation group proposes changing the dust re-emission scale entirely to a logarithmic scale rather than a linear one, similar to the logarithmic scale for HEPA filter declarations.

Only the method for average power (measuring of ASE, i.e. equivalent to annual energy consumption) has an expanded uncertainty well within the tolerance and the label classes and a decrease in the tolerance could even be argued.

In relation to the above it should be noted, that it is not yet clear what the uncertainties of the potential new test parameters are (debris and fibre pick-up tests and part load testing) and inclusion of any further test parameters and measurement methods would require further testing to determine the uncertainty as well as the repeatability and reproducibility and setting the verification tolerances. The same is the case for introducing more market representative floors in the test standards, for example a new carpet type.

¹⁶⁶ 91% of respondents considered performance (as a whole) to be important/very important in the 2018 APPLiA consumer survey.

¹⁶⁷ Regulation (EU) 2017/1369 setting a Framework for Energy Labelling

¹⁶⁸ According to Article 11, point 11

3.12 Barriers and opportunities

3.12.1 Electricity

The power sector is in a transition state moving from fossil fuels to renewable energy. The origin of the electricity is very important factor to consider both regarding the environmental impact of using vacuum cleaners and how it may affect the consumer behaviour. Within the EU there are a number of renewable energy targets for 2020 set out in the EU's renewable energy directive¹⁶⁹. The overall target within the EU is 20% final energy consumption from renewable sources. To achieve this goal the different EU countries has committed to set their own individual goal ranging from 10% in Malta to 49% in Sweden. In 2015 the share of renewable energy was almost $17\%^{170}$.

The electricity consumption is a major part of the final energy consumption and the electricity mix is highly relevant for vacuum cleaners. The electricity mix in EU in 2015 is shown in Figure 28. Almost half of the electricity consumption still originated from combustible fuels and renewable energy sources only constituted about 25 % of the electricity generation in 2015.

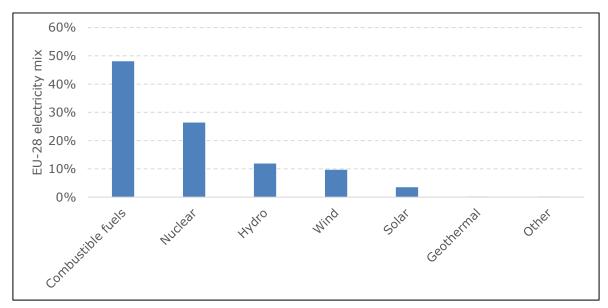


Figure 28: Net electricity generation, EU-28, 2015 (% of total, based on GWh)

The reliability of the electricity grid could be in some degree affected by the transition to a renewable energy system. With more renewable energy in the system new challenges occur e.g. with excess production of wind energy and the bi-directional transfer of energy. Due to technological development, the reliability in many EU countries is ensured by the

¹⁶⁹ https://ec.europa.eu/energy/en/topics/renewable-energy

¹⁷⁰ http://ec.europa.eu/eurostat/documents/2995521/7905983/8-14032017-BP-EN.pdf/af8b4671-fb2a-477b-b7cf-d9a28cb8beea

expansion of the electricity grid (transmissions lines across Europe) to distribute renewable energy. The quality of the electricity grid in Europe is considered to be high and among the best in the world. Every year the World Economic Forum release a Global Energy Architecture Performance Index report. The report is ranking the different countries on their ability to deliver secure, affordable, sustainable energy. In recent years European countries have dominated the top spots¹⁷¹. The 10 highest scoring countries are presented in Table 33.

Country	2017 score	Economic growth and development	Environmental sustainability	Energy access and security
Switzerland	0,8	0,74	0,77	0,88
Norway	0,79	0,67	0,75	0,95
Sweden	0,78	0,63	0,8	0,9
Denmark	0,77	0,69	0,71	0,91
France	0,77	0,62	0,81	0,88
Austria	0,76	0,67	0,74	0,88
Spain	0,75	0,65	0,73	0,87
Colombia	0,75	0,73	0,68	0,83
New Zealand	0,75	0,59	0,75	0,9
Uruguay	0,74	0,69	0,71	0,82

 Table 33: Global Energy Architecture Performance Index report – best performing countries

The consumer behaviour regarding vacuum cleaners are only assumed to have a limited effect on the electricity system as people use their vacuum cleaners at the same rate throughout the year at different times. Robotic vacuum cleaners and vacuum cleaners with batteries can in theory add some flexibility to the electricity system as they can be charged whenever there is an excess of renewable energy in the system or the energy consumption is low. The hourly load values for a random Wednesday in March 2015 for selected countries are presented in Figure 29.

¹⁷¹ https://www.weforum.org/reports/global-energy-architecture-performance-index-report-2017

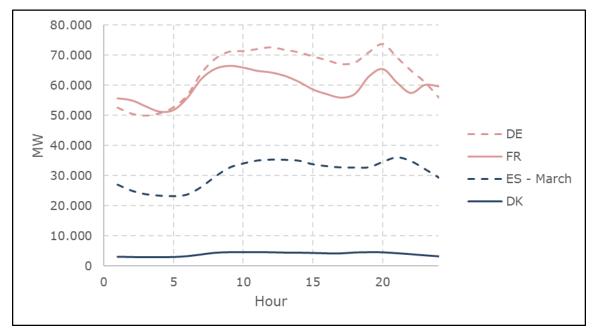


Figure 29: Hourly load values a random day in March¹⁷²

All the four countries represented in the graph have similar hourly load values with two peaks, one in the morning and one in the evening, even though it is barely visible for Denmark due to the scale of the graph. There are small differences in the timing of the peaks. In Denmark, the peaks occur a little earlier than in Spain. The first peak fits well with the start of the workday and the second peak fits with the end of the workday. Between the two peaks there is a falling trend in the energy consumption. The lowest electricity consumption across the different countries are at 5 AM. For most countries, this hourly load curve fits this description the majority of the days. For months and days with a higher or lower consumption tendency the profile are the same it is just shifted up or down.

Products that can respond to an external stimulus (smart appliances) can provide balance and flexibility to the energy system, but the impact of vacuum clearness is currently assumed being low. In the future, vacuum cleaners with batteries and especially robotic vacuum cleaners, which can have flexible cleaning times, can be charged during the night when the energy consumption is low. The potential depends on the future stock and energy consumption of battery driven vacuum cleaners.

¹⁷² Data provided by ENTSO-E

4. Technical analysis

Task 4 contains the technical description of key components in vacuum cleaners as well as descriptions of the different product types (working towards base case definitions) including average performance and energy consumption levels. Furthermore, it contains a section about material and resource consumption in different types of vacuum cleaners including Bills-of-Materials (BOMs) and End of life (EoL).

Combined with the outcomes of task 1-3, task 4 form the basis for further analyses in the following tasks, including environmental and economic impacts (task 5) as well as improvement options (task 6).

4.1 Components

In Task 1 the various vacuum cleaner categories - cylinder, upright, cordless and robot - were introduced. This section will start with a description of the most popular type in Europe, the mains-operated cylinder vacuum cleaner, and will then add further information for the other types. Figure 30 shows main components in a mains-operated vacuum cleaner: motor, fan, receptacle, filter, hose and nozzle, which will be discussed hereafter.

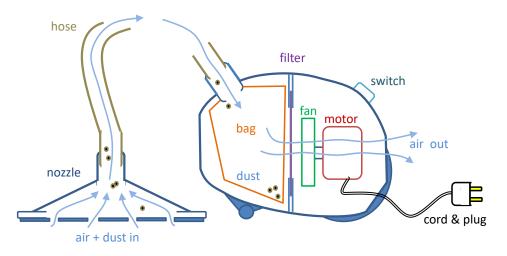


Figure 30: Key components in a mains-operated vacuum cleaner

The overall energy flows related to these components are given in the Sankey-diagram in Figure 31. It relates to a well-designed 750 W cylinder vacuum cleaner as described in the 2007 preparatory study. It uses an agitator (active nozzle) because, according to the preparatory study¹⁷³, it is the most effective and efficient way to clean carpets. For hard floor cleaning it is not a necessary feature and a passive nozzle is sufficient¹⁷⁴.

¹⁷³ AEA Energy & Environment, Final Report EuP (II) Lot 17 Vacuum Cleaners, Final Report, February 2009

¹⁷⁴ To complete the energy effort, also the manual operation of the product and/or the nozzle should be included. At testconditions this means a manual power of 20 N to move the nozzle at a speed of 0.5 m/s. This comes down to human power of 10W to be added.

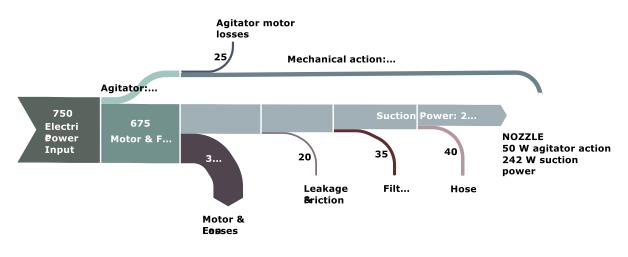


Figure 31: Sankey-diagram of energy flows in a mains-operated cylinder vacuum cleaner (source: VHK 2017 graph on the basis of AEA Ricardo 2009 data)

The suction power of 242 W relates to an empty bag and filter and might drop to 227 W (6,4%) when the bag is full. The minimum pressure drop should be in the range of 18-25 kPa and flow should be at least 8,5 L/s when the bag is full and probably 15-20 L/s in best conditions. The 50% efficiency of fan plus motor is very ambitious. Still, even in this ambitious setting motor and fan losses constitute by far the highest losses (338 W), corresponding to almost three-quarters of losses. After that, the corrugated primary hose of a cylinder type (as opposed to the straight tube of other types) cause considerable aerodynamic friction losses (40 W) as well as the bag and filter (35 W). The motor losses of the agitator are also significant (25 W).

4.1.1 Motor

In only a few years, the Ecodesign and Energy Labelling Regulations have revolutionised the vacuum cleaner market. European vacuum cleaner suppliers have switched in their top-models from a motor-type with arguably the worst efficiency (30%) to a motor with the best efficiency around (80% or more). In these models the so-called Universal AC/DC motors with carbon brushes was replaced by brushless electronically commutating (EC) motors, with or without permanent magnets¹⁷⁵. Motors in the range of 2000 W or more are now replaced with motors in the range of 600-800 W (electric input power), without any loss in cleaning performance. The technical product life of these motors, which are also more silent, is at least 5 times better than what was the average before the regulations.

¹⁷⁵ PM stands for Permanent Magnet motor, which also the most common form of Brushless DC Motor (BLDC). SRM stands for Switched Reluctance Motor, a motor that does not require permanent magnets and thus also not contain Neodymium. Neodymium is currently on the EU's Critical Raw Material (CRM) list.

EC-motors, like Brushless DC (BLDC) or Switched Reluctance Motors (SRM), are the most efficient electric motors around, comparable to IE4 or IE5 efficiency grades as defined in the electric motor regulation¹⁷⁶. In laboratory circumstances, efficiencies as high as 96% can be reached. In practice, efficiency also depends on the load and probably the very best BLDCs for vacuum cleaners may achieve perhaps 85% over the (variable torque) operating range.

The technical motor life, mainly determined by the length of the carbon brushes for universal motors¹⁷⁷ and for universal motors in the order of 600 hours, will for BLDC motors be 3000-4000 hours or more at empty receptacle¹⁷⁸. At 50 hours usage per year, which is currently taken as average vacuum cleaner usage in the regulation, this implies a technical product life of 60 to 80 years. This is probably at least twice as long as the economic life of a standard product, i.e. the time where 99% of consumers would discard the product for another reason (breaking of other vacuum cleaner parts, consumers attracted by new features, etc.). The increased product-life also changes the perspective on the need for reparability of the motor. Of course, if robot vacuum-cleaners come into scope that could possibly vacuum your house e.g. 4 hours per week (100 hours per year), then a longer motor lifetime would be required for them. Note that robot suction motors are smaller than the regular VC suction, comparable to blower motors in e.g. large computer fans. They will be of the BLDC-type.

Last but not least, a positive effect of a more efficient motor, especially a PM motor, is that it also produces less noise (sound power, expressed in dB(A)) than the universal motor with its mechanical commutators (carbon brushes).

As was assessed in the 2016 Special Review Study, this comes at a price: A universal AC/DC vacuum cleaner motor can be found for as little as $4 \in$ per unit. In January 2016, A BLDC motor with inverter for vacuum cleaner-applications cost around 33 \in . Currently, over 2 years later (Sept. 2017), BLDC prices appear to have been decreased by 20%. Still, in consumer prices and with the factor 3,77 mark-up¹⁷⁹, this means that top-range vacuum cleaners may cost at least 100 \in more than with the universal motor¹⁸⁰.

fast reaction time for market surveillance authorities also play an important role. ¹⁷⁹ Based on difference in manufacturer selling price and consumer purchase price from PRODCOM and GfK

¹⁸⁰ Based on costs from Belgium

¹⁷⁶ OJ L 191, 23.7.2009, p. 26-34, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009R0640

 ¹⁷⁷ Other aspects such as overheating, or just poor build quality can also influence the technical motor life
 ¹⁷⁸ Note that 3000h is not a proposal for a minimum lifetime requirement of a standard product, because testing costs and a

4.1.2 Fan

The typical household vacuum cleaner uses a centrifugal fan to create 'suction power' (a negative pressure difference). In principle, as mentioned in the 2007 preparatory vacuum cleaner study, there are other possibilities to create suction power, including reciprocating solutions with pistons, scroll-geometry, screws, etc. and including turbo-compressor type solutions. In a laboratory and using clean air, some of these solutions can even be more efficient than the current vacuum cleaner centrifugal fan¹⁸¹. However, to reach and maintain these efficiencies in a 'dusty' vacuum cleaner environment requires precision geometry and very narrow tolerances, typically achieved with machined steel parts and thus at prohibitive prices for a mass-produced consumer product.

Hence, the vacuum cleaner uses a backward curved centrifugal fan, i.e. where the air enters at the centre in the front and is then spun sideways using centrifugal force. A centrifugal fan is defined as 'backward-curved' if centrifugal blade angle $\beta \leq -1^{\circ}$, 'radial' if $-1^{\circ} < \beta < 1^{\circ}$ and 'forward-curved' if $\beta \geq 1^{\circ}$ (see Figure 32).

Of all the fan-types (axial, mixed flow, centrifugal) and sub-types (forward curved, radial, backward curved, backward inclined), the backward curved (BC) centrifugal fan is the most efficient for this and many other applications. In the latest draft Ecodesign proposal for industrial fans, intended to replace Commission Regulation (EU) 327/2011 ('fan regulation') in a few years, the proposed total efficiency limit for fans with electric power input Pe<10 kW is $\eta_{min} = 0.0456 \text{ LN}(\text{Pe}) - 0.105 + \text{N}$, where N=0.67 for BC centrifugal fans in category B and D.

This means e.g. a minimum total efficiency of 55% for a fan with electric power input Pe=0,7 kW. This efficiency goes up for bigger fans up to 10 kW. At 10 kW it is 67% efficiency.

However, the typical vacuum cleaner fan is no ordinary fan: It operates at a flow rate qv in the range of 8-40 dm³/s (3-15 m³/h) and a pressure difference dP as high as 10-20 kPa (10,000-20,000 Pa). For comparison: the flow is 10 times lower and the pressure difference is 30-50 times more than in a 'normal' single-house ventilation fan.

It is referred to as a High Pressure Low Volume (HPLV) 'fan' or 'blower'. The efficiency of this types is lower than that of a normal centrifugal backwards curved fan, because the slim design (relatively high diameter D, compared to thickness between front and back-plate) causes high friction losses and the gas (air) is starting to operate in the compressible range.

¹⁸¹ This applies to some of the reciprocating solutions. Small turbo-compressors at the operating range of vacuum cleaners are less efficient than the VC fan.

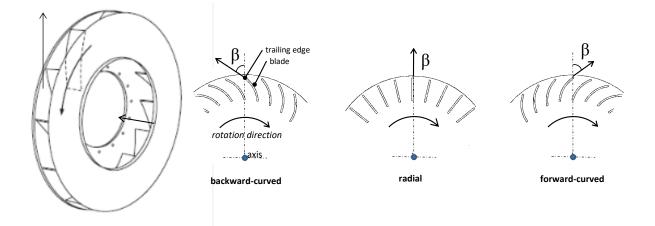


Figure 32: Backwards curved centrifugal fan (left) and fan definitions using the centrifugal

The empirical Cordier diagram in Figure 33 gives a good illustration of the interrelation between specific speed σ , diameter δ (compared to a unitary reference fan) and efficiency η . It indicates that fans with small σ (<< 0,3) generally have a significantly lower efficiency than centrifugal fans with σ = 0,3...0,6¹⁸².

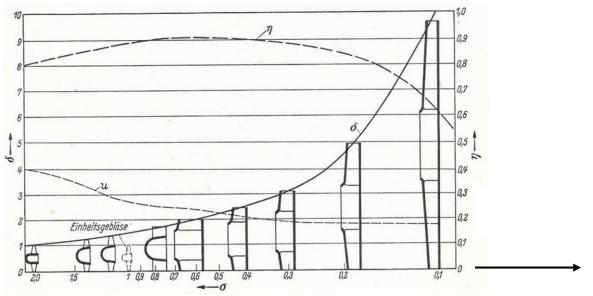


Figure 33: Cordier diagram (Eurovent/EVIA 2016 citing Eck 2003)

¹⁸² Note that the Cordier diagram is based on empirical tests of fan designs in the 1950s. Although it is a good illustration of the principle in this case, it is no longer considered 100% state-of-the-art for all aspects.

A HPLV-fan is defined in the draft proposal for an Ecodesign Fan Regulation¹⁸³ as a fan with a specific speed σ_{bep} <0,12. The specific speed σ_{bep} of centrifugal fans with electrical input power input $P_e < 10$ kW is defined as:

$$\sigma_{bep} = n \cdot \frac{2 \cdot \sqrt{\pi \cdot q_{v,bep}}}{\left(2 \cdot \frac{p_{f,bep}}{\rho}\right)^{0,75}}$$

where

- σ_{bep} is specific speed (dimensionless);
- *n* is fan speed in revolutions per second (rps);
- ρ is air density 1,2 kg/m³;
- $q_{v,bep}$ is volume flow rate at best efficiency point bep, in m³/s;
- *p*_{*f,bep*} is <u>total</u> fan pressure at bep, in Pa;
- π is the number pi (3,14...)

Figure 34 gives an overview of total fan efficiency, i.e. based on the total pressure difference, for a centrifugal backwards curved fan as a function of the specific speed σ_{bep} ('sigma' in the figure) for industrial fans on the market in 2016.

Interpretation of this diagram requires caution. The best efficiency values of ~82%, at $0,2 < \sigma_{bep} < 0,45$, apply to large fans probably in the range of 10 kW or more. As mentioned before, and is clear also from proposed limit values, the best efficiency values for the current vacuum cleaner fans (0,7 kW) are some 12%-points lower, i.e. at around 70%. Likewise, for efficiencies at $\sigma_{bep} < 0,12$ one can assume efficiencies 10-12% lower, e.g. 52% instead of 60% at $\sigma_{bep} = 0,1$.

Based on this, a 0,7 kW vacuum cleaner fan, a reference line has been drawn in the diagram delivered by Eurovent/EVIA. It shows that the best vacuum cleaner fan efficiency of 70% is reached at a specific speed σ_{bep} between 0,22 and 0,4 (0,3 in the figure). At lower specific speed the maximum efficiency rapidly declines and is only 52% at $\sigma_{bep} = 0,1$.

¹⁸³ *OJ L 90, 6.4.2011, p. 8–21, C*ommission Regulation (EU) No 327/2011, <u>https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R0327</u>

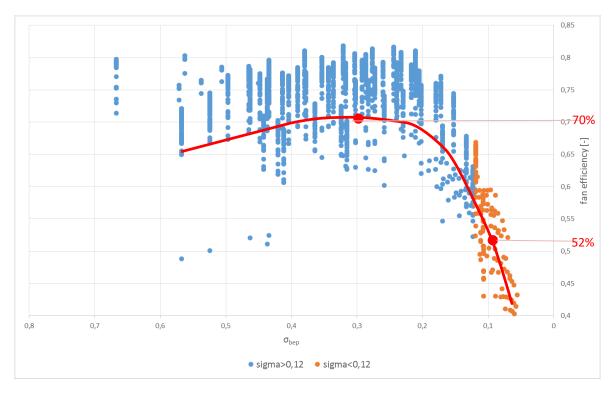


Figure 34: Fan efficiency as a function of specific speed for industrial centrifugal fans in the range up to 10 kW (source: Eurovent, EVIA. pers. comm.)

For a traditional vacuum cleaner fan, from before 2014, with the following characteristics:

- a speed *n* of 20,000 rpm (333 rps), which is fast for a fan with a traditional universal motor,
- a total fan pressure of 20,000 Pa and
- a volume flow rate of 40 litres/s (0,04 m³)

the specific σ_{bep} is close to 0,1 and thus vacuum cleaner fan efficiency is 52%.

With the new EC-motors a fan speed *n* of 80,000 rpm (1332 rps) was reached in 2016. Using the given formula, this means a specific speed $\sigma_{bep} = 0,38$. As the graph in Figure 34 indicates, this means the best vacuum cleaner fan efficiency is 70%. In other words, the BLDC or SRM motor with its possibility to realise extremely high rotational speed, also improves the strict fan performance with some 30-35%. In the latest Dyson V10 model, issued in 2018, a fan speed of 125,000 rpm (2083 rps) is reported. The fan geometry of that model is compact and closer to that of a turbo-compressor than a traditional fan. The fan-axis is made of a ceramic material rather than steel.

Last but not least, the new motor types are necessarily equipped with an inverter, i.e. some powerful electronics that allow not only to efficiently regulate the motor speed but also relatively easy and at low cost can accommodate sensors and other control options. For instance, some manufacturers have introduced a sensor to keep the suction power constant, independently of how full the receptacle is. Furthermore, as with the motor efficiency, it must be taken into account that the energy efficiency of the fan/drive/motor combination depends on the load and depends on how the designer chooses the best efficiency point.

Traditionally in engineering the best efficiency point (bep) of a fan-motor combination is at around two-thirds to 80% of the maximum load. But the design-engineer may also choose a different optimum as long as he/she stays in the stable operating range (without severe stall, surge phenomena).

In that context the so-called 'affinity laws' are relevant, which say that at constant fan diameter, the flow varies linearly with speed (rpm), the pressure varies quadratic with speed and the power varies with the cube of speed. For instance, at 80% of the nominal speed, the pressure drops to 64% of nominal pressure but the power drops to 51% of the original power. Possibly, depending on the total of technical parameters, this might be an optimal control setting for a particular load situation.

Note that the above discussion of fan design phenomena is only illustrative and aims to give a plausible explanation of certain design phenomena. The actual optimisation of fan aerodynamics, control options, etc. is very complex and requires not only sophisticated computer modelling but also extensive empirical testing.

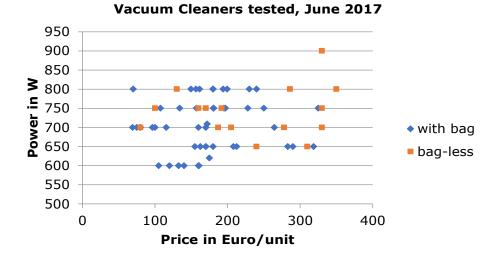
Costs play an important role. For instance, only the high-end models feature ultra-high rotational speed values that allow to reach 70% efficiency. As will be elaborated in Task 6, the costs that are associated with these design improvements are usually far beyond the Least Life Cycle Costs point. For more economical models, even those using the low-end versions of BLDC and SRM, fan/drive/motor efficiency values of 50% are more representative of the Base Case.

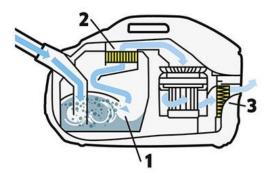
4.1.3 Receptacle

Most consumer associations and manufacturers seem now to have accepted that there is an audience for bagless Vacuum cleaners and an audience for Vacuum cleaners that have a bag in the receptacle. Energetically there is not much difference. The 'cyclone'-principle that puts a swirl in the airstream to push out dust particles by centrifugal power does not cost less energy than the pressure drop caused by a bag. The claim that the bag-less vacuum cleaner keeps up performance regardless of how full the receptacle is, was relevant in the days of simple universal motors for Vacuum cleaners. But especially with controlfeatures of EC-motors such performance can be realised at relatively low costs as well. Anyway, consumer associations that test performance (also) with full bag did not find a significant difference in performance between products with and without bags. The main consumer choice is whether you want to pay for the bags to facilitate clean emptying of the receptacle or not. Belgium consumer association Test-Achats stresses that also bag-less models need to have the receptacle thoroughly cleaned and that filters need to be changed. In their 2017 test they focus on testing vacuum cleaners with bags, because 'c'est (souvent) mieux avec un sac' (it's often better with a sac) and 56% of vacuum cleaners sold by the end of 2016 were with bag¹⁸⁴,¹⁸⁵.

Likewise, the German Stiftung Warentest remarks that the consumer saves costs of the bags but the bag-less models are more expensive and manual cleaning of the receptacle isn't easy¹⁸⁶.

Figure 35 shows the power consumption and price of 48 models with bags and 16 bagless models tested in June/July 2017 by consumer associations in Germany, Belgium and the Netherlands. Only models with power \leq 900W were taken into account. The average price for the whole population was $187 \notin$ unit at an average power consumption of 717 W. The average bagless model cost 230 € at a power use of 749 W. The models with bag cost 172 € (33% less) and have a power input of 709 W (5-6% less). The overall score in the consumer-tests for models with or without bags was comparable, with bag-less models having a slightly better score on carpet cleaning and models with bag being more silent and re-emitting less dust. More details are given in Annex E.




Figure 35: The volume of the receptacle is between 1.3 and 3.4 litres. Average size in the most recent tests is 2.2 litres

 ¹⁸⁴ Test –Achats 609, juin 2016, 'Avec sac, c'est (souvent) mieux', p. 41-43.
 ¹⁸⁵ Test-Achats 620, juin 2017, 'En plain dans le Miele', p. 51-53
 ¹⁸⁶ Test 7/2017, 'Sauber mit weniger Watt', p.52-55

4.1.4 Filters

The vacuum cleaner filter separates the dust particles from the air-stream. This is usually at least a two-stage process: The first filter step can be:

- a paper/non-woven bag.
- in a bagless vacuum cleaner the separation of dust though centrifugal ("cyclone") forces.
- in a water filter, i.e. the air flow with dirt is forced through the water before it is exhausted out of the vacuum. These vacuum cleaners must be emptied after each cleaning, but they can clean dry and wet surfaces and even larger liquid spills. Note that dry vacuum cleaners with a water filter are in the scope of the current regulation.

Figure 36 The principle of a dry vacuum cleaner with a water filter (picture source: Kärcher 2018)

The dust stays in the bag, falls in the receptacle or stays in the water for later disposal. The air moves on to the second stage, nowadays typically a HEPA (High Efficiency Particle Air) filter, that takes out the last 0,1% of dust particles and prevents (together with appropriate seals) re-emission of dust into the room.

In fact, in the dispute between bagged and bagless vacuum cleaners, the former suspect that the cyclone-concept of a bagless vacuum cleaner is less effective than the filtering of the bag and thus a larger part of the filter-burden is taken on by the HEPA-filter. This is fine in the first cycle when the HEPA filter is fresh, but after a number of cycles the HEPA-filter of a bag-less machine should be cleaned while the HEPA-filter of the bagged machine can carry on for more cycles.

In the European Union, filtration is defined by standard EN 1822:2009. This standard defines several classes of EPA/HEPA/ULPA air filters by their ability to retain the most penetrating particle size (MPPS) particles, as shown in Table 34. MPPS for most filters is in the range of 0,1 to 0,3 micro meters.

	Filter	Integral Va	lue*	Local Value	2
Filter Group	Class	Filtration Efficiency	Penetration	Filtration Efficiency	Penetration
EPA- Efficiency Particulate Air filter	E10	85,0%	15,0%	-	-
	E11	95,0%	5,0%	-	-
	E12	99,5%	0,5%	-	-
HEPA- High Efficiency	H13	99,95%	0,05%	99,75%	0,25%
Particulate Air filter	H14	100,00%	0,01%	99,98%	0,03%
	U15	100,00%	0,00%	100,00%	0,00%
ULPA- Ultra Low	U16	100,00%	0,00%	100,00%	0,00%
Penetration Air Filters	U17	100,00%	0,00%	100,00%	0,00%

Table 34: Filter classes according to EN 1822:2009

* Integral value shows efficiency of the air filter as a system and that is what average user should be focused on. EN 1822 standard doesn't define Local Values for E10-E12 filters.

The HEPA filter can be combined with active carbon, which can absorb various chemicals on a molecular basis, but can be problematic with larger particles. Also, a combination with scent, to give an extra feeling of freshness, is quite common. For obvious reasons 'scent' does not combine well with active carbon in a filter configuration.

In more exotic models, not typical for the EU market, the filtering in a vacuum cleaner can be combined with an ioniser, to clean the air electrostatically, or with UV light, to kill germs. Both solutions may not be without health risk as (traces of) ozone may be generated¹⁸⁷.

The pressure-drop caused by a typical HEPA filter is around 250-300 Pa when the filter is empty and twice as much 500-600 Pa when it is 'full'. As a general rule of thumb replacement every 6 months is recommended. Compared to the suction power in a cylinder vacuum cleaner (10-20 kPa) the filter takes up some 2-4%, depending on how full the bag is. From the 'A' dust re-emission Energy-Label rating on most models and the consumer association tests on this aspect, the HEPA filter solutions seems to be doing a good job, at least when starting out with a fresh filter.

4.1.5 Hose

The hose of a cylinder vacuum cleaner is typically a flexible corrugated plastic tube, reinforced with a metal spiral wire. Inner diameter is around 30-35 mm and the outer diameter is some 10 mm more. As was established in the special review study, the current lifetime test in the regulation (at least 40.000 flexes) and the associated standard is adequate for the primary hose of a cylinder vacuum cleaner. Attached to the hose is a steel

¹⁸⁷ http://www.pickvacuumcleaner.com/exhaust-filtration.html

cylinder with diameter of around 30-32 mm and a length of on average 95 cm. The cylinder is used to manipulate the attached nozzle.

The corrugated flexible hose causes a significant pressure-drop (VHK estimate 300 Pa, 2-3% of power). It is one of the advantages of upright, handstick and robot vacuum cleaners that they don't use a flexible hose and thus pressure loss is much lower (<50-100 Pa). The disadvantage of the first two types is of course in the ergonomics of having to manipulate not just the nozzle but the full weight of the fan and motor.

For the secondary hose of an upright vacuum cleaner, which is typically made for elongation and not only flexing, the test needs to be revised.

The hose is one of the components that may need to be replaced during the lifespan of the vacuum cleaner. In general, replacement is easy and spare parts are amply available. The reason for the hose breaking is rarely a break in the middle (as it would from the largest stress in a bending test) but would be a break where it is attached to a rigid part, i.e. the attachment to the metal tube or the attachment to the vacuum cleaner casing.

4.1.6 Nozzle

In recent years there has been discussion on the use of special nozzles that are part of the product package, but which, apart from when testing the cleaning performance in an energy label test, are hardly used in normal practice. For instance this is the case for some hard floor nozzles that adhere perfectly to the floor and pick up the dust from the crevices very well in the test but that in practice are not so useful because they don't pick up, but rather push around, the larger debris and hairs. In fact, most consumer associations advocate the use of the universal nozzle fit for both hard-floor and carpet cleaning for performance testing, especially since the nozzle design has large impact on the cleaning performance. Consumer surveys in the Netherlands show that more than half of the consumers never use any other nozzle (See Annex E). The other half might use the smaller nozzles for cleaning furniture, curtains or automobile-interiors.

In nozzle-design there are two philosophies: The passive nozzle, popular in continental Europe for its simplicity and effectiveness on all sorts of floors, and the active nozzle, popular in the UK and Ireland and praised for its superior performance on carpets. "Active" implies that the nozzle is equipped with a 'beat & brush' agitator, e.g. a rotating roll with brushes, that gives a mechanical stir to the carpet to facilitate better dust removal from the carpet. It is traditionally found on upright vacuum cleaners and on some handstick vacuum cleaners. It is reported to be especially effective with the removal of hair and fibres from the carpet. Consumer associations mention that the active nozzle bring additional material use and add a risk for product failure.

From the point of view of energy efficiency, it is difficult to say whether the active nozzle has a positive or a negative impact. On one hand, the agitator takes up extra motor power, often drawing its electricity from a (rechargeable) battery. On the other hand, it appears from consumer association tests that the main fan motor power can be reduced to e.g. 650 W instead of 750 W to get the same carpet cleaning performance. According to some stakeholders the active nozzles are more likely to break and thus contributes to larger material consumption.

4.1.7 Batteries

In the current regulation all types are mains-operated, except for a possible battery-driven active nozzle. But the possible newcomers cordless (handstick) and robot vacuum cleaners both have batteries and thus battery chargers. In task 3 the running hours of cordless and robot types in the various modes were assessed, while charging, while operating as a vacuum cleaner and when fully charged and docked.

The power consumption in those modes can be estimated from consumer tests (see Annex E) and sometimes from product specification sheets. The Stiftung Warentest assessment of February 2018¹⁸⁸ specifies for instance the running time in maximum and minimum power mode. The two best performing cordless vacuum cleaners have a maximum power in the range of 400-450 W with a runtime of 8 to 15 minutes. This means an effective battery capacity of 60 to 100 Wh. At minimum power the runtime becomes 27 and 82 minutes, respectively. There are 5 models with a maximum power in the range of 250-350 W with a runtime of 14 to 37 minutes, meaning that the battery capacity is in the range of 50 to 80 Wh. Prices for the replacement batteries for cordless vacuum cleaners in the test vary between 30 \in for a low capacity (ca. 30 Wh) NiMH battery and 105 \in for a 100 Wh Li-ion battery. At the moment, Li-ion batteries are the most popular, despite their higher prices.

Vacuum cleaner batteries are typically of the Ni-MH (Nickel Metal Hydride) type or Li-ion (Lithium-ion) type¹⁸⁹. The former features a product-life of ~400 charges and has a memory effect that may reduce long-term capacity¹⁹⁰; the latter will recharge 1000 times (or more) and has no memory effect.

At for instance 5 recharges per week, a Ni-MH battery will last less than 2 years and the Li-ion battery lasts 4 years. Furthermore, the self-discharge of Li-ion batteries is in the

¹⁸⁸ Viel Lärm um nichts, Test 2/2018, p. 52-56

¹⁸⁹ Note that NiCd (Nickel Cadmium) batteries are now banned in the EU

¹⁹⁰ Memory effect relates to a diminished battery capacity in time, as a result of supoptimal (incomplete, or too soon) charging. In some cases the effect is reversible e.g. by applying a full discharge/charge cycle.

order of <5% per month. For NiMH it is in the order of 5% in the first week and 50% in the first month^{191,192}.

This means for instance that a large 100 Wh Li-ion battery loses less than 5 Wh/month. On a continuous basis (1 month is 720 hours) this is 0,007 W. For a NiMH battery of the same capacity the power loss is 10 times more.

It is important not to overcharge the Li-ion batteries, this is one of the reasons why the Liion cells are not 'trickle charged'. Trickle charging is charging at a very low current, just enough to compensate for self-discharge, to spare battery-life. It is typical a strategy for lead-acid and the now forbidden NiCd batteries.¹⁹³ Unfortunately it is also applied to Ni-MH batteries in some vacuum cleaners and can then lead to minatenance' (charged and docked) losses of 4,5 W, whereas in fact the self-discharge is only 0,07 W in a worst case. Furthermore, it might spare battery life when done correctly, but also for Ni-MH overcharging is sub-optimal for battery life.

Charging conventional Ni-MH batteries is slow, at 10-12 hours per charge, whereas the Liion batteries can be loaded in 1 to 3 hours. Li-ion cells have a higher voltage than Ni-MH cells: 3,6 V versus 1,2 V. Vacuum cleaner batteries will thus show a voltage that is a multiple of 3.6 V, usually between 18 and 36 V. ¹⁹⁴

An important energy-related feature of batteries is the charging efficiency, i.e. the ratio of electric power output and the electric power input for charging. For Li-ion batteries this amounts to 85%. For Ni-MH batteries a typical value is 69%.

Last but not least, the efficiency of the battery charger plays a role. A battery charger is basically an external power supply (EPS) and a regulator. The latest draft Impact Assessment report on External Power Supplies mentions EU proposals no-load power use of 0,3 W for a multiple voltage EPS with PO (power output) < 250W source and an active efficiency of 86%¹⁹⁵. Assuming the 2012 US DoE standards for EPS to be representative of the average power supply cost, the EU proposal for e.g. a 120 W PO would cost 1,99 € more (consumer price incl. VAT). When saving 30 kWh/year at 0,20 €/kWh the EU consumer would pay back this 1,99 € in 4 months.

¹⁹¹ https://turbofuture.com/misc/Which-is-better-Nickel-Metal-Hydride-NiMH-or-Lithium-Ion-Li-ion-batteries

¹⁹² There are low-self discharge (LSD) rate types available. They are more reliable than the standard NiMH but they have lower capacities, usually around 2000mAh.

¹⁹³ https://batteryuniversity.com/learn/article/charging_lithium_ion_batteries

¹⁹⁴ The capacity of a 3.6V Li-ion cell is around 1.5Ah (\rightarrow 4.4Wh), so often the capacity can be calculated in that way. E.g. a 36V Li-ion battery will have 10 cells and thus a capacity of 44Wh. A Ni-MH cell, at 1.2V, will have a typical capacity of 2.2Ah. ¹⁹⁵ Viegand Maagøe A/S, internal draft. 2018.

The European consumer association ANEC/BEUC notes that the maintenance mode of battery load in portable appliances (trickle charge) is considerable¹⁹⁶. The consumer testinstitute ICRT¹⁹⁷ tests of cordless vacuum cleaners and robot vacuum cleaners show that the average load over 24 hours in the 'charged and docked' condition of models over the past years varied between <0,5 and 8 W. This means a yearly 'maintenance mode' energy use of 60 kWh, which is higher than the total yearly energy use of regulated canister vacuum cleaners. ANEC/BEUC suggests that values of 0,5 W or maybe 1 W max for this condition are perfectly possible, as some of the models currently on the market already would comply. Setting a requirement on a 24-hours average would still allow docking stations to use more energy for a short time to perform relevant tasks such as updates.

While on most energy and environment aspects the Li-ion batteries score best, there is the problem of a cobalt content. Cobalt makes up 10-20% of the battery weight. The Li-ion battery's specific capacity is around 100 Wh/kg and the average domestic cordless stick vacuum cleaner battery weighs around 0,4-0,7 kg (say 0,5 kg on average). So each of these contains 0,05-0,1 kg of cobalt. Note that there are several Li-ion types and not all use Cobalt. Dyson, for instance, uses Aluminium Nickel instead of Cobalt. This changes the battery properties¹⁹⁸. No cost information could be found to compare the different Li-ion battery types, but a recent article by Charles Amoabeng gives an overview of relevant selection criteria and typical characteristics of 6 Li-ion types. The criteria are

- Specific energy: This defines the battery capacity in weight (Wh/kg). The capacity relates to the runtime. Products requiring long runtimes at moderate load are optimized for high specific energy.
- Specific power: It's the ability to deliver high current and indicates loading capability. Batteries for power tools are made for high specific power and come with reduced specific energy.
- Performance: How well the battery works over a wide range of temperature. Most batteries are sensitive to heat and cold and require climate control. Heat reduces the life, and cold lowers the performance temporarily.
- Lifespan: This reflects cycle life and longevity and is related to factors such as temperature, depth of discharge and load. Hot climates accelerate capacity loss. Cobalt blended lithium ion batteries also usually have a graphite anode that limits the cycle life.
- Safety: This relates to factors such as the thermal stability of the materials used in the batteries. The materials should have the ability to sustain high temperatures

¹⁹⁶ Comment by ANEC/BEUC on the draft interim report, January 2018.

¹⁹⁷ http://www.international-testing.org/

¹⁹⁸ See https://owlcation.com/stem/Comparing-6-Lithium-ion-Battery-Types

before becoming unstable. Instability can lead to thermal runaway in which flaming gases are vented. Fully charging the battery and keeping it beyond the designated age reduces safety.

 Cost: Cost of lithium-ion batteries plays a major role in determining the initial product price. Hence cost is an important factor when selecting the type of lithiumion battery.

Lithium-ion battery Types	SP	SE	SF	LS	CS	PF
	Specific power	Specific energy	Safety	Lifespan	Costs	Perfor- mance
Lithium Cobalt Oxide	L	Н	L	L	L	М
Lithium Manganese Oxide	М	М	М	L	L	L
Lithium Nickel Manganese Cobalt Oxide (NMC)	М	Н	Μ	М	L	М
Lithium Iron Phosphate	Н	L	Н	Н	L	М
Lithium Nickel Cobalt Aluminum Oxide (NCA)	М	Н	L	М	М	М
Lithium Titanate	М	L	Н	Н	Н	Н

NMC batteries are the most popular type for vacuum cleaners. There are two subtypes, i.e. NCM 1-1-1 with equal parts of Ni, Co and Mn (molar ratio) and NCM 5-3-2. Dyson (and e.g. Tesla for cars) is using NCA.

For batteries in robots practically all of the above applies, except that the power consumption of the robot is lower and the battery capacity smaller. Battery capacity, in Ampere hours, depends on the power consumption of the robot vacuum cleaner. Top models may have a power consumption of 70-80W and feature batteries with capacities of 3,6 Ah to 5,2 Ah batteries. They will typically use Li-ion cells. Low-end robot vacuum cleaners may feature a power consumption of only 11-24 W and battery capacities lower than 2 Ah. They will typically use Ni-MH types.

The endurance of batteries, in terms of how many cycles they can withstand without losing capacity is highly dependent on how they are used and charged. In Table 36 the estimated number of discharge/charge cycles for Li-ion batteries before the capacity drops to 70% is shown. The depth of discharge (DoD) constitutes a full charge followed by a discharge to

the indicated percentage. Partial charge and discharge reduce stress to the battery and therefore prolong the battery life¹⁹⁹.

Depth of discharge	Discharge cycles (NMC / LiPO4)
100% DoD	~300 / 600
80% DoD	~400 / 900
60% DoD	~600 / 1,500
40% DoD	~1,000 / 3,000
20% DoD	~2,000 / 9,000
10% DoD	~6,000 / 15,000

Table 36: Cycle life of LI-ion batteries as a function of DoD.

4.1.8 Plug and power cord

On average, according to the latest test by Stiftung Warentest, a cylinder vacuum cleaner has a power cord of 10-11 metres. The power cord is retractable, using a mechanical spring. The retraction mechanism of the power cord is one of the components that most frequently needs repair and is often not easy to repair.

4.2 Materials and resource level

Resource efficiency are a growing concern within Europe and globally. More raw materials are categorised as critical and the dependency of these materials are increasing. APPLIA has initiated a collaboration with Digital Europe and recyclers (e.g. EEra²⁰⁰) to assess the possibilities on how to comply with the information requirements in the WEEE directive (article 15, specified in Annex 7). They have discussed how the information should be made available, and came up with an online joint platform, which contain necessary information on all product categories (also taking into account different technologies) and are assumed to be available in 2018.

The following section provides an overview of the material composition and distribution of vacuum cleaners, and compare typical products to best available technology to support the resource efficiency assessment. The inputs will be used to model the environmental footprint in later tasks. The material composition provides also valuable inputs to the discussion on resources.

4.2.1 Material consumption in vacuum cleaners

In November 2015, JRC-IES Ispra published its case study on durability of vacuum cleaners²⁰¹. As such, the study not only looked at the durability aspects but made a

¹⁹⁹ <u>https://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries</u>

²⁰⁰ http://www.eera-recyclers.com/about-us

²⁰¹ Silvia Bobba, Fulvio Ardente, Fabrice Mathieux, Durability assessment of vacuum cleaners, JRC-IES, Technical support for Environmental Footprinting, material efficiency in product policy and the European Platform on LCA, November 2015.

complete analysis of all environmental impacts, based on a product analysis of a recent cylinder vacuum cleaner. As such it constitutes the most recent Bill-of-Materials available of a random cylinder vacuum cleaner. Below is an exploded view of a vacuum cleaner presented in Figure 37.

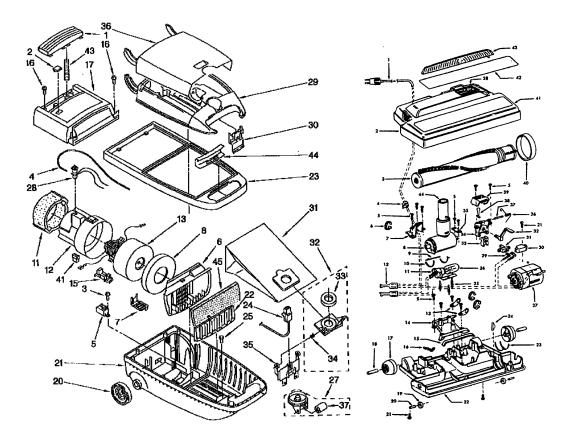


Figure 37: Example of an exploded drawing and spare parts listing for the canister (left) and the nozzle plate (right)

In Table 37 is the bill-of-materials of an average vacuum cleaner from the JRC study presented. The bill-of-materials presented only serves as an example of the variety of materials included in vacuum cleaners and which components the different materials are present. In general, the material composition and weight of vacuum cleaners are expected to be very similar to the values presented in the preparatory study. Only the material composition of robot vacuum cleaners has been added, which is derived from a study on End of life resource recovery from emerging electronic products²⁰².

²⁰² Parajuly, K., Habib, K., Cimpan, C., Liu, G. and Wenzel, H. (2016). End-of-life resource recovery from emerging electronic products – A case study of robotic vacuum cleaners. Journal of Cleaner Production, 137, pp.652-666.

Component	Material	Mass (kg)
	ABS	0,461
	PE	0,214
Hose	РР	0,018
	Rubber	0,003
	Aluminum (cast)	0,042
	Brass (CuZn20)	0,025
	Copper sheet	0,124
	Copper windings	0,0326
	Core	0,271
	Mounting	0,0579
Motor	BMC-GF (polyester- glass-fibre	
	reinforced)	0,267
	Graphite	0,007
	PE	0,016
	PP	0,259
	Rubber sealing compound	0,133
	Steel	
	ABS	0,614
	POM	0,042
Canister case	Rubber	0,042
	Steel	0,002
	Brass	0,004
	ABS	0,004
Cord Reel	PE	0,142
Coru Reel	Rubber	0,021
	Steel	0,052
	PVC	0,194
Plug & cord	Copper	0,089
	ABS.PP	0,052
	PE-HD	0,02
Nozzle plate	PP	0,219
	Steel	0,019
Filter	PE-HD	0,017
Wheels	PP	0,209
	Brass	0,002
	PE	0,015
Cables	PVC	0,011
	Wires	0,005
	Brass	0,001
Cables	PVC	0,002
	Wires	0,002
Printed Circuit Board	PCB	0,012
(PCB)	Steel	0,014
Packaging	PE-LD	0,06
Manual	Paper	0,1
Packaging	Cardboard	1,1
TOTAL		6,957

Table 37: Bill-of-materials, Cylinder Vacuum Cleaner (source: JRC-IES 2015)

The weight in grams and percentage distribution of various materials can be seen in Table 38 for typical representative products for each vacuum cleaner type.

Category	Materials	Domestic mains-operated	Commercial	Cordless	Robot
		g	g	g	g
Bulk Plastics	11 -ABS	3480	5795	3035	1390
TecPlastics	12 -PA 6	596	144	426	195
Ferro	24 -Cast iron	1192	1436	1120	398
Non-ferro	31 -Cu tube/sheet	164	766	520	209
Non-ferro	27 -Al sheet/extrusion	287	1336	908	364
Coating		6	0	0	0
Electronics	98 -controller board (PCB)	21	2	0	227
Misc.	various other materials	1333	1631	824	309
Total weight		7079	11110	6833	3092
		%	%	%	%
Bulk Plastics	11 -ABS	49%	52%	44%	45%
TecPlastics	12 -PA 6	8%	1%	6%	6%
Ferro	24 -Cast iron	17%	13%	16%	13%
Non-ferro	31 -Cu tube/sheet	2%	7%	8%	7%
Non-ferro	27 -Al sheet/extrusion	4%	12%	13%	12%
Coating		0%	0%	0%	0%
Electronics	98 -controller board (PCB)	0%	0%	0%	7%
Misc.	various other materials	19%	15%	12%	10%
Total		100%	100%	100%	100%

Table 38: The assumed material composition in the current study.

All vacuum cleaner types are mainly made of plastics, the share ranging from 50% plastics for cordless vacuum cleaners to 56% for domestic mains-operated vacuum cleaners. A notable difference is in the amount of electronics, where robotic vacuum cleaners has the highest share and amount. Note that the batteries are included in the non-ferro materials and weighs approximately 500 grams in robotic vacuum cleaners.

Many vacuum cleaners use consumables in terms of bags and filters during their use phase. Based on a JRC report, the following assumptions are made regarding the composition and weight of bags and filters²⁰³:

- Bags made of propylene, estimated weight per bag: 0,04 kg.
- Filters made of PE-HD, estimated weight per filter: 0,0017 kg.

The impact of bags will be quantified in later tasks based on these assumptions, but the dust bags and filters can also be made of other materials e.g. dust bags made of fleece (PET)²⁰⁴ and filters of polyester²⁰⁵.

4.2.2 Critical materials and components

The awareness of critical resources is increasing, and the Commission carries out a criticality assessment at EU level on a wide range of non-energy and non-agricultural raw materials. In 2017 the criticality assessment was carried out for 61 candidate materials (58 individual materials and 3 material groups: heavy rare earth elements, light rare earth elements, platinum group metals, amounting to 78 materials in total). The updated list of critical raw materials is presented in Table 39.

Table	39:	List	of	critical	raw	materials	

Critical raw materials 2017							
Antimony	Fluorspar	LREEs*	Phosphorus				
Baryte	Gallium	Magnesium	Scandium				
Beryllium	Germanium	Natural graphite	Silicon metal				
Bismuth	Hafnium	Natural rubber	Tantalum				
Borate	Helium	Niobium	Tungsten				
Cobalt	HREEs*	PGMs*	Vanadium				
Coking coal	Indium	Phosphate rock					

*HREEs=heavy rare earth elements, LREEs=light rare earth elements, PGMs=platinum group metals

Each type of vacuum cleaner may contain several raw materials categorised as critical. Raw materials like vanadium and phosphorous are in some designations of steel used as alloying elements. These alloying elements are not included in this assessment as they are very difficult to quantify, and more obvious choices are present such as:

- Printed circuit boards which may contain several critical materials such as palladium, antimony, bismuth, tantalum etc.²⁰⁶
- Motors which may contain rare earths
- Cobalt in batteries

²⁰³ <u>http://publications.jrc.ec.europa.eu/repository/bitstream/JRC96942/lb-na-27512-en-n_.pdf</u>
²⁰⁴ https://www.miele.co.uk/domestic/1779.htm?info=200046044-ZST

²⁰⁵ https://www.nilfiskcfm.com/filtration/filters/

²⁰⁶http://www.wrap.org.uk/sites/files/wrap/Techniques%20for%20recovering%20printed%20circuit%20boards%2C%20final.pd f

Simple printed circuit boards are present in most mains-operated vacuum cleaners, e.g. to hold switches, resistors, etc. Only in the (rare) case of using frequency converters the electronics can become a little more complex. But gold-bumps to hold ICs (Integrated Circuits) are not generally present in most vacuum cleaners. Instead, cordless vacuum cleaners will feature battery chargers, usually a power supply with a regulator (but no ICs with gold-bumps) and of course the battery cells (with cobalt, see section 4.7).

Proper electronics boards, as referenced in the Ecoreport can be found in all robot vacuum cleaners. but the amount of critical raw materials is properly higher in robotic vacuum cleaners as they contain the highest amount of printed circuit boards and at the highest grade. The average composition of a printed circuit board is assumed as follows²⁰⁷:

- 70% Non-metallic e.g. glass-reinforced polymer
- 16% Copper
- 4% Solder (containing tin)
- 3% Iron, ferrite (from transformer cores)
- 2% Nickel
- 0,05% Silver
- 0,03% Gold
- 0,01% Palladium
- <0,01% Other (bismuth, antimony, tantalum etc.)

This means that robot vacuum cleaners contain gold in the range of 0,03 grams which originates from the printed circuit boards. The grade²⁰⁸ of printed circuit boards in vacuum cleaners can be discussed, but the complexity of robots is increasing which imposes higher grades of printed circuit boards to be used. For robots the grade is assumed to be comparable of a midrange laptop.

The printed circuit boards and wires are already targeted components according to the WEEE-directive. The same goes for batteries and electronic displays.

Copper is also very important to remove before shredding, not because it is identified as a critical raw material, but to minimise the risk of copper contamination in the iron fraction since it directly can influence the mechanical properties of the recycled iron/steel²⁰⁹. Avoiding contaminants is one of the key points of design for recycling. In order to avoid contamination, it is important to²¹⁰:

²⁰⁷http://www.wrap.org.uk/sites/files/wrap/Techniques%20for%20recovering%20printed%20circuit%20boards%2C%20final.pd f

²⁰⁸ The grade of PCBs is dependent on the amount of precious metals (e.g. gold and silver), which can vary between the category of WEEE and its age.

²⁰⁹ http://www.rmz-mg.com/letniki/rmz50/rmz50_0627-0641.pdf

²¹⁰ Reuter, M.A. & Schaik, A.V.A.N., 2013. 10 Design for Recycling Rules , Product Centric Recycling & Urban / Landfill Mining. , pp.1–15.

- Reduce the use of materials, and especially the materials that will cause contamination in the recycling process (e.g. metal screws in plastics or combination of steel and copper). It should be considered how the materials would behave in the sorting and processing End of life.
- Identify materials in assemblies combined in an inappropriate way so resources are lost during recycling. E.g. the connection between a metal screws and plastic, where one of them may be lost due to incomplete liberation.

4.2.3 Manufacturing and distribution

During manufacturing primary scrap is generated, but the primary scrap production is estimated to be negligible. It is assumed that cuttings and residues are directly reused into new materials within the factories, making material losses very low.

Additional materials are used in the distribution of products. Usually cardboard, plastic and expanded polystyrene are used to protect the product during transport. Packaging materials are sorted by the end-user and recycled, burned or landfilled. Cardboard are easily recyclable while the plastic probably is burned or recycled. Regarding the expanded polystyrene it can be compressed and recycled into polystyrene. The problem is the density and volume of the expanded polystyrene. It must be compressed to make it both affordable and environmentally sound.

The distribution of products depends on the location of sales and production, but generally large cargo ships are used for intercontinental transport, while trains and road transportation are used for shorter distances. The impact depends on the specific product and its geographical route, but in most life cycle assessments the transportation impact turns out to be negligible compared to the environmental impact of the rest of the product. Vacuum cleaners are no exception, as most are assumed to be shipped by freight ship or by truck. Both alternatives in general have a low impact in the final assessment.

4.2.4 Recycled content

Hereafter a brief discussion of the recycled content of vacuum cleaner materials is given. Note that in this report 'recycled content' always refers to material input (in g) that is derived from post-consumer waste. Recycling waste from primary scrap, which is a common and profitable activity in industry, is not included.

 The non-ferro metals in the vacuum cleaner are mainly copper and aluminium. Globally, more than half of the copper products are made from recycled copper. However, this percentage mostly comes from recycled content of tube and sheet alloys (bronze, brass), which are not in vacuum cleaners. The wire windings of the motor have to be very pure for optimal electric conductivity. The same goes, although to a lesser degree, for the copper wire in power cords. Overall for copper in the vacuum cleaners a recycled content of 10% is assumed. The aluminium in vacuum cleaners is usually situated around the motor, as part of the frame or motor/fan housing. Typically, it will be aluminium diecast, which uses 85% recycled content.

- The ferro-materials relate mostly to the core material of the motor, some small steel parts (e.g. axes for wheels, spiral wire) and the tube holding the nozzle. For the core material of the motor there are numerous alternatives, e.g. soft iron, steel laminates, etc. There is no environmental profile in the EcoReport, but assuming a laminated steel core, the galvanised steel sheet with a recycled content of 5%, probably comes closest. Cast iron (85% recycled content) could be used for the motor frame. The chromed hose could be rolled from sheet (5% recycled content).
- Technical plastics, actually usually thermosets like epoxy resin or polyester compounds, are only a small fraction of the total plastics. they are used where temperature-resistance is required and/or as casing/mounting plate of electric parts (switches, etc.). Recycled content of thermosets is usually 0%.
- Bulk plastics, like PP (polypropylene) and ABS, constitute half or more than half of product weight. Most goes into the casing. Normally, the recycled content is 0%, but since a few years there are some manufacturers that have started to use considerable fractions of recycled PP and ABS, up to 70%. Assuming that these manufacturers might constitute 20% of the market it means that on average there is a 14% recycled content for bulk-plastics. Note that PP is also a common non-woven material for filters and bags.
- As regards electronics (including batteries) only very small fractions of recycled content, i.e. those relating to valuable materials like gold (in robot VCs), palladium (in condensers), cobalt (batteries), etc. can be assumed. Given that they constitute a high environmental impact, it can be said that the recycled content represents a negligible mass, but at least 20-30% (say 25%) of the impact.
- The packaging of a vacuum cleaner now mainly an LD-PE (low-density polyethylene) bag, a cardboard box, possibly with cardboard or EPS (expanded polystyrene) inserts for the corners. The cardboard is 90% made of recycled material. The manual is made of printing paper, very often also from recycled material (50% assumed).

4.2.5 Use phase

There are two main non-energy material strategies linked to the use phase:

- Reduction of the consumption of bags and filters, e.g. by re-usable/washable filterboxes, cyclone separation ('bagless'), etc.
- A longer product life to slow down the material cycle of vacuum cleaners and thus save materials in production and end of life. This can be achieved by increasing reparability by setting minimum technical life requirements on certain components and keeping spare parts available

Both directions will be discussed in section 6.

4.2.6 End of life

At End of life the waste stream can be split in re-use, recycling, heat recovery, incineration without heat recovery (of hazardous materials in general) and landfill. Furthermore, especially if the product sales were increasing or declining rapidly over a relatively brief period in time, there is a mismatch between the mass of materials in production and the mass being discarded. This is caused by the time displacement between acquisition and disposal of the products, which means that in the meantime the material in the stock. For instance, for cordless and robot vacuum cleaners this 'in-stock' material plays an important role, causing a delay from purchase to disposal of materials (i.e. the vacuum cleaners bought today will not be seen in disposal until in 5-6 years). For the more traditional vacuum cleaners where the markets are more mature, the 'stock' plays a minor role, since the input and output of products to and from the stock is more or less constant.

Starting point for the end of life process is the collection, which was discussed in section 3. While, according to the WEEE Directive, the collection rate should become 65% in 2019 the collection rate for small appliances (including vacuum cleaners) was only 40% in 2014. This means that 60% ended up in the mixed household fraction, where there is also recycling, e.g. of the metals, batteries and possibly robot-PCBs (Printed Circuit Boards), but where e.g. vacuum plastic plastics are usually not singled out and go to heat recovery.

As regards 're-use' there is somewhat of a definition problem. In the German study on obsolescence re-use could be perceived as people giving away the product either to family and friends or to a 'green' shop. That is a route that the first users may follow in 7-8% of the disposals. It will help to really get to the projected product life of 8 years (for mains-operated domestic vacuum cleaners), but there is very little in terms of design, and thus also in terms of Ecodesign Regulations, to do about it.

In this study re-use is assumed to be the case if there is systematic refurbishment of the product and that is much rarer and more estimated to happen only in 1% of the disposals.

From the viewpoint of designing a new product, which is the perspective of Ecodesign measures, recycling relates to two aspects: recyclability of the product at the end of life and maximum use of post-consumer recycled content for the new product. If the two are in balance, there is a true 'circular economy'. However, after a life of intensive use, most products and their materials degrade and thus there is inevitably some downgrading.

As regards 'Design for Recycling' there are different directions. The concept dates back to the late 1970s and was initially synonymous only to 'design for disassembly', i.e. facilitating mainly manually separate material fractions of discarded products. However, over the last 50 years the economic reality of recycling EEE (Electric and Electronic Equipment) did not evolve in the direction of sophisticated manual dismantling, but instead (apart from some worthwhile components specified in the WEEE-Directive) focused on a first very rough manual split, feeding a shredder and then physical/chemical processes (magnetism, floating, etc.). In the case of vacuum cleaners, for instance, the recyclers cut off the power cord for its copper content to be gained from specialised processing. In cordless vacuum cleaners the batteries are of course removed and in the case of robot vacuum cleaners, also the printed circuit boards (PCB) are removed beforehand to follow a different processing route, usually also involving a shredder.

After the shredder, the metal parts are separated by physical means (magnetic, eddycurrent, specific weight). In the remaining flow the bulk-plastics PE, PP, PS and ABS are separated individually on the basis of specific weight²¹¹. The diversity of the remaining plastics types is too large and their total quantity too small to make the potential gains to be derived from their separation worth the extra costs involved in the process.

The most used plastics in vacuum cleaners are PP (polypropylene) and ABS (Acrylic Butadiene Styrene). As mentioned, the post-shredder separation of these two plastics is current practice and thus there is no need for detailed Design for Disassembly. However, it is important to keep the PP and ABS as pure as possible in each moulded part, i.e. to avoid glass-fibre reinforcements, fillers or large quantities of additives such as (halogenated) flame retardants. Also blends and co-polymers of PP and ABS in single parts should be avoided as much as possible. However, and this has led to misunderstandings when using simplified matrices of 'compatible' plastics, there is no significant negative effect for recycling to use different parts of ABS or PP or any plastic in one product as long as each part is pure. Also it is not problematic to use metallic fasteners²¹². Finally, in this case the marking of larger plastic parts, which manufacturers anyway undertake on a

²¹¹ <u>http://www.ecodesignlink.be/en/basic-plastic-types?parent=176</u>

²¹² Based on the stakeholder inputs care must also be taken towards vague description such as "It must be possible to separate the connections easily" since it is imposible for the market surveailince authorities to control this.

voluntary basis, is useful in case of extensive disassembly. If there is no such disassembly of every component the impact of marking will be insignificant.

With the motors (metal) becoming smaller and with increased use of plastics, the plastics are now 60% or more of the total material input and thus 60% of the future waste stream when the products currently put on the market reach their end of life.

The recycling rates in this study are based on the EcoReport tool²¹³ but updated regarding plastic²¹⁴. The values used in the current study are presented in Table 30 in section 3. At the moment some 29% of the plastics is considered to be recycled, 40% goes to heat recovery, 31% to landfill (see section 3). The credit for recycling in Ecoreport amounts to 40% of all impacts²¹⁵.

After having missed the recycling stage, it is important for possible *heat recovery* from the remaining fractions, mainly plastics and electronics, that there are no hazardous materials included. Apart from the materials mentioned in RoHS, for which no special action would be required, this includes "Substances of Very High Concern" in REACH and plastic-additives such as halogenated flame retardants.

If any of these hazardous materials are present, the fractions need to be incinerated without heat recovery or there is the risk that they end up in landfill. Otherwise, at least for those fractions with a combustion value, they will contribute to heat recovery. For these materials there is a credit of 30% for all environmental impacts according to EcoReport.

4.2.7 Blue Angel requirements

The best available vacuum cleaners regarding resource efficiency are considered to be those who are awarded the German eco-label the Blue Angel as this eco-label also sets requirements concerning the resource efficiency besides more common requirements as the energy consumption. The Blue Angel requirements concerning the resource efficiency are:

Material requirements for the plastics used in housings, housing parts and accessory parts (suction tube/hose, nozzle etc.) No substances may be added to the plastics as constituent parts which are classified as:

 carcinogenic of categories 1A or 1B according to Table 3.1 of Annex VI to Regulation (EC) 1272/2008

²¹³ <u>http://ec.europa.eu/growth/industry/sustainability/ecodesign_da</u>

²¹⁴ Plastic Europe, Available at: <u>http://www.plasticseurope.org/documents/document/20161014113313-plastics_the_facts_2016_final_version.pdf</u>

²¹⁵ Another solution, not taken into accout, is to improve the recycling facilities by investing in improved sorting technologies or new technologies such as carbon capture technologies. Carbon capture technologies can in the future use CO2 (e.g. from combustion of plastic) as a feedstock for polymers. See <u>https://setis.ec.europa.eu/setis-reports/setis-magazine/carboncapture-utilisation-and-storage/co2-feedstock-polymers</u>

- mutagenic of categories 1A or 1B according to Table 3.1 of Annex VI to Regulation (EC) 1272/2008 According to DIN EN 60312-1, para. 3.4.
- toxic to reproduction of categories 1A or 1B according to Table 3.1 of Annex VI to Regulation (EC) 1272/2008
- toxic to reproduction of categories 1A or 1B according to Table 3.1 of Annex VI to Regulation (EC) 1272/2008
- being of very high concern for other reasons according to the criteria of Annex XIII to the REACH Regulation, provided that they have been included in the List (socalled Candidate List) prepared in accordance with REACH, Article 59, paragraph 1
- halogenated polymers shall not be permitted. Nor may halogenated organic compounds be added as flame retardants. Moreover, no flame retardants may be added which are classified pursuant to Table 3.1 or 3.2 in Annex VI to Regulation (EC) 1272/2008 as very toxic to aquatic organisms with long-term adverse effect and have been assigned the Hazard Statement H 410 or Risk Phrase R 50/53.

Recyclable and easy-to-maintain design. The appliance shall be so designed as to allow quick and easy disassembly with a view to facilitating repair and separation of valuable components and materials. This means that:

- it must be possible to separate the connections concerned by the use of ordinary tools and the points of connection must be easily accessible
- plastics should consist of one polymer only and plastic parts greater than 25 g in mass must be marked according to ISO 11469 to allow for a sorting of plastics by type
- disassembly instructions must be made available to end of life recyclers or treatment facilities in order to recover as many valuable resources as possible,
- the plastics used should consist of recycled material, if possible.

Durability. The appliances shall meet the following durability requirements:

- the motor shall have a minimum service life of 600 hours
- the suction nozzle must be able to withstand the impact of at least 600 drum rotations (or 1200 falls from as high as 80 cm).
- the suction hose must withstand at least 40,000 deformations
- the appliance must survive a threshold and doorpost impact test of at least 500 cycles.

Spare Parts Supply. The applicant undertakes to ensure spare parts supply for appliance repair for at least 8 years from the time that production ceases. Spare parts are those parts which, typically, may break down within the scope of the ordinary use of a product - whereas those parts which normally exceed the average life of the product are not to be

considered as spare parts. Also, the applicant undertakes to provide after-sales services. The product documentation shall include information on the above requirements.

Currently there is only two vacuum cleaners awarded with the Blue Angel Ecolabel²¹⁶ and these are considered as the BAT regarding resource efficiency. Note that no disassembly requirements are included in the requirements which probably is due to the shredding at end of life. Instead the focus is on maintainable design, durability and the spare parts. These are all factors that can improve the lifetime of products. The impacts of an improved lifetime should be thoroughly assessed in later task to determine the possible trade-offs between improved lifetime and energy efficiency.

4.3 **Products**

Based on the sections above, the average technologies and Best Available Technologies (BAT) for each main product type will be examined in this section. A suggestion for the Best Not Available Technologies (BNAT) is also given for each type.

4.3.1 Mains-operated domestic vacuum cleaners

Average technology

This category includes mains-operated cylinder, upright and mains-operated handstick (also called 'compact') vacuum cleaners, which are all covered by the current Ecodesign and Energy Labelling Regulations. These types have different form factors leading to different ergonomic advantages and disadvantages:

- Lightweight vs. Heavy
- Lightweight but noisy
- Lightweight as a whole product but not easy to handle
- Heavy but easy and versatile to handle due to hose plus cleaning head
- Easy to store versus taking up a considerable storage space and time to set up
- Standard equipped with a sturdy agitator in the cleaning head ('active nozzle') and a secondary hose for non-floor cleaning tasks, etc.

These differences co-exist and serve different audiences with different preferences. However, for the purpose of setting Ecodesign requirements and Energy Label class limits these differences are not decisive for the current or, for that matter, a possibly revised regulation.

²¹⁶ https://www.blauer-engel.de/en/products/home-living/staubsauger

In section 2.5 the mains-operated vacuum cleaners were the prime subject as regards performance data. For the BAU (Business as Usual) reference year 2016 the average performance values are:

- Energy consumption AE of 38 kWh/year
- Power input *P*_{eff} 881 W
- Hard floor cleaning *dpu* _{hf} is 1,08
- Carpet cleaning dpu c is 0,81
- Dust re-emission *d* re is 0,3%
- Average (linear) sound power 80 dB(A)

The consistency with the Ecodesign formula for AE in section 1.2.1 can approximately be checked, assuming a nozzle with width of 25 cm, assuming for the sake of simplicity that all models are 'general purpose', that their test settings (including nozzle choice) for hard-floor and carpets always refer to the rated power settings. The AE-formula was given in section 1.2.1.

The dpu_{gp} correction factor for a general purpose vacuum cleaner is 0,5 dpu_{hf} + 0,5 dpu_c = 0,5*1,08+0,5*0,81=0,945

The AE-formula comes down to $38 = 4*87*50*0,001*ASE*{(1-0,2)/(0,945-0,2)}$

ASE (in Wh/m²) = 38000/(17400*1,074)=38000/18687=2,03 Wh/m² = 7308 Ws/ m²

At the default test speed of 0,5 m/s the 0,25m wide nozzle covers 0,125 m²/s, so it takes 8 seconds to cover 1 m². The effective power *Peff* is thus 7308 Ws/8= 913 W.

<u>Compare:</u> In section 2 an average *Peff* of 909 W was found, based on GfK data. Calculated values and market value are therefore practically the same at this nozzle width and simplified calculation²¹⁷.

BAT

In section 4.1 several options for improvement at component level were suggested, which ultimately lead to the Best Available Technology (BAT). As regards the consequences for the vacuum cleaner performance, the study team did its desk research of manufacturer's sites, Swiss Topten²¹⁸, consumer associations (see Annex E), met with manufacturers in - and outside the stakeholder meetings. The conclusion is that for mains-operated domestic vacuum cleaners there are models in the highest energy label classes for energy efficiency

²¹⁷ Simplified because it does not take into account that a fraction will have active nozzles, that a fraction will be 'hardfloor only', etc..
²¹⁸ www.topten.eu

(A+++) and performance classes (A), but never for the same model. For example, the Electrolux PURED9 GREEN model has an energy class A+++ (9,9 kWh/year, 350W) but a carpet cleaning class of 'C'²¹⁹. Of the same model there is also a version DELUXE with carpet cleaning class 'A', but then the energy class is 'A++' (16 kWh/year, 400 W)²²⁰. The price of this new model is 400 \in at the moment²²¹.

This illustrates that there is a clear inverse relationship between carpet cleaning performance dpu_c and energy efficiency. This cannot be said about the hard floor cleaning performance. Rather, every type of vacuum cleaner, even with very low suction power, can get a good hard floor cleaning dpu_{hf} rating with the current crevice test. In the energy efficiency rating of the general purpose vacuum cleaner, the most popular type, both the dpu_c and dpu_{hf} play an equal role and the dpu_{hf} thus tends to 'soften' the inferior carpet cleaning performance of some products.

The cleaning performance ratings of the energy label are not always in sync with the findings of consumer associations, who generally perform also debris (rice, lentils) and fibre pick-up tests (simulating pet hair). Especially for the latter, the 'active' nozzle is reported to make a large difference, whereas in the standard carpet tests the 'passive' nozzle is performing just as well.

For all these reasons, energy efficiency is to be seen in conjunction with performance.

As regards recycling the 'PURED9 GREEN' model is best-in-class with 70% recycled content of the plastics in the product and 100% recycled materials (cardboard and PE) for the packaging. The product weight (bare) is 7,09 kg, which is at the level of the base case. On sound power, the score is 67 dB(A), comparable to e.g. the Rowenta Silence Force Compact 4A²²², but less quiet than the Miele C3 Silence EcoLine - SGSK3 at 64 dB(A) and the Bosch In'genius Prosilence²²³ at 59 dB(A). Handstick models perform better on material consumption than the larger mains-operated types (cylinder and uprights) due to the lower product weight of around 3 kg²²⁴.

<u>BNAT</u>

The Best Not yet Available Technology (BNAT) is a vacuum cleaner in the highest label performance class for all aspects, i.e. a model with A+++, A, A, A (in the current label)

²²¹ But streetprice will usually drop after the novelty wears off.

bgb8a32w.html?ref=410179&gclid=CjwKCAjworfdBRA7EiwAKX9HeBXPT7GQPoPfmqyO5gk4RCxFrNPW_z9toOtCArfOtJxifzXHs6K P_hoCKGsQAvD_BwE#product_specifications

224 E.g. Kärcher VC5

²¹⁹ https://www.electrolux.ch/de-ch/vacuums-home-comfort/vacuum-cleaners/vacuum-cleaners/vacuum-cleaner/pd91-green/
²²⁰ https://www.electrolux.fr/vacuums-home-comfort/vacuum-cleaners/vacuum-cleaners/vacuum-cleaner/pd91-8ssm/

²²² https://www.rowenta.be/nl/Schoonmaken/Stofzuigers-met-zak/SILENCE-FORCE-COMPACT-4A%2B-

RO6371EA/p/2211400326?gclid=CjwKCAjworfdBRA7EiwAKX9HeC_jr_gRPP_8hP367723L78YGdKhxjGDp8zzsM8ESoQ9iPBceOhsO BoCVGwQAvD_BwE

²²³ https://www.coolblue.be/nl/product/772255/bosch-in-genius-prosilence-

and a sound power of 59 dB(A) or lower. As indicated above, there are models that are almost there, but turning the energy class A++ into an A+++ or achieving an A in carpet cleaning performance at energy class A+++ might turn out to be very difficult, especially - depending on the final decision making - if the testing becomes more realistic and more challenging, e.g. including debris pick-up for hard-floor and fibre pick-up for carpet cleaning.

As regards circular economy there is a matter of opinion: is lightweight, compact solutions that use fewer virgin plastics and metals to begin with preferred, or is a current weight vacuum cleaner with high recycled content preferred. In the first case, building on the corded handstick of 3 kg, of which e.g. 2 kg of virgin plastics, is probably the way forward. In the second case, a 7 kg cylinder type with 70% recycled content of the 5 kg of plastics is setting apart only 1,5 kg of virgin plastics. Or are both strategies equally valid?

Table 40. Base case 1: Domestic mains-operated vacuum cleaners' energy, performance,price

		BAU	BAT	BNAT		
	2016	2018	2025	2030		
Rated power	900	700	600	500	300	300
dpu _c	0,81	0,81	0,81	0,81	0,81	0,91
dpu _{hf}	1,08	1,08	1,08	1,08	1,11	1,11
ASE _c [Wh/m2]	2,0	1,56	1,33	1,11	0,67	0,67
ASE _{hf} [Wh/m2]	2,0	1,56	1,33	1,11	0,67	0,67
AE (kWh/year)	33,5	31,2	29,8	28,7	12,7	11,7
Price incl. VAT, €	122	170	180	190	380	430

Table 41. Base Case 1: Domestic mains-operated vacuum cleaners' materials (product life 8
years, package 0.08 m³)

Life Cycle materials	Product	tion	Use	End of life			
Impacts per product	Virgin + recycled	Only recycled		Disposal	Recycle	Recover	Stock
Materials	g	g	g	g	g	g	g
Bulk Plastics	3 480	873	35	1 044	1 044	1 392	0
TecPlastics	596	0	6	179	179	238	0
Ferro	1 192	477	12	60	1 132	0	0
Non-ferro	451	181	5	23	429	0	0
Electronics	21	5	0	10	10	0	0
Misc.	1 338	1 199	13	453	872	13	0
Auxiliaries	n/a	0	640	352	224	64	0
Total weight	7 079	2 734	711	2 121	3 890	1708	0

4.3.2 Commercial vacuum cleaners

Commercial dry vacuum cleaners are typically used for cleaning offices, shops, restaurants and hotels. They are not of the wet & dry barrel type, excluded from the scope of the regulation, that is typically used to clean workshops and industrial premises and is able to pick up liquids when necessary.

Commercial dry vacuum cleaners are generally not very different from domestic vacuum cleaners, except that they generally have a sturdier construction and larger receptacle (8-15 litres) allowing them to operate for 300 hours per year, i.e. 6 times more than domestic vacuum cleaners.

Having said that, there are some exceptions, like the Nilfisk that is a cordless 10 kg cylinder vacuum cleaner primarily designed for commercial purposes. It comes with 2 battery-packs. Each pack, recharges in only a few hours and allows the vacuum cleaner to operate for 40 minutes at 600 W. Thus, in practice, an operator can operate at least for 80 minutes without interruption at maximum power, take a short break and start again. Also, there are commercial vacuum cleaners with a backpack, corded and cordless.

The table hereafter shows two canister type models (VP930, VP300), one backpack vacuum cleaner (GD10 BACK corded, but 'backvacs' are also available as cordless) and a very efficient cylinder model VP600 that is also available in a cordless version²²⁵. It shows performance and energy values comparable (or better) than the domestic types.

Figure 38. Commercial, cordless, backpack vacuum cleaner (source: Hoover)

²²⁵ Commercial cordless VCs are not proposed to be in scope here, but shown for information

Table 42. Nilfisk commercial cylinder vacuum cleaner examples (source: Nilfisk.com, Sept.2018)

Product NILFISK	VP930 ECO	VP300	GD10 BACK	VP600 ECO	VP600
	HEPA A++			НЕРА	BATTERY
price (Nilfisk-shop.nl,	299 euro	189 euro	659 euro	469 euro	~1000 euro
sept. 2018)					
power (W) in 2 settings					190/465
battery					
Rated power (W)	400	600	780	330/550	650
Airflow (I/sec.)	26	25.5	33	24/28	21.7/26.7
Weight (kg)	7.9	5.2	5	7	10
Vacuum at nozzle (kPa)	16	13.4	22	15/18	?
Dust bag capacity (I)	15	10	10	8	10
Main filter area (cm ²)	2400	1250	2400	2400	2400
Suction power end of tube (W)	120	112	225	75/155	45/116
Length x width x height	440x390x33	395x340x39	380x260x57	480x300x27	480x300x27
(mm)	0	0	0	0	0
Product NILFISK	VP930 ECO	VP300	GD10 BACK	VP600 ECO	VP600
	HEPA A++			НЕРА	BATTERY
Cable length (m)/ plug type	15/EU	10/EU	10/EU	15/EU	
Sound pressure (dB(A) BS		47			
5415)					
Sound power (dB(A) IEC		65.5			
704)					
Protection class / ip	II / IP20	IP20	II / IP20	II / IP20	II / IP20
protection					
Main filter type	HEPA 13	-	HEPA 13	HEPA 13	HEPA 13
Energy efficiency class	A++	А	В	A++	
Dust pick up on carpet	С	E	D	С	
Dust pick up on hard floor	В	E	D	С	
Dust re-emission class	А	G	В	А	
Sound power dB(A) IEC/EN 60335-2-69	66	65.5	76	70/74	
Annual energy consumption (kWh/year)	14	21	33	11	
Cable length (m)	15	10			
Number of filters	4	N/A		2	
Hose length (m)	1.9	N/A		2	
Hose diameter Ø (mm)	32	N/A N/A			
Product NILFISK	VP930 ECO	VP300	GD10 BACK	VP600 ECO	VP600
	HEPA A++	1 300		HEPA	BATTERY
Sound pressure DB(A) IEC/EN 60335-2-69	53	N/A	64	58/62	56/61 (@1.5m ISO 11203)
Hepa filtration	?	3	3	3	
H13 Exhaust filter	?	?	?	?	
Two speed	N/A	N/A	yes	yes	

*=With battery :Li-ion, 36V, 7.8 Ah (-->280 Wh), 2.8 kg, charge time <40minutes

		BAL	BAT	BNAT		
	2016	2018	2025	2030		
Rated power	900	700	600	500	300	300
dpu _c	0,81	0,81	0,81	0,81	0,81	0,91
dpu _{hf}	1,08	1,08	1,08	1,08	1,11	1,11
ASE _c [Wh/m2]	2,0	1,56	1,33	1,11	0,67	0,67
ASE _{hf} [Wh/m2]	2,0	1,56	1,33	1,11	0,67	0,67
AE (kWh/year)	48,70	30,73	29,72	28,82	12,71	11,63
Price incl. VAT, €		380	430			

Table 43. Base case 2: Commercial mains-operated vacuum cleaners (BC2)

The sturdy construction also is evident from the bill-of-materials as seen in Table 44.

Table 44. Base Case 2: Commercial mains-operated vacumm clenaers materials (product-life 5 years, package 0.1 m³)

Life Cycle materials	Production		Use	End of life			
Impacts per product	Virgin + recycled	Only recycled		Disposal	Recycle	Recover	Stock
Materials	g	g	g	g	g	g	g
Bulk Plastics	5 795	1 449	58	1 613	1 582	2 182	475
TecPlastics	144	0	1	40	39	54	12
Ferro	1 436	575	14	67	1 266	0	118
Non-ferro	2 102	841	21	98	1 853	0	172
Electronics	2	0	0	1	1	0	0
Misc.	1 631	1 468	16	515	983	16	134
Auxiliaries	n/a	0	1 000	550	322	92	81
Total weight	11 110	4 332	1 111	2 884	6 046	2 344	992

4.3.3 Cordless handstick vacuum cleaners

Manually-operated domestic cordless vacuum cleaners, are assumed to be used for the same amount of total cleaning as mains-operated domestic vacuum cleaners However, most cordless vacuums often would not have sufficient run time to be used for as long as the mains-operated domestic vacuum clenaers, as most cordless vacuum cleaners have a battery life of 15-40 minutes while only a few can run for up to 60 minutes at the lowest power setting²²⁶.

Also, the capacity of a cordless is smaller than that of a normal vacuum cleaner, i.e. in the range of 0.2-0.8 litres compared with around 2-3 litres for an average-sized standard vacuum cleaner according to Which?²²⁷. The same source also finds that, while a carpet dust pick-up of 79% is average for a cylinder vacuum cleaner the cordless vacuum cleaner only reaches 47%. In other words, the average cordless would not meet the 2017

²²⁶ http://www.which.co.uk/reviews/cordless-vacuum-cleaners/article/corded-vs-cordless-vacuum-cleaners
²²⁷ https://www.which.co.uk/

Ecodesign requirements for carpet cleaning (minimum dpu_c 75%) and possibly could only enter as a hard-floor only model (minimum dpu_{hf} 98%).

Especially over the last 5 years there has been large progress in performance, and battery capacity, and life for cordless vacuum cleaners. Belgian consumer association Test-Achats²²⁸ tested 10 cordless handstick vacuum cleaners in 2013 and largely confirmed the findings of Which?: Weak suction power, overall disappointing performance, limited battery autonomy (between 9 and 33 minutes), recharging times between 3 and 17 hours depending on the model. Finally, with a price varying between 118 and 380 \in (average 196 \in) Test-Achats found the product to be expensive. Weight of the tested products varied between 2,4 and 3,9 kg (2,9 kg on average).

Five years later, published in Feb. 2018, the Stiftung Warentest (StiWa) again tested 10 cordless vacuum cleaners and found actually 2 models, Bosch Athlete and Dyson V8, to have a 'satisfactory' cleaning performance compared to corded alternative. Stiwa doesn't specify a virtual (because not compulsory) label classes, but a carpet cleaning performance class of at least 'C' for these two models is not unlikely. The other 8 of 10 models were still judged to be disappointing. See Annex E. There is also more variation in form factors than 5 years ago. There are now models where the motor (and receptacle) is in the middle, at floor level and at the top (hand-level), as shown in Figure 39).

²²⁸ Test-Achats 575, Aspirateurs Balais, Mai 2013, p. 38-39.

- (a) Hoover FE144LG011, 14.4 V NiMH-battery (estimated capacity study team 32Wh), runtime 25 minutes (estimated motor power input 76W), charges in 12h, bagless (cyclone technology), 2 speed sections, bin 0,6 L. Street price (BE) 119 €²²⁹.
- (b) Gtech AirRam MK2, 'upright', 22V, 2Ah (44Wh--> estimate study team 60-70W motor input), 3h loading, 3.2 kg, uses washable filter box (reusable), telescope handle, www.gtech.co.uk
- (c) Dyson V10, Dyson V10 Absolute, 25.4-29V, 525 'Watt' reported capacity (NCA Li-ion), 151 airwatts output (max. setting), 3.5h loading, 2.68kg product weight, bin 0.76 L, runtime 7(at max power)-60(at minimum power) minutes, street price 629 €²³⁰

Figure 39. Examples of form factors for cordless stick models

Recently also a cordless cylinder model from Nilfisk, designed both for the domestic ('Family') and commercial sector, has entered the market. The advantage is to realise a long run time at high suction power without the user having to drag the full extra weight of 2-3 kg batteries around.

Note that the above models are all advertised (also) for carpet cleaning, i.e. as 'general purpose'. But there are also typical 'sweepers' and 'electric broom' types, with a form factor as (b) in the figure above, i.e. a rotating brush without filtration and a 10-15 W suction power²³¹ that is just enough to keep the dust from falling out of the small bin next to the brush. If their performance allows they could be in scope of a revised regulation as 'hard-floor only'. More sophisticated 'hard floor only' products are certain types that combine the dry vacuum cleaning with a humid mob.

As the APPLIA database did not distinguish cordless vacuum cleaners specifically, data was collected form retailers online for 27 cordless models from 16 different brands, which are shown in Table 45. Note that not all data points were available at all retailers.

²²⁹ https://www.unigro.be/nl/elektro-en-huishouden/stofzuigen-en-reinigen/stofzuigers/snoerloze-steelstofzuiger-hooverfe144lg011/1003079?channable=e50079.MTAwMzA3OS0tLU5M&gclid=Cj0KCQjw6MHdBRCtARIsAEigMxF1B17W6hQyzfcHFgb66 vYLU0xdR1Wn089vS9b_n7e21E6g79jwtIaAoLjEALw_wcB

²³⁰ https://www.dyson.be/nl-BE/stofzuigers/snoerloze-stofzuigers/dyson-v10/techniek.aspx

²³¹ E.g. <u>https://www.gtech.co.uk/cordless-vacuum-cleaners/sw20-premium-cordless-floor-sweeper.html</u>, featuring 7.2V battery and a 60 minutes runtime.

Table 45: Average data for cordless handstick cleaners collected from online retailers for 27models from 16 brands.

Cordless vacuum cleaners	Average data
Max run time	34 min
Charging time	248 min
Motor power	241 W
Suction power	79 W
Battery voltage	30 V
Price	221€
Bagless share	99%

Note that there is at least one manufacturer that offers a bagged cordless stick model²³².

Table 46. Base case 3: Cordless vacuum cleaners' energy, performance, price

Characteristics		B	BAT	BNAT		
year	2016	2020	2025	2030		
Maintenance consumption, charged and docked [W]	2,6	2,6	2,6	2,6	1,0	0,5
Standby dock, when cleaning [W]	1,7	1,7	1,7	1,7	0,5	0,5
dpuc	0,47	0,54	0,61	0,68	0,75	0,80
dpu _{hf}	0,98	0,98	0,98	0,98	0,98	0,98
ASEc [Wh/m2]	0,6	0,65	0,75	0,80	0,56	0,56
ASEhf [Wh/m2]	0,6	0,65	0,75	0,80	0,56	0,56
AE [kWh/year]	40,48	40,01	40,33	39,65	20,70	15,86
Consumer price incl. VAT, €		2	21		500	630

The materials cycle is given in Table 47.

Table 47. Base Case 3: Cordless vacuum cleaners' m	materials (product-life 6 years, package
0.05 m³)	

Life Cycle materials	Production		Use	End of life			
Impacts per product	Virgin + recycled	Only recycled		Disposal	Recycle	Recover	Stock
Materials	g	g	g	g	g	g	g
Bulk Plastics	3 035	759	30	643	630	870	923
TecPlastics	426	0	4	90	88	122	129
Ferro	1 120	448	11	40	751	-	340
Non-ferro	1 428	571	14	50	958	-	434
Electronics	2	1	-	1	1	-	-
Misc.	824	742	8	198	377	7	250
Total weight	6 835	2 520	68	1 022	2 806	999	2 077

CRM included in non-ferro:

Cobalt 0.075

²³² https://www.gtech.co.uk/gtech-pro.html

4.3.4 Robot vacuum cleaners

A robot vacuum cleaner is a self-propelling, cordless floor cleaning device capable of determining its own trajectory in cleaning and in tracking its power-charger/docking station. Consumer prices range from less than 100 Euro for models with low-end cleaning and battery performance to 700-1000 Euros for models with best cleaning and battery performance.

Manufacturers include:

- US robotics specialists like iRobot (Roomba brand) and Neato ²³³ (Botvac, Connected)
- European vacuum cleaner manufacturers like Vorwerk (DE, e.g. VR200, also owns Neato), Dyson (UK, 360 eye), Bosch (DE, Roxxter), Miele (DE, Scout)
- Asian vacuum cleaner manufacturers Samsung (Powerbot, Navibot), LG (Hombot), Techtronics industries TTI (Dirt Devil, VAX, Hoover brands), Chiuwi (ILIFE)
- Chinese smartphone manufacturer Xiaomi

Figure 40 illustrates a typical high-end robot vacuum cleaner²³⁴. The geometry is typically cylinder or D-shaped, diameter 34-36 cm, height 9-10 cm and includes a 'bag-less' dustbin, 0,4 - 0,7 litre, HEPA filter, battery pack and the following active components:

<u>Motors</u>

- 2 large drive wheels, independently driven (2xDC motor+gearbox), also drives main brushes, spring-hinged (vertical object detection+ switch) and controlled (tachometer for position feedback)
- 1 castor wheel, positioned through small DC motor (belt drive)
- 2 side-brushes each with DC motor
- 1 centrifugal backwards-curved fan, DC-motor driven (compare: PC cooling fan for graphics card); turbo-compressor type and cyclonic dust separation is also found.

<u>Sensors</u>

- IR sensors (LED + receiver), side and cliff detection
- IR receivers for tracking docking station and/or virtual wall²³⁵
- sensor to detect magnetic tape (optional)
- mechanical bumper ('keypad') sensors for collision detection
- piezo-electric sensor for dirt-detection
- tachometer for drive wheels

²³³ Recently acquired by Vorwerk

²³⁴ Note that the illustration is not an existing model but merely an illustrative drawing by VHK

²³⁵ Virtual wall: Active perimeter control through battery-driven IR signal, e.g. between two 'towers' (3 x 1.5V alkaline

batteries, 6 months life); alternative is magnetic tape (passive control)

- drop sensor for drive wheels
- laser distance sensor or camera
- ultrasonic sensor (optional)
- gyroscope (optional)
- electronic compass (optional)
- fan speed control, including sensor (optional)

Printed circuit board

The Printed Circuit Board (PCB) of a high-end robot vacuum cleaner is similar to that of a low-end laptop or smartphone. The latest model from Xiaomi contains a central processing unit (CPU) in the form of an Allwinner R16 quad-core System-on-Chip (SoC), 512 Mb RAM (Random Access Memory), 4 Gb flash memory (eMMC, embedded MultiMediaCard) controlled by a 32-bit microcontroller unit (STM32 MCU) and a wireless (WiFi) module. The SoC and STM are equipped with an UART (universal asynchronous receiver-transmitter) for communication through a serial port. Also there is an UART for the LIDAR laser rangefinder.

Other models, e.g. of the Roomba 650, also feature a PCB with a large inductor and big capacitors. All other components on the PCB are small SMDs (surface mounted transistors, diodes, etc.) and connectors for wiring to and from the active components.

Communication:

- Remote control (battery driven controller)
- One or two push-buttons
- Display: LED-lit segments or LED-display
- Voice control (optional)
- Smart phone control (optional): through WiFi (in HomeLAN) and/or Bluetooth

Peripherals:

- Docking station with battery charger, IR transmitter (for the VC to find the way home) and possibly electromagnetics to facilitate docking.
- Virtual walls and/or magnetic tape
- Additional cleaning aids (e.g. mops)

More information on the construction and reparability of robot vacuum cleaners can be found on so-called 'teardown' and test sites^{236,237}.

https://www.fictiv.com/blog/posts/the-great-robotic-vacuum-showdown-part-1-roomba-650-navigation-system https://www.fictiv.com/blog/posts/the-great-robotic-vacuum-showdown-part-1-roomba-650-mechanical-system

²³⁶ https://robomow.jimdo.com/xiaomi-mi-robot-vacuum-saugroboter-test/

²³⁷ https://www.fictiv.com/blog/posts/the-great-robotic-vacuum-showdown-part-2-neato-xv-21

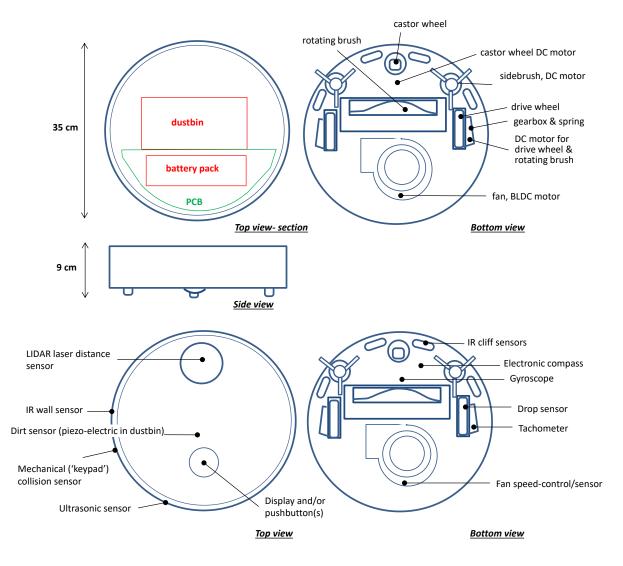


Figure 40: Robot vacuum cleaner (illustrative only, VHK 2018)

The cleaning algorithm, i.e. the pattern in which the robot moves across the floor, varies from brand to brand and model to model. The pattern can be random or mapped following a zig-zag, crisscross, or spiralling pattern²³⁸, or it can be controlled by simultaneous localisation and mapping (SLAM), which requires more processing power (see Figure 41 to Figure 43).

For instance, the early Roomba models follows a combination of a "wall following" pattern, where it drives along walls and a "random bounce" pattern, where it crosses the floor in a straight line until it hits an obstacle and then moves away in a random direction. Newer models use the SLAM technology, which uses slightly more power due to increased processing power, but on the other hand has a much lower coverage time ²³⁹. The

²³⁸ <u>https://www.vacuumcleanerbuzz.com/articles/how-does-a-robot-vacuum-cleaner-work/</u>

²³⁹ https://infoscience.epfl.ch/record/177726/files/vacuum-taros2012-camera-ready.pdf (same as

https://link.springer.com/chapter/10.1007/978-3-642-32527-4_12)

algorithms, no matter which model, should all ensure that each place of the floor is covered, but it cannot be guaranteed depending on the shape and size of the room, and some places might be covered multiple times. It is therefore not comparable to the 2 double strokes assumed for manual vacuum cleaners²⁴⁰.

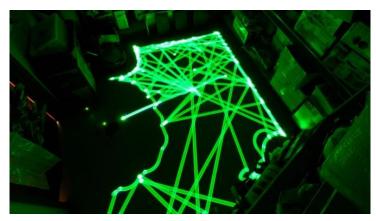


Figure 41: Robot cleaner using a random bounce pattern to cover the surface

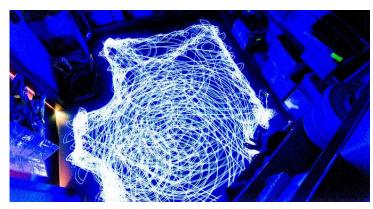


Figure 42: Robot cleaner using a random + spiralling pattern to cover the surface²⁴¹

 ²⁴⁰ https://www.cooksillustrated.com/articles/182-testing-robot-vacuums?incode=MCSCD00L0&ref=new_search_experience_3
 ²⁴¹ Pictures from https://www.cooksillustrated.com/articles/182-testing-robot-vacuums?incode=MCSCD00L0&ref=new_search_experience_3

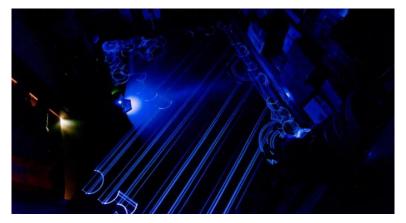


Figure 43: Robot cleaner using SLAM technology to map the room

No sources have indicated any use of bags for collecting dust in the robot vacuum cleaners. Instead robot vacuums have a bin that must be emptied regularly: some suggest after every run²⁴², but it depends on the amount of dirt collected. Most robot cleaners have changeable filters and moving brushes that should be cleaned regularly and changed (often brush sets are available) when worn. It has not been possible to find any solid evidence of how often brushes need to be changed, but based on anecdotal evidence, once a year was assumed.

The top-three robot models in a recent German consumer test reveal a hard floor cleaning performance almost as good as that of an average (150-200 Euro) cylinder vacuum cleaner, while carpet cleaning performance is only half as good in comparison (Figure 44). The dust-retention of a robot cleaners is considerably worse than that of a standard vacuum cleaner. Table 48 gives some general characteristics from a 2017 test by Stiftung Warentest of 6 robot models.

²⁴² https://taenk.dk/test-og-forbrugerliv/hus-og-have/robotstoevsugere/robotstoevsugere-fordele-og-ulemper

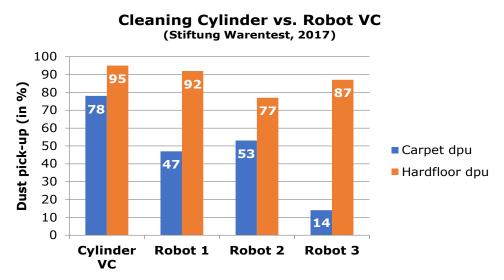


Figure 44: Dust pick-up for an average cylinder cleaner and the three best robot cleaners (source: Stiftung Warentest 2017).

Feature	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	Average
Price in EUR	725	980	495	545	360	525	605
W declared	70	33	36	80	33	11	44
Weight (kg)	4,2	3,9	4,1	4,4	3,5	2,9	3,83
Height (cm)	9	9	10	14	9	9	10
Width (cm)	34	35	34	36	34	40	36
Time programming	Y	Y	Y	N	Ν	Y	
Boundary-limit	Magnet	Dual Mode	Magnet	No	Optional	Magnet	
Charging station	Y	Y	Y	Y	Y	Y & cable	
Charging time (from empty) in min	143	146	88	114	144	73	118
Operational when charged in min	47	76	63	27	90	103	68
Price of battery in EUR	99	120	50	160	90	93.5	102
Price of main brushes* or set in EUR	25*	70	50	na	50	19.9*	57
Price of filter in EUR	15	na	15	na	25	9.9	16

Table 48: characteristics of 6 robot vacuum cleaner models (source Stiftung Warentest 2017)

The high-end robot vacuum cleaners advertise 20 'Airwatts' suction power (qv 5-13 dm³/min and dP 1-1.8 kPa), which is only 5-18% of that of an average cylinder vacuum cleaner (see Task 3). The relatively limited suction power is a key factor in the relatively low dust retention performance.

Cleaning performance not only depends on suction power. Whereas most of the cylinder vacuum cleaners have a 'passive nozzle', robot vacuum cleaners heavily rely on the use of rotating brushes and other 'active' devices to pick up dust and fibres. Consumer association tests show that many robot cleaners have problems cleaning tight corners and that

especially low-end models skip parts of the designated floor area. In those cases, secondary (vacuum) cleaning will be needed. In any case, many manufacturers indicate that their robot cleaners are only suitable for hard-floor and low-pile (<1 cm) carpet cleaning.

Privacy and security aspects are important: Robot vacuum cleaners are often linked to the Internet, either via WiFi and/or via smartphone. They store the complete lay-out of the home. Some types are even equipped with cameras. In short, there are many ways that privacy can be invaded if proper security measures are not taken. More information can be found in the media²⁴³.

Energy aspects

As regards the energy consumption of the robot vacuum cleaner, the winner of the 2017 German test, requires around 84 Wh for one recharge. A recharge takes about 3 hours, so average power input is 28 W. At 5 charges a week and 50 weeks per year (see Task 3) this means 13.75 kWh/year. It depends on the mode, floor type and floor geometry, but for now it is assumed that this gives 1 hour of operation. The manufacturer gives an average power consumption during cleaning of 70 W²⁴⁴, which suggests a recharge efficiency of 80%. This is in line with results from Vaussard et al. for Li-ion batteries, presented in Table 49 and Table 50.

The off mode is when the switch is turned off, and the cleaner is not connected to power²⁴⁵. The idle mode is when the robot is turned on, but not moving or vacuuming. The results cannot be used directly in the energy consumption analysis as it measures energy drawn from the battery, however, it does provide some valuable insights of the technologies used in each of the robot cleaners.

In order to calculate the overall energy consumption of the robot vacuum cleaners, the measurements of electricity supplied form the grid are used. Here three power modes are identified: (1) the consumption of the base station only, which corresponds to when the robot is vacuuming or otherwise away from the charging station while the power is still plugged in. (2) the station + robot idle mode, which is when the robot is placed in the charging station, but is fully charged. (3) Recharging mode, which is when the robot returns from a cleaning task and the battery is charging. No wattage was stated for the recharging mode, but the total recharging energy in kWh was given.

²⁴³ http://www.zeit.de/digital/datenschutz/2017-12/34c3-hack-staubsauger-iot

²⁴⁴ The manufacturer indicates between 60 and 90 minutes operating time. Average power is 70W (50-60W fan, 10W brush, 2.5 W standby) in normal mode; 50W in Eco-mode (30-35W fan, 7W brush, 2.5W standby). The 70W during 1h versus the 84Wh re-charge energy suggests a recharge efficiency of 80%. The Stiftung Warentest 2017 test indicates 47 minutes operation, presumably at normal (non-ECO) mode. ²⁴⁵ No switch was available for robot 7.

Mode:	Unit	Robot 1	Robot 2	Robot 3	Robot 4	Robot 5	Robot 6	Robot 7
Off	[W]	0,0068	0,0087	0,064	0	0	0,0075	1,47
Idle	[W]	1,09	2,4	2,93	3,9	2,99	3,85	1,97
Cleaning concrete	[W]	15,6	20,5	13,03	19,98	12,9	23,2	29,95
Cleaning carpet	[W]	16,6	24,5	15,25	22,9	13,7	27,8	30,19
Recharge efficiency		0,64	0,33	0,65	0,57	0,71	0,84	0,37
			٦	Fechnolog	ies			
Battery		Ni-MH	Ni-MH	Ni-MH	Ni-MH	Li-ion	Li-ion	Ni-MH
Mapping		Random	Random	Random	CV- SLAM	CV- SLAM	CV- SLAM	Laser SLAM

Table 49: Measurements of robot vacuum cleaner energy consumption when in use246, energyfrom battery

Table 50: Measurements of energy consumption from electricity grid²⁴⁷

Power mode:	Unit:	Robot 1	Robot 2	Robot 3	Robot 4	Robot 5	Robot 6	Robot 7
Base station only	[W]	1,2	3,51	1,23	1,94	0,94	0,66	0,4
Station + robot	[W]	6,13	5,95	4,32	8,06	3,19	3,61	4,63
Recharge energy	[kWh]	0,06	0,07	0,07	0,06	0,03	0,05	0,07
Cleaning time	[min]	158	63	202	104	107	102	48

The robot vacuum cleaners are not covered by the Standby Regulation, since many models have maintenance charging in the Station + Robot mode, which could be considered a primary function²⁴⁸. The Base station only-mode could be considered as a sort of standby, but since this might include energy for communicating with the robot, neither this state is in scope of the Standby regulation. As seen from the measurements large differences exist for both modes and there is thus a large room for improvement. The lowest consuming "base station only" mode is below the Standby Regulation requirement of 0,5 W (robot 7), whereas the highest is 3,5 W (robot 2), which is a difference of a factor 7. For the station + robot mode (i.e. maintenance charging), the lowest consumption is Robot 5 and 6, which were both equipped with Li-ion batteries. All other investigated models had +4 W consumption in this mode, the highest being robot 4 with a consumption of 8 W, more than double of the Li-ion models.

²⁴⁶ https://infoscience.epfl.ch/record/206269/files/EPFL_TH6522.pdf

²⁴⁷ https://link.springer.com/chapter/10.1007/978-3-642-32527-4_12

²⁴⁸ FAQ for the Standby Regulation

Manufacturer Vorwerk²⁴⁹ measured the energy consumption of 6 robot types and confirms the often high energy consumption when the robot is charged and docked. The graph below compares daily energy consumption (in Wh) during charging after one cleaning cycle in the IEC navigation room (see section 1) versus energy consumption during the time the robot is charged and docked. The least energy efficient model (RUT3) consumed 90-95 Wh for charging after a runtime of 23 minutes (implying power use during cleaning operation of around 25 W²⁵⁰) and 195 Wh for 24 h at the docking station (8 W). The least energy consuming models feature only ~50Wh for a day at the docking station (2W).

Based on the above and considering that the cleaning performance should come as close as possible to a standard cylinder vacuum cleaner, the following energy consumption is defined for the average Base Case and Best Available Technology robot vacuum cleaner.

	BAU	BAT	BNAT
Maintenance mode consumption, charged and docked [W]	4,68	2,0	0,5
Standby consumption, dock, when cleaning [W]	0,99	0,50	0,55
<i>dpu_c</i> – Calculated	0,39	0,50	0,80
dpu _{hf} – Calculated	0,98	0,98	0,98
Ceaning cycle energy, carpet [Wh/cycle]	42,50	26,00	33,00
Cleaning cycle energy, hard floor [Wh/cycle]	37,80	26,00	33,00
Room coverage factor	95%	95%	95%
Average AE (Kwh/y) – Based on test room	128,18	56,88	37,69
Average AE (Kwh/y) - no carpet	70,85	39,54	34,82

 Table 51. Base Case 4: Robot vacuum cleaners' Energy and performance

Table 52. Base Case 4: Robot vacuum cleaners materials (product-life 6 years, package 0.05m³)

Life Cycle materials	Produc	tion	Use	End of life			
Impacts per product	Virgin + recycled	Only recycled		Disposal	Recycle	Recove	Stock
Materials	g	g	g	g	g	g	g
Bulk Plastics	1 390	348	14	54	53	72	1
							225
TecPlastics	195	0	2	8	7	10	172
Ferro	398	159	4	3	49	0	351
Non-ferro	573	229	6	4	70	0	505
Electronics	227	57	2	14	15	0	200
Misc.	309	278	3	14	25	1	272
Total weight	3 092	1 071	31	95	218	84	2
-							726

CRM included in non-ferro: Cobalt 50g (50% Li-ion, 20% Co) Gold <0,005

²⁴⁹ Presentation on energy consumption by Maike Brede (Vorwerk) at Suzhou IEC meeting, Oct. 2017. pers. comm. Vorwerk.
²⁵⁰ At recharging efficiency assumed 85% (typical LI-ion, for NiMH would be lower) plus docing station/charger use during assumed 3h charging

5. Environmental and economic impact

In accordance with the MEErP methodology task 5 identifies the relevant base cases and quantifies the current baselines in terms of economic and environmental impact for each of the base cases. The economic impact is calculated as the life cycle costs of products for the end-user, while the environmental impact is quantified in terms of energy and resource aspects. The inputs for the calculations consist of the data presented in the previous tasks.

The calculations are performed with the ErP EcoReport tool, which is an Excel sheet developed specifically to aid in the impact analysis of Energy-related Products²⁵¹. All calculations in this task is based on the year 2016, which is the latest year with sufficient available data. The EcoReport tool includes a range of background data for calculating impacts of different materials, distribution, and disposal methods.

The calculations in EcoReport tool are made for each of the following four base cases identified for the purpose of this study:

Base case 1 (BC1): Mains-operated domestic vacuum cleaners

Mains-operated domestic vacuum cleaners are in principle the domestic products already covered by the regulations, including cylinder, uprights and mains-operated handstick vacuum cleaners.

Base case 2 (BC2): Commercial vacuum cleaners

Commercial vacuum cleaners are also covered by the current regulations, and are all assumed to be mains-operated.

Base case 3 (BC3): Cordless

Cordless vacuum cleaners, as defined in task 1, are battery driven, manually handled vacuum cleaners intended for floor cleaning, and are all assumed to be domestic.

Base case 4 (BC4): Robot vacuum cleaners

Robot vacuum cleaners are also battery driven, but can clean autonomously, not needing the interference of a human being.

251 https://www.eup-

network.de/fileadmin/user_upload/Produktgruppen/Methodology_prep_study/MEErP_study_by_vhk/20110819_Ecoreport_2011 __MEErP.xls

5.1 Inputs for baseline calculations

The inputs needed from the previous tasks to establish a baseline scenario for each base case, is summarised in the following.

Sales, stock and economic base data is all found in task 2, and is summarised in Table 53.

Description	Unit	Domestic mains- operated	Commercia I	Cordless	Robot	From section
Product Life	years	8	5	6	6	2,3
Annual sales	mln. Units/ year	30,31	3,45	6,05	1,66	2,2
EU Stock	mln. Units	253,57	21,20	19,72	6,29	2,4
Product price	€/unit	122,59	331,42	221,00	345,00	2,6,2
Electricity rate	€/kWh	0,196	0,163	0,196	0,196	2,6,3
Repair and maintenance costs	€/unit	21	31	45	74	2,6,4
Bags and filters	€/unit	65	169	40	48	
Discount rate (interest minus inflation)	%	4%	4%	4%	4%	2,6,1
Escalation rate (projected annual growth of running costs)	%	1%	1%	1%	1%	2,6,3
Present Worth Factor (PWF)	(years)	7,03	4,58	5,42	5,42	Automatically calculated in EcoReport

Table 53: Base case economic and market data for EcoReport, from task 2. All data is for 2016.

The present worth factor, which are automatically calculated in EcoReport is calculated by the following formula:

$$PWF = \{1 - 1/(1 + r)^N\}/r$$

Where:

- *N* is the product life
- *r* is the discount rate minus the growth rate of running cost components (e.g. energy and water rates)

The energy consumption inputs are derived from the use patterns and formulas in task 3 and the technical product data from task 4. For all calculations the data purchased from GfK is used. The derived average energy consumption for each base case 2016 is shown in Table 54.

Table 54: Average annual energy consumption (based on AE values) for each base case in2016.

Description	Average AE value, 2016	Presented in section:
Domestic mains- operated	38 kWh/year	4.3.1
Commercial	291 kWh/year	4.3.2
Cordless	28 kWh/year	4.3.4
Robot	129 kWh/year	4.3.4

Besides the energy consumption during the use phase, the materials in the product itself contain a considerable amount of embedded energy e.g. the energy used to mine the raw materials and produce the finished materials. Some of this energy can be recovered at End of life when products are either reused, recycled, or burned. When products are landfilled this energy is lost. The needed inputs are presented in Table 55.

Table 55: Inputs to calculate the environmental impacts and where they are presented

Description	Presented in section:
The material composition and weight of the materials for the different vacuum cleaners	4.2.1, Table 38
Description of the manufacturing process and the values used in the EcoReport tool	4.2.3 (description) and below in this section (value used in EcoReport tool)
The distribution phase and values used in the EcoReport tool (Volume of package during transportation.	Below in this section
Share and weight of materials send to re-use, recycling, incineration and landfill at End of life	3.9.1, Table 30 and Table 31
The environmental impacts and commodity prices of gold, copper and cobalt are:	Below in this section

The manufacturing process is assumed to be negligible or at least small compared to other impacts. Furthermore, it is not possible to add or adjust values for the manufacturing process itself. The only adjustable input in EcoReport regarding manufacturing is the percentage of sheet metal scrap. The default value is 25%, which is kept. Changing this value will only have a very limited impact on results, since this is not a widely used material in vacuum cleaners.

The distribution phase is included in the calculations but have a very limited impact on the overall analysis. This phase comprises the distribution of the packaged product and covers all activities from OEM (Original Equipment Manufacturer) components to the final customer. However, the only parameter that can be changed in EcoReport is the volume of the final package. The volume of the packaged product from the preparatory study is

used in the current study. The volumes of the package for the different base cases are assumed to be:

- Mains-operated domestic vacuum cleaners: 0,08 m³
- Commercial vacuum cleaners: 0,1 m³
- Cordless vacuum cleaners: 0,05 m³
- Robot vacuum cleaners: 0,05 m³

In addition to the impacts calculated with EcoReport, the economic value and environmental impacts of selected raw materials are investigated. The needed inputs are:

- Gold: 250 GJ/kg, 22500 CO₂-eq/kg²⁵² and 35150 euro/kg²⁵³
- Copper: 50,9 MJ/kg, 2,7 CO₂-eq/kg²⁵⁴ and 5,9 euro/kg²⁵⁵
- Cobalt: 130 MJ/kg, 100 CO₂-eq/kg²⁵⁶ and 5,9 euro/kg²⁵⁷

5.1 Outputs from baseline calculations

For each base case the following environmental and economic impacts are calculated:

- Life cycle Impacts per product over its life time one product
- Impacts of all appliances sold in 2016 over their lifetime the sales in 2016 multiplied with the impacts of one product
- Impacts of all appliances in the stock in 2016

All impacts are divided into five different life cycle phases²⁵⁸:

- The material phase: In this phase the weight of the materials is multiplied with the LCA Unit Indicators²⁵⁹ so the impacts of using the different materials can be calculated.
- The manufacturing phase: The manufacturing phase describes the (OEM) manufacturing of metals and plastics materials. The specific weights per process are calculated automatically from the material phase.
- The distribution phase: This phase covers all distributing activities from OEM components to the final customer.

²⁵² http://ec.europa.eu/environment/integration/research/newsalert/pdf/302na5_en.pdf

²⁵³ Price assessed in November 2017 at: http://www.infomine.com/investment/metal-prices/gold/1-day-spot/ ²⁵⁴ EcoReport tool

²⁵⁵Price assessed in November 2017 at: http://www.infomine.com/investment/metal-prices/copper/1-year/

²⁵⁶ http://www.iaeng.org/publication/WCE2015/WCE2015_pp863-865.pdf

²⁵⁷Price assessed in September 2018 at: http://www.infomine.com/investment/metal-prices/cobalt/1-week/

²⁵⁸ The lifetime and life cycle are different parameters. However, the lifetime of vacuum cleaners is included in the use phase of the life cycle ²⁵⁹ ere MEGE 2011 Methodology. Part 2

- The use phase: For the use phase, the average product life in years and the annual energy consumption are multiplied with each other to calculate the energy consumption during the whole lifetime.
- The disposal and recycling phase: These phases deal with the impacts of End of life. In the recycling phase, the recycling of the different materials is credited, and a negative value can appear (due to avoiding the production of new materials).

Besides total energy consumption and greenhouse gas emissions, other impacts are calculated in the EcoReport Tool. All the impacts over the product life cycle are presented in Annex F for the different base cases. The impact categories are:

- Other Resources & Waste
 - Total Energy (MJ)
 - of which, electricity (MJ)
 - Water process (litre)
 - Water cooling (litre)
 - Waste, non-hazardous/ landfill (g)
 - Waste, hazardous/ incinerated (g)
- Emissions (air)
 - GWP100 (kg CO₂-eq.)
 - Acidification (g SO₂-eq.)
 - Volatile Organic Compounds (VOC) (g)
 - Persistent Organic Pollutants (ng i-Teq)
 - Heavy Metals (mg Ni eq.)
 - PAHs (mg Ni eq.)
 - Particulate Matter (g)
- Emissions (Water)
 - Heavy Metals (mg Hg/20)
 - Eutrophication (g PO₄)

All impacts are further divided in the different life phases of the product which are the material phase, manufacturing phase, distribution phase, use phase, disposal phase and the recycling phase.

5.1.1 Mains-operated domestic vacuum cleaners

The energy and global warming (GWP) impacts of mains-operated domestic vacuum cleaners over a lifetime (8 years) are presented in Figure 45.

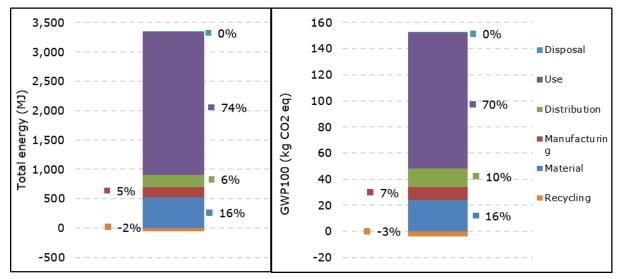


Figure 45: Total energy consumption and emission of CO₂-eq of mains-operated vacuum cleaners – the impact of one vacuum cleaner over a lifetime

The energy consumption in the use phase of mains-operated domestic vacuum cleaners have decreased over the past years, but is still the greatest share of the energy consumption in the life cycle with 74% of total energy consumption. The material phase is responsible for 16% of the energy consumption. It should be noted, that if the lifetime of vacuum cleaners decreases, the importance of the material phase will increase.

The energy consumption and greenhouse gas emissions are closely connected and there is a high correlation between the parameters. For energy consumption in the use phase there is a clear correlation between energy used and CO_2 emitted. However, for materials the total energy consumption and emitted CO_2 differs depending on the material. For domestic mains-operated vacuum cleaner, the use phase is responsible for 70% of the global warming potential (GWP) due to emission of greenhouse gasses.

Some of the use phase impacts are imposed by the use of bags. For mains-operated domestic vacuum cleaners the impact of the bags over a lifetime is based on the use of 2 bags²⁶⁰ and 0,5 filter per year over the lifetime of 8 years, and an average weight of each bag of 0.04 kg and each filter of 0,0017 kg, which gives approximately:

- 11 MJ of total energy consumption, responsible for approximately 0,3% of the energy used
- $\circ~$ 0,6 kg CO_2-eq emitted, responsible for approximately 0,4% of the emitted CO_2-eq

Besides total energy consumption and emission of CO₂-eq, other impacts are calculated in the EcoReport Tool. All the impacts over the life cycle are presented in Annex F. Here it is

 $^{^{\}rm 260}$ For the average domestic mains operated vacuum cleaner

visible that the use phase has the highest impact in 7 out of the 15 impact categories, and the material phase has the highest impact in 7 of the impact categories.

5.1.2 Commercial vacuum cleaners

The environmental impacts of commercial vacuum cleaners over a lifetime (5 years) are presented in Figure 46.

Figure 46: Total energy consumption and emission of CO₂-eq of commercial vacuum cleaners – the impact of one vacuum cleaner over a lifetime

Commercial vaccum cleaners have a shorter lifetime than domestic vacuum cleaners, but commercial vaccum cleaners are used for more hours. This means the the use phase is connected with the highest energy consumption in the life cycle of commercial vacuum cleaners. The use phase is responsible for 90% of the total energy consumption in the life cycle. The material phase is responsible for 7% of the energy consumption.

The energy consumption and the emission of CO_2 -eq are closely connected. For commercial vacuum cleaner, the use phase is responsible for 88% of the emission of CO_2 -eq. The material phase is responsible for 7% of the emission of CO_2 -eq.

Some of these impacts are imposed by the use of bags. For commercial vacuum cleaners the impact of the bags over a vacuum cleaner's lifetime is his is based on 10 bags²⁶¹ and 0.5 filter per year over the lifetime of 5 years, and an average weight of each bag of 0,04 kg and each filter of 0,0017kg, which gives approximately:

- $_{\odot}$ $\,$ 14 MJ of total energy consumption, responsible for approximately 0.1% of the energy used
- 0.8 kg CO₂-eq emitted, responsible for approximately 0.2% of the emitted CO₂-eq

 $^{^{\}rm 261}$ For the average commercial vacuum cleaner (50% bagged)

5.1.3 Cordless vacuum cleaners

The environmental impacts of commercial vacuum cleaners over a lifetime (6 years) are presented in Figure 47.

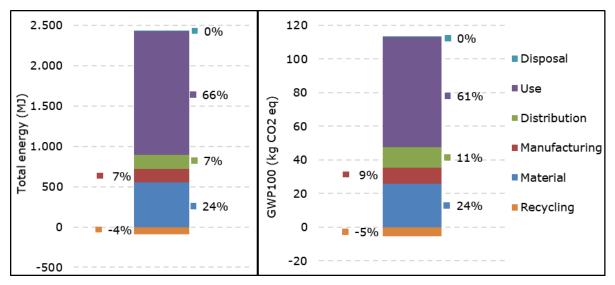


Figure 47: Total energy consumption and emission of CO₂-eq of cordless vacuum cleaners – the impact of one vacuum cleaner over a lifetime

Cordless vaccum cleaners have the lowest overall impacts of all vacuum cleaners, as cordless vacuum cleaners are lightweight (few materials) and have a lower energy consumption in the use phase. However, cordless have a high energy consumption in maintenance mode. The use phase of cordless vacuum cleaners is connected with the highest consumption of energy in the life cycle. The use phase is responsible for 66% of the total energy consumption in the life cycle. The material phase is responsible for 24% of the energy consumption.

The energy consumption and the emission of CO_2 -eq are closely connected. For cordless vacuum cleaners, the use phase is responsible for 61% of the emission of CO_2 -eq. The material phase is responsible for 24% of the emission of CO_2 -eq.

Besides total energy consumption and emission of CO₂-eq, other impacts are calculated in the EcoReport Tool. All the impacts over the life cycle are presented in Annex F. Here it is visible that the use phase has the highest impact in 5 out of the 15 impact categories, and the material phase has the highest impact in 9 of the impact categories.

5.1.4 Robot vacuum cleaners

The environmental impacts of commercial vacuum cleaners over a lifetime (6 years) are presented in Figure 48.

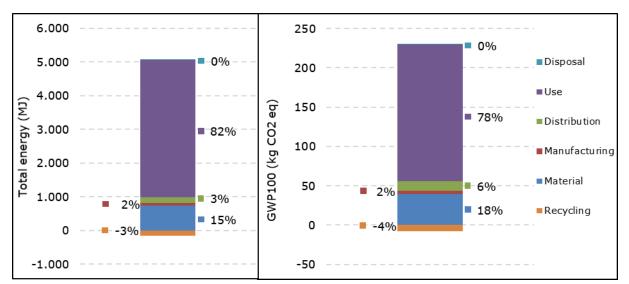


Figure 48: Total energy consumption and emission of CO2-eq of robot vacuum cleaners – the impact of one vacuum cleaner over a lifetime

Robot vaccum cleaners have the second highest life cycle impacts of all vacuum cleaners, as robot vacuum cleaners use a high amount of energy in the maintenance mode and also contains a high amount of PCBs. The use phase of robot cleaners is connected with the highest consumption of energy in the life cycle. The use phase is responsible for 89% of the total energy consumption in the life cycle. The material phase is responsible for 10% of the energy consumption.

For robot vacuum cleaners, the use phase is responsible for 86% of the emission of CO_2 eq. The material phase is responsible for 11% of the emission of CO_2 -eq.

Besides total energy consumption and emission of CO_2 -eq, other impacts are calculated in the EcoReport Tool. All the impacts over the life cycle are presented in Annex F. Here it is visible that the use phase has the highest impact in 9 out of the 15 impact categories, and the material phase has the highest impact in 6 of the impact categories.

5.1.5 EU Totals – Environmental impacts

The EU totals are the environmental impacts aggregated to EU-28 level. For the EU totals the following is calculated:

• Environmental impacts during the entire life cycle of vacuum cleaners sold in 2016 is calculated by multiplying the annual sales with the impacts of each of the base cases and presented in Table 56.

• Environmental impacts of vacuum cleaners (EU-28 stock) is calculated by multiplying the current stock with the impacts of each of the base cases and presented in Table 57.

Materials	Domestic mains- operated	Commercial	Cordless	Robot	Total
Bulk Plastics (kt)	40	7	6	0	53
TecPlastics (kt)	5	0	1	0	6
Ferro (kt)	2	0	0	0	2
Non-ferro (kt)	1	0	0	0	1
Electronics (kt)	0	0	0	0	0
Misc. (kt)	13	2	1	0	16
Total weight (kt)	61	9	8	0	78
Total Energy (PJ)	94	40	17	8	159
of which, electricity (PJ)	74	37	13	7	131
Water (process) (mln.m ³)	1	0	0	0	1
Water (cooling) (mln.m ³)	24	5	4	1	34
Waste, non-haz./ landfill* (kt)	79	26	16	5	126
Waste, hazardous/ incinerated* (kt)	2	1	0	0	3
GWP100 (mt CO ₂ -eq.)	4	2	1	0	7
Acidifying agents (AP) (kt SO ₂ -eq.)	19	8	4	2	33
Volatile Org. Compounds (kt)	2	1	0	0	3
Persistent Org. Pollutants (g i-Teq.)	0	0	0	0	0
Heavy Metals (ton Ni eq.)	1	1	0	0	2
PAHs (ton Ni eq.)	1	0	0	0	1
Particulate Matter (kt)	9	1	1	1	12
Heavy Metals (ton Hg/20)	2	0	0	0	2
Eutrophication (kt PO ₄)	0	0	0	0	0

 Table 56: Environmental impacts during the entire lifetime of vacuum cleaners sold in 2016

The combined energy consumption of all vacuum cleaners sold in 2016 will account to 159 PJ during their lifetime resulting in 7 Mt CO₂-eq emitted. The highest impacts are connected with mains-operated domestic vacuum cleaners as they have the highest annual sales.

In Table 57 the annual impact of all vacuum cleaners (impacts by the stock for one year) is calculated which allows for comparison with the EU totals from all energy-related products (values for EU is a part of the EcoReport Tool).

Materials	Domestic mains-operated	Commercial	Cordless	Robot	EU totals		
Plastics (Mt)	0.118	0.020	0.020	0.003	48		
Ferrous metals (Mt)	0.035	0.005	0.006	0.001	206		
Non-ferrous metals (Mt)	0.013	0.007	0.008	0.001	20		
	Other resources	s & waste					
Total Energy (PJ)	157	60	12	7	75697		
of which, electricity (TWh)	15	6	1	1	2800		
Water (process)* (mln.m ³)	2	0	0	0	247000		
Waste, non-haz./ landfill* (Mt)	0.12	0.04	0.01	0.00	2947		
Waste, hazardous/ incinerated* (kton)	0.00	0.00	0.00	0.00	89		
	Emissions	(Air)					
GWP100 (mt CO2-eq.)	7	3	1	0	5054		
Acidifying agents (AP) (kt SO2eq.)	31	12	3	2	22432		
Volatile Org. Compounds (kt)	3	1	0	0	8951		
Persistent Org. Pollutants (g i- Teq.)	1	0	0	0	2212		
Heavy Metals (ton Ni eq.)	2	1	0	0	5903		
PAHs (ton Ni eq.)	2	1	1	0	1369		
Particulate Matter (kt)	10	2	1	1	3522		
	Emissions (Water)						
Heavy Metals (ton Hg/20)	2	1	0	0	12853		
Eutrophication (kt PO ₄)	0	0	0	0	900		

Table 57: Annual environmental impacts of vacuum cleaners (EU-28 stock)

The annual energy consumption of all vacuum cleaners (in the stock in 2016) in EU-28 is calculated to 236 PJ which leads to 11 Mt CO₂-eq released to the atmosphere. This means that vacuum cleaners are responsible for 0,3% of the energy consumption (0,82% of the electricity consumption) in the EU and 0,22% of the CO₂-eq.

5.2 Consumption of critical raw materials and other materials of high importance

The consumption of critical raw materials (cobalt) and the consumption of other materials with high importance (gold and copper) are determined for each of the base cases. The amount of cobalt, gold and copper are calculated and the derived impacts regarding energy, emission of CO_2 -eq and market value in euros are presented in Table 58.

Base case	Resource	g	MJ	Kg CO₂-eq	Euro
	Gold	0,00	1,58	0,14	0,22
BC 1	Copper	0,16	8,35	0,44	0,97
	Cobalt	-	-	-	-
	Gold	0	0	0	0
BC 2	Copper	0,77	38,99	2,07	4,52
	Cobalt	-	-	-	-
	Gold	0	0	0	0
BC 3	Copper	0,52	26,47	1,40	3,07
	Cobalt	0,05	5,85	4,50	2,30
	Gold	0,00	17,03	1,53	2,39
BC 4	Copper	0,21	10,64	0,56	1,23
	Cobalt	0,075	9,75	7,50	3,83

Table 58: The amount of cobalt, gold and copper and the derived impacts regarding energy,emission of CO2-eq and market value in euros per product

Cobalt, copper and gold have limited impacts compared with the impacts of the use phase of vacuum cleaners. Copper is responsible for less than 1 % of the emission of CO_2 -eq over a lifetime and gold and cobalt has an even lower impact. The robotic vacuum cleaner has the highest contest of printed circuit boards, the biggest battery and thus the highest content of gold and cobalt. Even the "high" content the combined value of the gold and cobalt in the robotic vacuum cleaner is limited.

The impacts of the mentioned raw materials are also aggregated to EU-28 level. For the EU totals the following is calculated:

• The EU consumption of critical raw materials in vacuum cleaners is calculated by multiplying the current stock with the amount of cobalt, gold and copper in each of the base cases and presented in Table 59.

Table 59: The amount of cobalt, gold and copper and the derived impacts regarding energy,emission of CO2-eq and market value in euros for the total stock of vacuum cleaners

Base case	Resource	Tonne	PJ	Tonne	Million euros
	Gold	2	0.40	35943	56
BC 1	Copper	41585	2.12	112279	245
	Cobalt	0	0.00	0	0
	Gold	0	0.00	29	0
BC 2	Copper	16237	0.83	43840	96
	Cobalt	0	0.00	0	0
	Gold	0	0.00	0	0
BC 3	Copper	10252	0.52	27681	60
	Cobalt	887	0.12	88722	45
	Gold	0	0.11	9632	15
BC 4	Copper	1314	0.07	3547	8
	Cobalt	471	0.06	47144	24

The impacts of the raw materials are limited²⁶² compared to the other impacts imposed by vacuum cleaners in the use phase. However, the value for the amount of cobalt, gold and copper present in the EU stock are significant. The combined impact and value of gold and copper in all vacuum cleaners (stock) are presented in Table 60.

Table 60: The combined impact and value of gold and copper in all air conditioners (stock)

	Total Energy (PJ)	GWP100 (t CO ₂ -eq.)	Total (mln. €)
Gold	0,5	45603	71
Copper	3,5	187348	409
Cobalt	0,2	135867	69
Total	4,2	368818	550

Cobalt, gold and copper are accountable for an energy consumption of 4,2 PJ and an emission of 0,37 Mt of CO2-eq. The combined value of copper, gold in the EU stock amounts to 0,55 billion euros.

5.3 Life cycle cost

Based on these inputs EcoReport automatically calculates the Life cycle costs (LCC) with the following formula:

$$LCC = PP + PWF \times OE + EoL$$

Where:

- LCC is Life Cycle Costs
- PP is the purchase price of the vacuum cleaner

²⁶² Taking environmental impacts beyond energy and GWP into account, raw materials are connected to very severe environmental and health issues (gold: use of mercury; copper: acid mine drainage, water contamination in mining etc.) though these aspects are difficult to assess with MEErP methodology.

- OE is the operating expense and are the combined costs of electricity²⁶³, bags, filters and the repair and maintenance.
- PWF (Present Worth Factor) is a formula described below and is based on the concept of time value of money²⁶⁴.
- EoL is End of life costs (disposal costs, recycling charge) or benefit (resale) which are assumed to be negligible.

The life cycle cost is thus the cost experienced by the user, when purchasing a vacuum cleaner in 2016, with discounted energy prices throughout the lifetime of the product. The life cycle costs of the four different base cases is calculated in the EcoReport tool and presented in Table 61.

	Domestic mains- operated	Commercial	Cordless	Robot
Product price (€)	123	271	220	344
Electricity (€)	46	183	43	80
Repair & maintenance costs (€)	46	28	41	67
Bags and filters	57	96	36	44
Total (€)	258	578	340	554

Table 61: Life cycle costs of the three base cases (VAT included)

For all base cases the highest expenses are connected with the purchase of the vacuum cleaner. The commercial vacuum cleaners have the highest expenses in the use phase, which are due to the extensive use of these vacuum cleaners. Robot vacuum cleaners have the second highest expenses in the use phase, due to a high consumption in the maintenance mode. Domestic mains-operated, and commercial vacuum cleaners have highest cost for repair and maintenance due to the purchase of bags. Over a lifetime the mains-operated domestic vacuum cleaners has the lowest cost followed by cordless vacuum cleaners.

The life cycle cost for each of the base cases are also aggregated to EU-28 level. For the EU totals the following is calculated:

• Annual consumer expenditure in EU-28 is calculated based on the life cycle costs per product multiplied by the annual sales and presented in Table 62.

The annual consumer expenditures in EU-28 of the different base cases are presented in Table 62. The product price and installation costs per product is multiplied by annual EU sales to arrive at the annual consumer expenditure for EU28. The lifetime electricity costs per product multiplied by the annual EU stock and divided by the lifetime to arrive at the

²⁶³ The service rate is solely used for the commercial vacuum cleaners; thus, it is assumed that all household vacuum cleaners are used in households and all commercial vacuum cleaners are used at service premises.

²⁶⁴ Time value of money is the idea that an amount received today is worth more than if the same amount was received at a future date.

annual consumer expenditures for electricity in the EU-28, the same is done for repair & maintenance costs.

	Domestic mains- operated	Commercial	Cordless	Robot	Total
Product price (mln. €)	3514	885	1259	514	6172
Electricity (mln. €)	1667	750	145	111	2673
Repair & maintenance costs (mln. €)	666	115	138	94	1013
Bags and filters	2045	394	123	61	2623
Total (mln. €)	8306	2143	1664	833	12946

 Table 62: Annual consumer expenditure in EU28

The highest costs are related to mains-operated domestic vacuum cleaners which have the highest annual sales. As the table above shows, every year EU consumers are spending almost 13 billion euros on purchase and operation of vacuum cleaners. Approximately 20 % (2.6 billion euros) are related to electricity expenses.

6. Design options

According to the MEErP, Task 6 builds on the Base Case models described in Task 5 to identify design options, assess their costs and benefits, determine the combined impact of clusters of options that give the Least Life Cycle Costs (LLCC), the Best Available Technology (BAT) and the Best Not yet Available Technology (BNAT). Note that there is not enough information on the commercial vacuum cleaners, to make an independent cost-analysis. Hence, we will assume similar costs as for the domestic models, but with a higher mark-up for extra sturdiness and higher retail costs.

For materials efficiency we will in line with the Waste Directive hierarchy look at costeffective individual options to *Reduce, Re-use, Recycle, Recover* and *Remove* (the 5Rs), which (under *Reduce*) includes durability aspects.

According to Art. 15, sub 6 of the Ecodesign Directive 2009/125/EC, and also taking into account the boundary conditions stipulated in Art. 15, sub 5, the Task 6 assessments are a basis for possibly setting more stringent and/or new Ecodesign requirements. Furthermore it will be the bases for rescaling the energy label classes in accordance with the Energy Label Framework Regulation, Regulation (EU) 2017/1369.

In section 4 the various technologies and design options for components were presented in section 4.1, including possibilities to improve the circular economy aspects in section 4.2. In section 4.3 the energy, performance and price characteristics were given for BAU (Business as Usual, starting from current average), Best Available Technology (BAT) and Best Not yet Available Technology (BNAT) relating to four Base Cases:

- Domestic mains-operated vacuum cleaners (BC1)
- Commercial vacuum cleaners (BC2)
- Cordless vacuum cleaners (BC3)
- Robot vacuum cleaners (BC4).

The current state of the material flow over the life cycle was given in section 4.

As such, most of the quantitative basis for the design options in Task 6 is available. This section will be limited to identifying/describing the design options, present additional information where information is lacking and facilitate the impact assessment for Task 7. The design options will be presented per Base Case.

6.1 Domestic mains-operated vacuum cleaners (BC1)

The following design options for this category were identified and investigated:

6.1.1 Option 1: More stringent energy requirements

Investigating more stringent Ecodesign requirements on energy and more ambitious energy class categorisation is the default first step with the review of the regulations. However, while the energy consumption during the use phase is still the most important impact for most environmental impact categories (global warming, acidification, etc., see section 5), the current Ecodesign and Energy Labelling Regulations for vacuum cleaners have been very effective in reducing the average power from around 2200 W before the 2014 measures, to 900 W or less since the second tier in 2017. The Dutch consumer association *Consumentenbond* mentions that replacing an average 2013 model (at 165 kWh/year) by a new 2018 model (at just below the limit of 900W or 43 kWh/year) saves as much as 26 €/year on the electricity bill²⁶⁵.

As mentioned in section 4, the average power input is now as low as 700 W. Section 2.5.2 indicates that only 7,5% of 2018 models has a rating between 800 W and 900 W. Assuming that these models would, once eliminated, 'return' to the population at just below the limit, a limit at 800 W gives EU energy savings in 2030 of lower than 0,1 TWh²⁶⁶. The extra product price that the 7,5% of current consumers would have to pay to get this 11% saving can be estimated from the difference between BAU 2016 (900W, 38 kWh, 122 €) and BAU 2018 (700 W, 30 kWh, 170 \in). This comes down to a difference 48 \in for a saving of 200W or 8,6 kWh/year. At 100 W these figures go in half, so the consumer pays 24 \in to get a 4,3 kWh/year saving during a product life of 8 years. This is a saving of 34,4 kWh over life; at an electricity rate of $0,2 \notin kWh$ in 2015 prices, this comes down to almost $7 \notin kWh$ saving. Net costs of this measure for the consumer are thus $24 \in -7 \in =17 \in$. For the EU, i.e. 7,5% of the estimated 200 million households owning a mains-operated vacuum cleaner (15 million), the extra cost for those households would be 255 € million in roughly around 2030 if the measure is implemented in 2021-2022. Setting the level at a more ambitious level, e.g. at 750 W leading to a cut-off rate of around 30%, will only aggravate the situation.

²⁶⁵ 'Strengere regels voor stofzuigers', Consumentengids, July/Aug. 2018, p.26-29.

²⁶⁶ 5 kWh/annually per unit for 7,5% of ca. 30 million sales accumulating over 8 years stock life \rightarrow 5kWh x 0,075 x 30 x 8 mln.= 90 mln. kWh=0,09 TWh electricity

In task 7 these projections will be elaborated with proper discounting, but it is easy to see that from the perspective of Life Cycle Costs there is no monetary gain in setting more stringent Ecodesign requirements for mains-operated vacuum cleaners.

As regards setting more ambitious Energy Label class limits, section 4 shows that currently there are no models that achieve a top rating in both performance (esp. carpet cleaning) and energy efficiency. Until that is the case, simply shifting the name-giving by three classes (e.g. 'A+++' becomes 'A') at current limits will satisfy the ambition level and name-giving required in the 2017 Energy Labelling Regulation. This will remain challenging for years to come, especially if new performance standards are implemented (debris and fibre pick-up tests), but at the same time it will be the least disruptive for the market and the easiest to communicate.

6.1.2 Option 2: More realistic performance, indirectly better energy efficiency This option aims at (indirectly) achieving better energy efficiency and functionality by prescribing more realistic and challenging performance tests. As the dust pick-up (dpu_c and dpu_{hf}) in those tests are a part of the formula for the annual energy consumption AE, tougher performance tests will increase the ambition level of the Ecodesign energy limits, even if they are nominally kept at the same level.

It is proposed to add a small debris test to the hard floor test, on top of the current crevice test, to seek more differentiation. Results from Round-Robin Tests are not yet available, but it is assumed that this will lower the current dpu_{hf} values by at least 10 percentage-points (0,1). It will prohibit some manufacturers to continue to use special test-nozzles with full enclosure of the suction area, just to get a better crevice performance, because such a nozzle would not work for debris pick-up.

Likewise, it is proposed to add a fibre pick-up test to the dust pick-up test for carpets. Fibre pick-up is a standard test that consumer associations do especially in view of picking up pet hair. It is important that such a test and test-conditions are formulated carefully not to have unwanted side-effects. It is a known phenomenon that active nozzles have a superior performance in that test over passive nozzles. On the other hand, active nozzles cost energy and for people not having pet hair in their home, passive nozzles are seen as quite sufficient for good cleaning. All in all, also here an impact of at least 10 percentage-points (0,1) on the *dpuc* value and thus some 8% on the AE value can be expected.

In order to compensate for the negative impact on the cleaning performance, the products need to be at least 10% more efficient, i.e. 'virtually' the power has to go from 700 W to 630 W. To go from 900 to 700 W (minus 22%) made the VC around 40% more expensive. Assuming the same proportionality, to go from 700 to 630 W (minus 10%) makes the

vacuum cleaner 18% more expensive. Instead of $170 \in$ the new average price would become 200 \in . Having said that, it also has to be taken into account that timing plays a role, because on average price are decreasing –on average at 1% per year—due to learning effect, larger production volumes, competition, etc. So, for a new measure to be implemented in e.g. 2022, 5 years from now, the price impact is expected to be 10 \in less: New price 190 \in in 2022.

Please note that, as an outcome of the extensive RR Tests, the industry is currently undertaking in the context of standardisation activities, it is possible that a more real-life dimension could be added with testing of several types of carpets. However, given the large deviations in intermediate results between the different laboratories that the study team has witnessed thus far, it is not very likely that this could be implemented in a legal context of accuracy, reliability and repeatability.

6.1.3 Option 3: Recycled content and/or light-weighting

As mentioned in section 4, for a balanced circular economy it is important to address both sides of the recycling balance: Increased recycled content of materials in production and increased recycling at the product's End of life. Given that already a few manufacturers are reaching a high recycled content of up to 70% for their plastics parts, demonstrating that it is economical, it is plausible that Ecodesign measures set targets for a minimum recycled content for the plastic parts, or that it could be included as a parameter on the energy label. As discussed in section 4.3, for metals and electronics it is functionally unacceptable to have contaminations that go with post-consumer recycled materials (even when small) or the recycled content is either already very high (e.g. 85% for most die-casts).

There are a few problems to solve: First of all, how can the legislator implement and execute control over any requirement on recycled content? The dispute has always been that either there is a burdensome administrative route with a disproportionate burden for all concerned or there should be very sophisticated lab-tests to track to contaminations and loss of properties due to recycled content. And even then, there is the problem of estimating a percentage of recycled content.

A practical solution, that is not waterproof but close, may be very simple, at least for injection-moulded plastics (99% of plastics in a vacuum cleaner). Recycled plastics may theoretically be of a mixed colour, but in principle – especially for casings that have to withstand mechanical loads – they are through-and-through black. This is the only 'colour' that can be used. This can be ascertained through a simple visible inspection. A second factor is, that it is not economically advantageous to circumvent a requirement to use a reasonable fraction of recycled plastics: The pellets cost around half of pellets from virgin

material. The two plastics that constitute most of the plastics in the vacuum cleaner are PP and ABS.

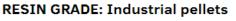
In this case, and probably in more cases where injection moulded parts are used nowadays, the solution might be simple for two reasons: First and different from a few years ago, recycled plastics have considerably lower costs than virgin material. Second, recycled plastic granulates for injection moulding are almost without exception black. This does not mean that the vacuum cleaners need to be black: Using techniques like in-mould decoration (IMD, similar to in-mould labelling IML) the colour comes from a very thin but scratch-resistant foil that forms an outer layer. Other, less frequently used, possibilities are thermoformed inlays in injection-moulds or 2K (2-component) injection moulding.

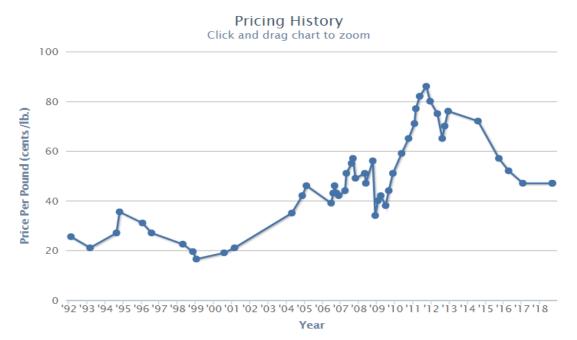
The table below shows that currently (Sept. 2018), the recycled ABS and PP pellets cost around half of the virgin material pellets. So even with the extra costs of colouring techniques as described above and with possibly a bit more material due to differences in mechanical properties, the use of recycled materials is economical and does not have to lead to a higher cost.

Table 63 . Prices of plastic injection m	oulding grades
--	----------------

Material	Recycled	Virgin	Difference
	EUR/kg	EUR/kg	Difference
ABS pellets 2018	1,46	2,60	-78%
PP pellets 2018	0,89	1,77	-99%
PP pellets 2015 plastic recyclers Europe	0.90-0.95	1.43-1.50	-73%

source 2018: www.plasticsnews.com; conversion 1 lbs=0.4535 kg, 1 US \$= 0.86 EUR


prices at annual volumes of 2 to 5 million lbs.


injection moulding grade pellets, typically colour black

source 2015: Plastics Recyclers Europe, Increased EU Plastic recying targets: Environmental, Economic and Social Impact Assessment, prepared by BIO, 2015

The graphs Figure 49 show that this was not always the case. In the period 2012-2015 the price difference of the raw materials was only 25%.

Recycled Plastics RESIN: PP

RESIN: PP

RESIN GRADE: Homopolymer Injection GP

VOLUME: Annual volumes of about 2 million to 5 million pounds.



Figure 49: Pricing history of recycled injection grade PP (above) versus virgin PP (below). Source: <u>www.plasticsnews.com</u>, extract 2018)

Recycled plastics in acceptable quality are available only for bulk-plastics like PE, PP, PS and ABS. This covers 90% of the plastics used in the average vacuum cleaner, but of course for elastomers (rubbers) and thermosets (e.g. polyester in the motor housing) cannot be covered by recycled plastic. A share of 60-70% seems technically feasible also for various form factors.

However, setting a simple percentage might be counter-productive, it could lead to industry making heavier products for no other reason than to meet the percentage. Also, it might penalize manufacturers that choose a different strategy to avoid using virgin material, i.e. to use much less to make the products lighter. For instance, at the moment 4,1 kg (3,5 kg bulk- and 0,6 technical) plastics are used, of which 0,9 kg (22%) are assumed to come from recycled plastics. Setting a recycled content target of 70% for plastics would increase that number to 2,9 kg. So only 1,2 kg of virgin plastics will be used. Together with the recycled content of metals and packaging (1.9 kg) this means that two-thirds (66%) of the 7,1 kg product is made of recycled materials. It also means that still 2,3 kg of virgin material is required. If a 2,3 kg product, e.g. a corded stick, can achieve the same energy efficiency and performance as a 7,1 kg product than this is not just equal in avoiding environmental performance, but actually superior because also at the end of life, there is only 2,3 kg to worry about in terms of disposal, recycling, etc. Realising a weight of only 2,3 kg probably requires the best possible material properties and might be impossible to reach with a 70% recycled content target.

Rather than setting the requirement for a share of recycled content, it is technically better to set a maximum target for the assumed virgin material, i.e. product weight minus recycled content, and give a credit for the fact that there is no material's loss for the avoided kilos at end of life.

A monetary LCC calculation for this option is not necessary, because manufacturers are assumed not to encounter extra costs when setting the target for plastics only. As a positive impact it is assumed that per vacuum cleaner 2 kg extra of bulk plastics (assumed PP) will come from recycled content. The recycled PP will also have its impact for collection and recycling, as is calculated in the EcoReport, but much less.

6.1.4 Option 4: Increase product life

Increasing product life is an option in the circular economy concept that aims to slow down the materials cycle of products. For instance, if the lifetime of mains domestic vacuum cleaners goes from 8 to 10 years, it is assumed that 25% less material resources will be needed. That is to say, if there are no negative repercussions. Slowing down the introduction of new products in the market will also slow down possible energy efficiency improvements and possible savings on auxiliary materials. If the increase in product life requires the use of extra materials and/or materials that represent an extra environmental burden, that has to be taken into account in calculating the benefits.

At the moment, product life of domestic mains-operated vacuum cleaners is in the order of 8 years. For commercial vacuum cleaners the expected life is 5 years and for cordless and robots a life of 6 years is assumed.

There are a number of options to prolong the average product life:

- Increase the technical product-life of critical components like the motor and hose;
- Facilitate reparability by ensuring that spare parts are available for a sufficient time after the production of a model stops (Blue Angel suggests 8 years) and that critical parts are easy to replace;
- If possible through the design, promote re-use in the sense of refurbishing²⁶⁷, to give the products a second life.

The options are described in more detail hereafter, but the estimated impact of the measures would indeed be to increase the product life from 8 to 10 years. This means that consumers holding on to their product for 2 years more, will miss out of two years of energy savings, compared to buying a more efficient product earlier.

But they will also postpone an investment decision of around $170 \in$ for 2 years. At a going rate of 5% for consumer loans and at current inflation of 1%, the interest on such a loan would be 7 \in per year. So the consumer is saving 13,20 \in net by increasing product life by two years. The monetary situation may change if the product life increase involves the costs of a repair. However, in the 2016 JRC study discussed hereafter calculates that even a repair of 22 \in to prolong the product life can be economical, also taking into account the technical impact.

As regards promoting re-use of the whole product, the possibilities of the regulator are limited. What can be addressed is the re-usability of filters, as will be elaborated hereafter.

²⁶⁷ As mentioned in section 4, the fraction of VCs given away, or even sold for a small amount, to family, friends and charity is not included in the definition of 're-use'. Refurbishing means checking/repairing/replacing all components and ensure a full second life fort he product.

Increasing technical life

As discussed in the 2016 special review study there seems to be an opportunity for increasing the durability of the motor to 550 hours without much extra costs, i.e. merely a few euros to increase the size of the carbon brushes, while optimising also thermal and mechanical design of the universal motor. The extra cost, in consumer prices is estimated at around $2 \in$.

For the primary hose of a cylinder vacuum cleaner the 40,000 flexes in the current test seems adequate. For the secondary hose of an upright vacuum cleaner it was agreed that a new test procedure would be elaborated in the standard, but no concrete proposals are on the table right now.

Better repairability

The 2015 JRC-IES study on durability of vacuum cleaners has calculated the life cycle costs for a better reparability of vacuum cleaners. They follow the MEErP and the Ecoreport for important parts of the study. As regards the LCC, the study assumes a base purchase price of 150 \in , a repair cost of 20% of the discounted original purchase price (22 \in), electricity use of 25 kWh/year an electricity rate of 0,205 \in , an improvement multiplier (δ =85%) for the energy use of the new product that replaces the broken-down product, etc. For various scenarios of lifetime extension the results are shown in the figure below. It shows that for this product in all cases the Life Cycle Costs with the repair are lower.

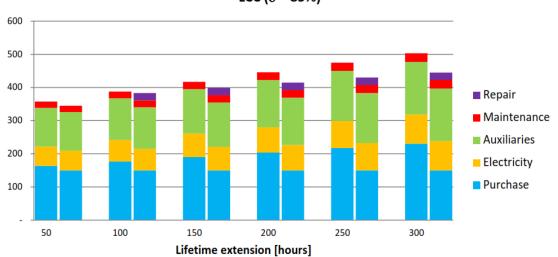


Figure 50: LCC of the base-case (first column) and the durable scenario (second column) (source: JRC-IES 2015)

One of the conditions for these repair-scenarios is of course that the repair is feasible because the spare part is still available. For other Ecodesign products the availability of spare parts, after the model has seized to be produced, is to be guaranteed for up to 7 years. Also in this case, a period of 7 or 8 years, 8 years being a condition in the Blue Angel environmental mark, seem reasonable.

Another condition is that the labour cost will be contained or at least a part of the repairs can be done by the consumer/user of the product. In that sense, it seems reasonable to demand that the most repair-prone products, like hoses, must be replaceable without special tools.

Re-use

Studies on the re-use of small domestic appliances are scarce. Prakash et al. (2016)²⁶⁸ discusses the product life and grounds for discarding hand mixers (first-hand service life 10-11 years) and electric kettles (first-hand service life 5-7 years). 63% of discarded mixers and 71% of discarded kettles were fully functional, 22% of mixers and 11% of kettles showed defects but still worked and 11-13% didn't work. As method of discarding these small appliances 7,8% of respondents mentioned re-use (sold or given away).

In the 2016 preparatory Ecodesign study on washing machines²⁶⁹ the authors found two references for what was called 're-use' (sold or given away) of large domestic appliances: Magalani et al. 2012²⁷⁰ found that in Italy 8% of discarded products were re-used. A WRAP 2011 study for the UK estimates that 3% of large domestic appliances are re-used, after discounting for the fact that 25% of products offered for re-use are unrepairable²⁷¹.

Based on this (scarce) information, it is estimated that for 7 to 8% of smaller appliances like vacuum cleaners there is a second owner. Like with large domestic appliances there are no studies that regard how long the average second-hand life of a vacuum cleaner in the EU actually is. The study team assumes that the second owner should be able to use the vacuum cleaner at least 2-3 years²⁷². As mentioned before, in the context of this preparatory study for Ecodesign and Energy Labelling measures for new products, giving away old vacuum cleaners is not relevant, because it cannot be changed through regulation. What could be relevant is where re-use of the whole product requires a full refurbishing, preparing the product for a true second life. Such an activity could not be identified, but because we cannot exclude it, the EcoReport assumes that full refurbishment applies to 1%.

behaviour for waste electrical and electronic equipment.

http://www.wrap.org.uk/sites/files/wrap/Electricals%20reuse_final.pdf.

 ²⁶⁸ Prakash, S., Stamminger, R. et al., Einfluss der Nutzungsdauer von Produkten auf ihre Umweltwirkung: Schaffung einer Informationsgrundlage und Entwicklung von Strategien gegen "Obsoleszenz", Umweltbundesamt Texte, 11/2016.
 ²⁶⁹ Boyano Larriba, A., Cordella, M., Espinosa Martinez, M., Villanueva Krzyzaniak, A., Graulich, K., Rüdinauer, I., Alborzi, F., Hook, I. and Stamminger, R., Ecodesign and Energy Label for household washing machines and washer dryers, EUR 28809 EN, Publications Office of the European Union, Luxembourg, 2017, ISBN 97892-79-74183-8, doi:10.2760/029939, JRC109033
 ²⁷⁰ Magalani, F.; Huisman, J. & Wang, F. (2012). Household WEEE generated in Italy: Analysis on volumes & consumer disposal

Available at http://www.weeeforum.org/system/files/2012_ecodom_weee_arising_in_italy_en.pdf.

²⁷¹ WRAP (ed.). Benefits of Reuse: Case Study: Electrical Items, 2011. Available at

 $^{^{272}}$ This implies the 8 years product life for the cylinder VC is composed of 93% at a service life of 7.85 years plus 7 % at a service life (first- and second-hand) of 10 years.

What is relevant is the re-usability of filters, e.g. at least the HEPA and motor filter. Current cost of a HEPA filter is in the range of $10-35 \in$, depending on brand and type. The motor filter is normally already washable but a new one costs $5-15 \in$. Manufacturers would recommend replacing at least the HEPA filter annually or bi-annually, so making them re-usable saves on monetary costs, but also on materials and energy as clogged filters have a higher air resistance (up to 2% energy savings is expected). The latter energy saving is especially true for the many users that never change their HEPA filter²⁷³. As regards the bag versus bagless discussion the past years have taught that there is an audience for both and that the regulator should not interfere. What can be done, is giving the information to the consumer, e.g. via the energy label, whether a product is bagged or bagless, however, this information is often very easily accessible for the consumer already.

6.1.5 Option 5: Recycling

The technical recycling options have been discussed extensively in section 4.2. Currently 48% of the product and use phase waste of BC1 is recycled (4,1 of 8,7 kg), of which one third of the plastics and auxiliaries (filters and filter bags), most of the metals and cardboard packaging, very little of the electronics (just the precious and critical materials if present).

The main challenge for BC1 is increasing the recycled fraction of the 4,1 kg plastics in the product and 1,5 kg (also mainly plastic) auxiliaries. Of this total 5,6 kg plastic fraction in the disposed product, 1,7 kg (30%) goes to recycling, 1,8 kg (32%) to heat recovery, 2,1 kg (38%) goes to landfill or incineration without heat recovery. The policy objective in the WEEE will be to achieve 65% recycling of small appliances like the VC. The waste policy objective is to abolish landfill in the EU (although there might always be a small fraction of illegal dumping). Putting this all together means that 3,64 kg (65%), almost 2 kg extra should go to recycling and the rest to heat recovery²⁷⁴.

In the Ecoreport tool the credit for recycling is 40% of all impacts. In this case it is proposed to take PP as the reference $plastic^{275}$. With over 30 million sales and 8 years lifetime (in 2022) the saved impacts from 2022 until 2030 would be 40% of the impacts of 240 million kg PP, i.e. amongst others 7 PJ primary energy and 192 million kg CO₂ equivalent.

Recover means that the product is incinerated with waste heat recovery. Most vacuum cleaners, without batteries, do not contain toxic materials and can safely follow that route, even if the vacuum cleaners are not collected separately as WEEE this will happen. For

²⁷³ Stakeholder feedback in first stakeholder meeting 2018.

²⁷⁴ Of course, in combination with the previous design option of re-using the filters it might not be 2 kg but less, but for a first calculation 2 kg is taken.

²⁷⁵ Main impacts Ecoreport per kg PP: 73 MJ primary energy of which 7 MJ electric and 53 MJ feedstock, 4 g hazardous waste, 28 g non-hazardous waste, 2kg CO2 eq. (GWP), 6 g SO2 eq. (Acidification), 1 g particulates (PM), 165 g phosphate eq. (eutrophication).

discarded PP the combustion value is still some 75-80% of the combustion value of the oil feedstock that was needed for its production. For ABS this is around 50-60%. The metals, if not removed beforehand, can still be found in the remains and ashes and thus will always be used for recycling.

At the moment, 40% of plastics is incinerated with heat recovery. To ensure that heat recovery can take place and products don't go to landfill or non-recovery (hazardous) incineration it is important that no hazardous materials such as those mentioned in RoHS and REACH are included (see Blue Angel requirements). Also halogenated flame retardants should be avoided. Once the Member States have met the waste target of abolishing landfill, the share of incineration with heat recovery versus the landfill will not decrease.

6.2 Commercial mains-operated vacuum cleaners (BC2)

For commercial mains-operated vacuum cleaners, Base Case 2, the same options and considerations apply as for Base Case 1. But the absolute numbers of the impacts will be different, in accordance with the data supplied in section 4.3.2.

6.3 Cordless vacuum cleaners (BC3)

The most important design option is whether or not to include cordless vacuum cleaners in the scope. This adds to the energy and material consumption in the scope and thus the energy and material saving potentials. At the moment they are the fastest growing segment in the vacuum cleaner market. Most models have a performance that would qualify them as 'hard floor only', because they don't meet the performance requirements for carpet cleaning, but there are now a few models that would qualify as 'general purpose' and at least one leading manufacturer, Dyson, who claims to no longer invest in new corded machines but only develop cordless vacuum cleaners. These are all important reasons to take the cordless vacuum cleaners on board.

Option 1: Power limits for maintenance mode

The most important energy saving option for cordless vacuum cleaners is the maintenance mode power consumption, i.e. in a position where the battery is fully charged and in a docking station. According to section 4, the power consumption in this mode varies between less than 1 W and 8 W, depending on the model. The estimated market average is 2,6W or rather 50% of the total energy consumption of the vacuum cleaner (21 kWh on 41 kWh/year total). As discussed in section 4, there is no technical reason for this. For Liion batteries there is no 'trickle charge' and even for NiHM its merits from a long-life point of view are questionable. This option entails to bring down the maintenance mode (charged and docked) power to 1 W. Thus saving 8 kWh/year (13 \in over product life in energy) at no cost at all.

Options 2 and 3

Options and considerations under option 2 to 3 of BC1 apply, albeit with different figures.

Option 4

As regards option 4, the increase of product life, the battery is a highly relevant additional issue on top of what is mentioned with BC1.

The battery life of cordless and robot models is relevant for the lifetime and thus the resource efficiency. Given a motor life of 550 hours for the cordless vacuum cleaners, also 550 hours battery life under normal usage conditions seems reasonable. At the moment this is only feasible with a Li-ion battery (500-1000 cycles, no memory effect²⁷⁶). A battery-life to match a 1200 hour robot motor life is not technically feasible at the moment; 600 hours is probably all that can be achieved at a reasonable size of the battery of around 0,5 kg. Potential buyers will have to be made aware that the battery will have to be replaced every 2-3 years, probably at a cost of around 80-100 \in for Li-ion. NiMH may have to be replaced twice as much for the same lifetime, but it also costs half.

Option 5

Option 5, recycling, could be extended with considerations regarding batteries:

In addition to what was said with BC1, the batteries are a separate issue for recycling. Liion is now the most common type. The challenge is to recover the Cobalt, typically 10-20%, from the battery. This is technically not an easy job²⁷⁷, but Cobalt is rare and much in demand. This rising demand made its price triple in recent years to currently 30 \$/lbs (57 \in /kg). With a typical vacuum cleaner battery weighing 0,5 kg and thus Cobalt 0,05-0,1 kg this means that there is 2,85 \in to 5,70 \in to gain there²⁷⁸. Another possibility is to use Li-ion batteries with lower share of Cobalt, i.e. NCA (5-9% Co) instead of NMC (10-20% Co).

The second most common battery type is NiMH (Nickel Metal Hydride), which contains typically 35% of Nickel and possibly up to 15% of Cobalt. Also here the recycling process is challenging but worthwhile²⁷⁹.

It is possible to set a limit of e.g. 20% Cobalt on the battery. This would merely be preemptive, i.e. to avoid that certain Li-ion batteries like LCO (Lithium Cobalt Oxide) types would ever be used. At the moment there would be no impact from such a measure.

²⁷⁶ Memory effect relates to a diminished battery capacity in time, as a result of supoptimal (incomplete, or too soon) charging
²⁷⁷https://www.researchgate.net/publication/259645071_Recycling_of_Spent_Lithium-Ion_Battery_A_Critical_Review
²⁷⁸ https://www.bloomberg.com/news/articles/2017-12-01/the-cobalt-crunch-for-electric-cars-could-be-solved-in-suburbia

²⁷⁹ Also see https://csm.umicore.com/en/recycling/battery-recycling/our-recycling-process

According to the Battery Directive 2006/66/EC the EU Member States should, from 2016, collect 45% of the batteries in the waste stream and of this 50% should be recycled. Note that from 1.1.2017 it is forbidden to use Ni-Cd batteries or other types containing lead, mercury and cadmium for vacuum cleaners.

Apart from helping Member States to meet Battery Directive targets the Ecodesign measures could also aid the WEEE targets by prescribing easy dismounting of batteries and easy disassembly of the PCBs of robot vacuum cleaners.

6.4 Domestic robot vacuum cleaners

All the options and considerations of BC3 apply, but with different impacts. These impacts can be seen in section 4.3.

Only as regards option 1 a small modification is proposed: As many robot vacuum cleaners should be able to wake up on a signal of their Local Area Network (WOL=Wake-up On LAN) it is reasonable to set the maintenance mode limit at 1 W instead of 0,5 W.

7. Scenarios

This chapter consists of two main parts, one retrospective and one forward-looking:

- Evaluation of the existing regulations in accordance with the Better Regulation parameters efficiency, effectiveness and relevance
- Scenarios and recommendations for amending and improving the regulations. Scenarios for both energy and resource efficiency are included in this section.

Evaluation is a tool to help the Commission learn about the functioning of EU interventions and to assess their actual performance compared to initial expectations. By evaluating, the Commission takes a critical look at whether EU activities are fit for purpose and deliver their intended objectives at minimum cost (i.e. avoiding unnecessary costs or burdens).

The scenario section present options for how the Regulations can be improved and how they can aid in better environmental performance of vacuum cleaners. Options are presented for two different aspects separately: energy efficiency and resource efficiency. These aspects are analysed separately, and in the end, recommendations are given as to what combination of energy and resource requirements are favourable based on both cost and environmental impact.

7.1 **Better Regulation evaluation**

The purpose of this section is to evaluate the effect of the current Ecodesign and Energy Labelling Regulations for vacuum cleaners, and compare the results obtained so far with the expectations in the impact assessment. In addition, it is analysed how well the regulations have been able to solve the market failures identified in the impact assessment.

The evaluation will focus on answering questions regarding:

- <u>Effectiveness of the regulations.</u> What has been the impact of the regulations so far and have the objectives of the policy measures been achieved?
- Efficiency of the regulations. Have the regulation been cost effective and are the costs justified?
- Relevance of the regulation. Are the regulations still relevant and have the original objectives been appropriate?

These questions are based on the official template²⁸⁰ and the Better Regulation Toolbox²⁸¹, and the specific questions answered in each of the following sections, are the questions from these sources.

²⁸⁰ https://ec.europa.eu/info/sites/info/files/file_import/better-regulation-toolbox-47_en_0.pdf
²⁸¹ https://ec.europa.eu/info/files/better-regulation-toolbox-47_en

The existing regulations are the Ecodesign and Energy Labelling Regulations for vacuum cleaners respectively Regulation EU 666/2013 and EU 665/2013. The aim of the regulations was to provide dynamic incentives for suppliers to improve the energy efficiency of vacuum cleaner for household and professional use and to accelerate market transformation towards energy-efficient technologies.

According to the current Ecodesign Regulation the annual electricity consumption of vacuum cleaners covered by the regulation was 18 TWh in the Union in 2005. Without the regulations the annual electricity consumption was predicted to be 34 TWh in 2020. In addition, the preparatory study showed that it is possible to significantly reduce the electricity consumption of vacuum cleaners.

7.1.1 Description of the current regulations and their objectives

The Ecodesign and Energy Labelling Regulations have been prepared in a parallel process with the aim the assess the possibilities of implementing Ecodesign and Energy Labelling requirements for vacuum cleaners.

The two regulations are intended to work in synergy; the Ecodesign Regulation pushing the market towards higher energy efficiency by removing the least efficient vacuum cleaners from the market, and the energy label pulling the market towards even higher energy efficiency by providing consumers with the necessary information to identify the most energy efficient vacuum cleaners on the market.

The Ecodesign Regulation for vacuum cleaners entered into force in 2013 and sets maximum limits for annual energy consumption in two tiers from respectively 1 September 2014 and 1 September 2017. In addition, the two tiers include maximum limit for rated input power, and minimum levels for dust pick-up. The second tier also include requirements regarding dust re-emission, sound power level, durability of the hose and operational motor life time.

The Energy Labelling Regulation also entered into force in 2013. According to the Energy Labelling Regulation vacuum cleaners should, when displayed for sale, from 1 September 2015 bear an energy label with an A-G scale and from 1 September 2017 an energy label with three more ambitious energy classes on top of the A-class (i.e. A+, A++, and A+++).

See a more detailed description of the current regulations in section 1.2.1.

The objectives of the current regulations are:

• Correcting the identified market failures in the preparatory study and impact assessment

- Reducing energy consumption and related co₂ and pollutant emissions due to vacuum cleaners following community environmental priorities, such as those set out in decision 1600/2002/EC or in the commissions European climate change programme (ECCP)
- Promoting energy efficiency hence contribute to security of supply in the framework of the community objective of saving 20% of the EU's energy consumption by 2020.

More specifically, the objectives of the current regulations were to reduce the energy consumption of vacuum cleaners with 20% (from 34 to 19 TWh/year in 2020), and CO_2 -emissions from 11 to 7 Mt/year.

According to the Impact Assessment²⁸² the main market failure related to vacuum cleaners is the lack of consumer information on energy use and cleaning performance. As a result, most consumers took the electric power input (in W) as a proxy for cleaning performance.

The power consumption of vacuum cleaners had been rising from 1275 W in 1990 to around 1500 W in 2005 and was expected to reach 2300 W in 2020 (without measures). Non-domestic 'professional' vacuum cleaners were more efficient (30% less power for a better performance) but still had a potential for energy savings. At the same time a decrease in the energy efficiency was seen, which meant the higher power ratings were not justified by better cleaning performance. High power rating was actually a sales argument in itself.

Over the past decades this led to low price, high-power but low-performance vacuum cleaners, mainly from China, flooding the EU market and more than doubling the societal energy consumption of vacuum cleaners. The vacuum cleaner was therefore, a significant contributor to household's energy consumption and a candidate for Ecodesign measures.

7.1.2 Baseline and point of comparison

The baseline for the evaluation is the market without the implementation of the current Ecodesign and Energy Labelling Regulations. The Impact Assessment accompanying the actual regulations is normally an important data sources for determination of the baseline. However, the stock and sales figures used in the 2013 Impact Assessment for vacuum cleaners is generally very high compared to the newest available data. Therefore, the stock model from this review study is used as a baseline for the evaluation in this section, and the data from the 2013 Impact Assessment is scaled to match. Only vacuum cleaner types in scope of the current regulation is evaluated, and cordless and robot vacuums are thus excluded from all analysis.

²⁸² Executive summary of the Impact assessment accompanying the documents Commission Regulation with regard to Ecodesign requirements for vacuum cleaners and Commission Delegated Regulation with regard to Energy Labelling of vacuum cleaners <u>http://ec.europa.eu/smart-regulation/impact/ia_carried_out/docs/ia_2013/swd_2013_0241_en.pdf</u>

The projected stock reduction post-2015 is not due to a decrease in overall vacuum sales, but because a larger percentage of the total sales is moved to robots and cordless. The stock data appear from Figure 51.

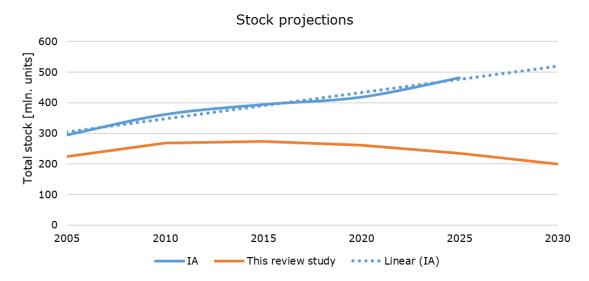


Figure 51: Comparison of stock in 2013 Impact Assessment (IA) and the stock estimates used in this study

One of the objectives of the evaluation is to compare the effect of the current regulations with the foreseen effects when the regulations were adopted, which means the result of the 2013 Impact Assessment. The estimations in the Impact Assessment is generally good, but hard to use for comparison, as none of the policy options included in the Impact Assessment are used in the regulations. The policy options used as for comparison is PO 5, Sub-option 1, which is the most ambitious option addressed in the Impact Assessment²⁸³.

Furthermore, no unit prices were reported in the Impact Assessment, which only reports total user expenditure for the stock. Since other sales and stock numbers are used in the Impact Assessment, the results can therefore not be compared directly. Instead data from this review study was used and scaled with the data in the IA.

The following terminology is used in the following analysis and figures:

- BAU0 = scenario without the current regulation,
- BAU = scenario with the current regulation,
- IA SO1 = scenario predicted in the 2013 Impact Assessment PO 5, sub-option 1.

²⁸³ This sup-options includes power caps of 1350 W in the first tier and 1050 in the second tier which is less ambitious than the actual requirements in the regulation

7.1.3 Effectiveness

Evaluation question 1: What have been the effects of the regulations?

Energy savings and reduction of CO2-emissions

The regulations have been able to transform the market towards a higher energy efficiency and have resulted in electricity savings and reduction of CO₂-emissions. Compared to the expectations in the Impact Assessment this study shows for key parameters very similar results, however for a lower stock. Comparison of results appear from Table 64 and Figure 52 and Figure 53.

Т	Table 64: Comparison of results of this study to results from the 2013 Impact Assessment regarding cumulative savings of key parameters						

Study	Parameter	2015	2020	2025	2030
- 1 · · ·	Electric savings [TWh]	36	138	276	384
This review study	GHG emissions [Mt CO ₂ -eq]	15	54	105	151
Study	User expenditure [bln. €]	7	28	57	85
10	Electric savings [TWh]	47	153	280	377
IA	GHG emissions [Mt CO ₂ -eq]	19	60	107	148

Regarding the development of the total annual energy consumption and CO_2 -emissions the current regulations have already resulted in significant savings and further savings is expected in the coming years. The savings of the regulations are very much in line with the expectations in the 2013 Impact Assessment with a tendency that the regulations could achieve more savings in the longer-term than estimated in the Impact Assessment.

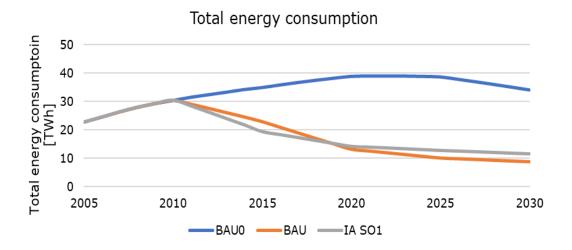
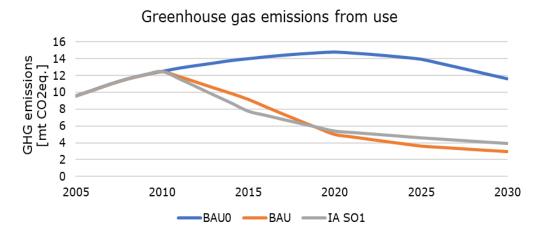
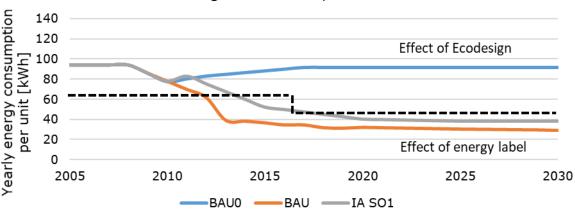



Figure 52: Total energy consumption for various scenarios (based on stock)

Figure 53: Greenhouse gas emissions related to electricity consumption in the use phase

Annual energy consumption (stock)


The power limits in the second tier of the Ecodesign Regulation has reduced the rated input power of vacuum. This has contributed to a large decrease in the annual energy consumption of the vacuum cleaners in scope of the regulations.

In the period from 2010-2016 the annual energy consumption of vacuum cleaners on the market shows a declining trend as seen Figure 54. This is the case for all types of vacuum cleaners covered by the regulations. Based on the market average, the annual energy consumption decreased from around 78 kWh/year in 2010 for domestic cylinder vacuum cleaners to 34 kWh/year in 2016. For upright vacuums, it declined from around 74 to 29 kWh/year. For handstick mains it decreased from 44 to 30 kWh/year. This means that the energy consumption of the vacuum cleaners in scope declined by more than 50% on average²⁸⁴ in just 6 years.

The impact of the current regulations on energy consumption must be attributed to both the Ecodesign power limit and the Energy Labelling Regulation.

The Ecodesign power limit has resulted in a decrease of the annual energy consumption from the 2010 values down to the limit values of 62 kWh/year by 2030 and 43 kWh/year by 2017. However, the annual energy consumption for all vacuum cleaner types covered by the Regulations have decreased further than this limit as shown in Figure 54. This illustrates that the Energy Labelling Regulation has created a market pull beyond the Ecodesign power limits, and approximately 20% of the savings over the years are expected to be attributed to the Energy Labelling Regulation as illustrated in Figure 55.

²⁸⁴ Based on market data from GfK

Average AE of sales, domestic

Figure 54: Average annual energy consumption of domestic VC in stock and impact of Ecodesign and Energy Labelling Regulations

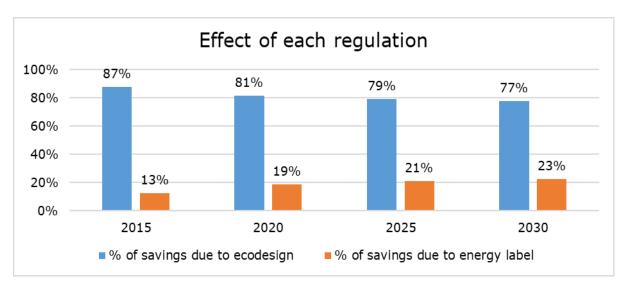


Figure 55: Share of energy savings due to Ecodesign and Energy Labelling Regulations, based on average AE value of sales each year

Distribution of energy classes

Looking at the distribution of vacuum cleaners on energy classes, the data analysis is difficult because useful data is only available for two years. Before implementation of the regulations, information about energy and performance classes was only available for a small share of the market. Even though the Energy Labelling Regulation entered into force in 2013 the labelling requirement was not mandatory before 1 September 2014. In 2014 information about the parameters on the label was only available for 6% of vacuum cleaners on the market as seen in Table 65. The share of vacuum cleaners bearing the label information increased to 77% in 2015 and 85% in 2016 on average for all types

covered by the Energy Labelling Regulation. The average value is close to value for cylinder vacuum cleaners as they constitute 85% of the EU vacuum market.

	2013	2014	2015	2016
Cylinder	5%	19%	79%	86%
Upright	16%	23%	67%	75%
Handstick mains	2%	13%	73%	77%
Total	6%	19%	77%	85%

Table 65: Coverage of energy label data for each vacuum cleaner type in scope of theregulations

Looking only at the share of vacuums provided with an energy label, the share of vacuum cleaners in energy class A increased from 47% in 2013 to 59% in 2016. The share of A labelled vacuum cleaners was higher for uprights and handsticks than for cylinder vacuums in 2016, but for all three types the shares of A and B labelled vacuum cleaners are dominating the market compared to the situation in 2013 (Figure 56 and Figure 57). At the same time the share of vacuums with C, D, and E energy classes have decreased. Also, the share of cylinder vacuums in energy class F and G has decreased, while for handstick and upright cleaners these were almost non-existing already in 2013.

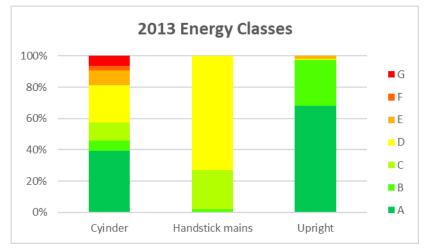


Figure 56: percentage distribution of energy classes for each vacuum cleaner type in 2013, label coverage 6%

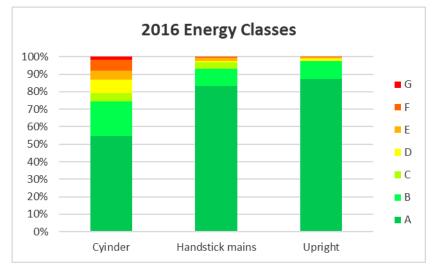


Figure 57: Percentage distribution of energy classes for each vacuum cleaner type in 2016, label coverage 85%

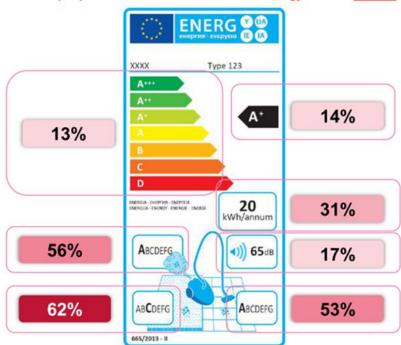
Dust pick-up and dust re-emission

The majority of vacuum cleaners sold in the EU are considered 'general purpose', meaning they are intended for use on both hard floor and carpet, and the dust pick-up class should be shown on the label for both. In addition, the dust re-emission class should be shown on the label. The existing data regarding the development of the market share of vacuum cleaners in the various dust pick-up and dust re-emissions classes is very uncertain²⁸⁵, and it is not at the current stage possible to evaluate the impact of the regulations on these parameters. Furthermore the parameters were not quantified for the market in the Impact Assessment. See section 2.5 of this report regarding the current market distributions.

Evaluation question 2: To what extent do the observed effects link to the regulations?

The observed market change towards more energy efficient vacuum cleaners is likely to be largely linked to the regulations, where the Ecodesign Regulation removed the most energy consuming models form the market, and the Energy Labelling Regulation have created further market pull beyond the power caps.

It is unlikely that the effects are in part due to other factors such as general innovation and market trends towards more energy efficient vacuum cleaners as this is not line with the development for vacuum cleaners seen during the last decades. Especially for domestic vacuum cleaners the regulations have been able to turn the market trend from rising rated input power, because high input power was the most important assessment parameter for the consumers, to reduced rated input power and higher energy efficiency.


²⁸⁵ GfK data coverage is less than 20% for the years 2013 and 2014 on these parameters, hence only 2015 and 2016 data is available, which is not sufficient to draw any conclusion on trendlines.

Evaluation question 3: To what extent can these changes/effects be credited to the intervention?

Before implementation of the regulations there was no available information about energy efficiency and cleaning performance of vacuum cleaners. The only available information was the rated input power. Without the regulations this would still have been the case and the consumers would still buy vacuum cleaners with the highest rated input power considering vacuum cleaners with high rated input power having the best cleaning performance. Therefore, the observed impact can to a very large extent be credited to the regulations. If the regulations were not implemented the rated input power would probably have increased to an even higher level leading to a further increase in the annual energy consumption for especially domestic vacuum cleaners.

Evaluation question 4: To what extent can factors influencing the observed achievements be linked to the EU intervention?

Some factors have reduced the achievements of the regulations. This is mainly a slow implementation of the label (low coverage), lack of consumer awareness and around 70% of consumers finding one or more parts of the information on the label unclear. Figure 58 shows the share of the 70% finding each label information unclear. It appears that more than half of the consumers, who find some of the label information unclear, find especially cleaning performance and dust re-emission information difficult to understand.

% of people who selected the area of the Energy label as <u>unclear</u>

Figure 58: Share of people finding areas of the label unclear, out of the 70% finding at least one parameter unclear (source: APPLiA 2018 consumer survey)

Another factor that could have reduced the market pull effect of the label towards higher energy efficiency is that consumers consider cleaning performance more important than energy efficiency. As seen in Table 66, 90% of consumers consider cleaning performance very important or important while only 67% of consumers consider energy efficiency very important or important. This is in line with the consumers preference before the implementation of the energy label where the consumers chose vacuum cleaners with high rated input power considering that high power was similar with high cleaning performance. High cleaning performance is still the most important performance parameter for the consumers.

 Table 66: Percentage of consumers rating parameters important/very important in a purchase situation (Source: APPLiA 2018 consumer survey)

Parameter	Percentage answering "very important" or "important"
I expect it to last a long time	91%
Its performance	90%
The ease of use	89%
The price	87%
The ease of maintenance	86%
The type /stick, robot, canister etc.)	80%
A good filtration of the dust (allergies)	79%
The time spend cleaning	77%
The noise level	67%
The energy efficiency	67%
Having/not having a bag	66%

In addition, uncertainty about the cleaning performance information on the label probably have a negative impact on the achievements. The uncertainty is linked to the lack of reproducibility of the cleaning performance tests especially regarding dust pick-up on carpets.

Only the factor dealing with unclear information on the label is directly linked to the Regulation. The other factors are more related to enforcement, consumer awareness and preferences when purchasing vacuum cleaners, measurement standards, and the consumers' confidence in the information on the label.

The scope of the current Regulations also reduces the achievements because not all types of vacuum cleaners are included in the scope, such as robot and cordless vacuum cleaners. Extension of the scope to cover these types of vacuum cleaners are considered in this review study.

Conclusion effectiveness

The current regulations have been very effective in reducing the electric consumption, and GHG emission of vacuum cleaners. The Ecodesign Regulation so far seems to have been more influential than the energy label, resulting in around 80% of the total savings.

The energy savings has also led to monetary savings for end-users, due to the savings in electricity costs and despite the increased purchase price. However, unclear information on the label and uncertainty about measurement standards probably reduces the achievements of the regulations.

Also, the trend that more and more of the sale of vacuum cleaners moves towards robot and cordless vacuum cleaners reduces the effectiveness of the Regulations because these types of vacuum cleaners are not included in the scope.

7.1.4 Efficiency

Evaluation question 1: To what extent has the intervention been cost-effective?

The average price of vacuum cleaners increased from 2013 to 2016 for all the vacuum cleaner types in scope of the regulations; cylinder prices increased from 109 EUR to 119 EUR, uprights from 168 EUR to 179 EUR, and mains handstick from 90EUR to 95 EUR²⁸⁶. This indicates that the manufacturers have passed on the extra costs for innovation and improvements of vacuum cleaners to the end-users and that the end-users are willing to pay a higher price for more efficient vacuum cleaners.

With the Energy Labelling Regulation manufacturers have the possibility to improve the performance of their products and achieve a price premium because it is possible to make higher performing products identifiable by the label. This is contradictory to the situation before the energy labelling where the only sales argument and consumer information was the rated input power.

Even though the vacuum cleaner purchase price has increased the total cost of ownership (i.e. costs for purchase and use) have decreased due to the regulations. This is the case both for domestic and commercial products.

The figures below show the development in the total costs of ownership for an average vacuum cleaner for respectively domestic and commercial vacuum cleaners.

²⁸⁶ These prices are not corrected for inflation.

As the manufacturers are able getting a higher price (increased turnover) and the total costs of owner ship has decreased for the end-users the regulations seem to be cost-effective.

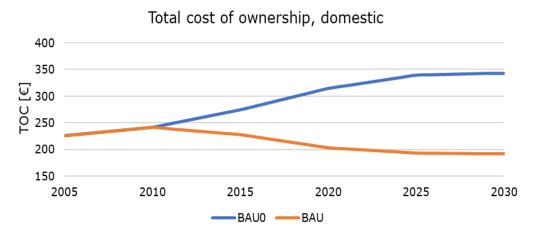


Figure 59: Average total costs of ownership for domestic users

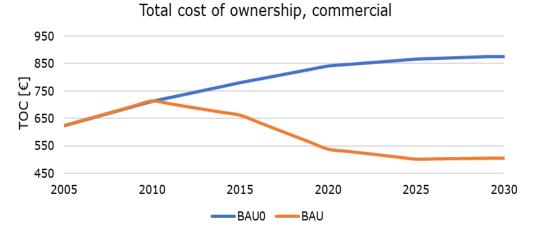


Figure 60: Average total costs of ownership for commercial users

The regulations apply some extra costs for testing on the manufacturers. However, as both regulations are based on self-declaration, no excessive testing costs are put on the manufacturers. In addition, experiences from the EU energy labelling scheme show strong evidence that manufacturers have reacted positively to the EU energy labelling and consider the label as an important instrument to differentiate their products. This also suggests that the extra investments needed to achieve higher efficiency levels have generally been outweighed by the benefits²⁸⁷.

²⁸⁷ Ecofys, Evaluation of the Energy Labelling Directive and specific aspects of the Ecodesign Directive, June 2014.

Dealers must ensure that vacuum cleaners bear the label at the point of sale and they will have to cover the administrative costs for this activity. Although no quantitative data is available, costs for dealers to show the label on displayed products is widely accepted within the framework of the EU energy labelling scheme for energy-related products. In addition, the dealers will benefit from higher turnover due to increased sales of better performing and more expensive vacuum cleaners. As dealers of domestic vacuum cleaners usually display other energy labelled products they are already familiar with the procedures and they will easily could transfer their experiences to the new product group.

Member States need to bear the costs for market surveillance, but they will also benefit from the energy savings and the reduction of emissions. In addition, EU wide legislation will be more cost effective from a Member State perspective compared to national legislation, because the costs of developing the regulation, test methods and conducting pre-regulatory studies are shared instead of conducted for each country separately.

The costs for market surveillance vary between Member States. Some carrying out almost no activities while others undertake both shop inspections, inspection of documentation, and testing. No EU-wide data regarding Member States costs for market surveillance with regard to vacuum cleaners is available.

Evaluation question 2: To what extent are the costs of the intervention justified, given the changes/effects it has achieved?

The current Regulations have resulted in substantial savings for end-users and society, without excessive costs for manufacturers, other market actors or Member States. In total the regulation will in 2020 have avoided an electricity consumption of 116 TWh corresponding to 45 Mt CO₂-eq, and users will in total have saved 19 bln. EUR.

Manufacturers have been able to pass on the extra cost for development of better performing vacuum cleaners to end-uses, and both manufacturer and retailers have benefitted from increased turnover compared to the situation without regulations. Both with and without the regulations the turnover is foreseen to decrease due to the expected sales of mains-operated domestic vacuum cleaners²⁸⁸. But the turnover is estimated to be higher with the regulations than without²⁸⁹, as shown in Figure 61 and Figure 62.

²⁸⁸ This decrease was not expected by the Impact Assessment, but is shown by the newest market data
²⁸⁹ Calculation of turnover in the BAU scenario is based on sales prices from GfK. Manufacturer turnover estimated by using

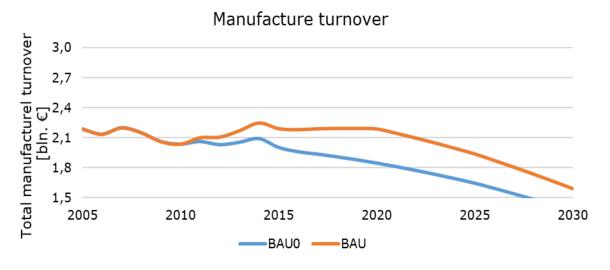


Figure 61: Manufacturers turnover without regulations (BAU0) and with the current regulations (BAU).

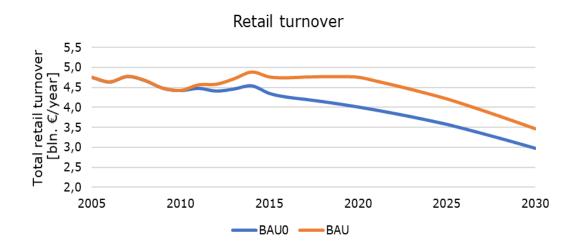


Figure 62: Retailers turnover without regulations (BAU0) and with the current regulations (BAU).

Member States need to bear the costs for market surveillance, but they will also benefit from the energy savings and reduced emissions due to the Regulations. In addition, an EU wide legislation will be more cost effective from a Member State perspective compared to national legislation. Therefore, the intervention costs seem justified given the improved performance of vacuum cleaners and the associated benefits.

Evaluation question 3: To what extent are the costs associated with the intervention proportionate to the benefits it has generated? What factors are influencing any particular discrepancies? How do these factors link to the intervention?

Due to the benefits illustrated above and the low costs for implementation of the regulations, the intervention is considered proportionate. The fact that the Ecodesign and

Energy Labelling Regulations are implemented in a parallel process and with use of the same test procedures and calculations methods for proving compliance (for annual energy consumption and cleaning performance) makes the regulations more cost efficient for manufacturers.

No particular discrepancy has been identified so fare.

Evaluation question 4: To what extent do the factors linked to the intervention influence the efficiency with which the observed achievements were attained? What other factors influence the costs and benefits?

Since the efficiency to some extent depends on the effectiveness of the Regulations, the same factors as mentioned above also influence the efficiency.

If the consumers are not aware enough of the label and/or find label information unclear vacuum cleaners with high performance according to the label parameters will probably not have a market advantage, but rather the opposite since they are often also sold at higher prices.

In addition, the lack of reproducibility of the measurement method and the on-going work to develop new standards probably at least in a short-sighted perspective decrease the manufactures incentive to develop even better performing products, which also reduce the possibilities for the consumers to choose better performing vacuum cleaners and reduce the life cycle costs of the product.

Evaluation question 5: How proportionate were the costs of the intervention borne by different stakeholder groups taking into account the distribution of the associated costs?

Manufacturers of vacuum cleaners bear the largest share of the costs, but they have so far been able to pass the extra costs on to the end-users, without increasing the total costs for end-users over the life time of the vacuum cleaners. As shown above the total costs of ownership have decreased significantly due to the current regulation.

The end-users bear the costs for more expensive vacuum cleaners, but they will be compensated by saved electricity costs over the lifetime of the vacuum cleaners and increased performance.

Member States bear the costs for market surveillance for energy related products and in general vacuum cleaners is only a small part of that.

In addition, it is important to bear in mind that it is voluntary for manufacturers to improve the performance of vacuum cleaners beyond the Ecodesign requirements and for end-users to purchase the products with high energy classes. Evaluation question 6: Are there opportunities to simplify the legislation or reduce unnecessary regulatory costs without undermining the intended objectives of the intervention?

One opportunity for reduction of the regulatory costs is establishment of a product registration database. This is already decided for products covered by Energy Labelling Regulations and implemented via the Energy Labelling Framework Regulation (EU) 2017/1369. However further reduction of the administrative costs for Member States could be achieved if the database is extended to cover also Ecodesign Regulations (i.e. the manufacturers should have an obligation to enter technical documentation and other relevant documents proving compliance with relevant Ecodesign Regulations in the product registration database). This is relevant because the Ecodesign Regulation includes various requirement that is not included in the Energy Labelling Regulation, and the technical documentation for proving compliance with energy labelling not is sufficient to prove compliance with Ecodesign.

As a starting point the obligation could be implemented for products covered by both Ecodesign and Energy Labelling Regulations as in case of vacuum cleaners.

If all the necessary documentation is available in a data base the burden for Member States' MSAs to obtain the documentation will be reduced, and the burden for manufacturers to send documentation to each MSA, likewise.

As the Commission is already obliged to set up the database for energy-related products covered by Energy Labelling Regulations, the extra costs for inclusion of products covered by Ecodesign Regulations will be marginal.

No further opportunities for simplification have been identified so far.

Evaluation question 7: If there are significant differences in costs (or benefits) between Member States, what is causing them? How do these differences link to the intervention? Member State costs associated with the current regulations are primarily related to market surveillance.

Even though all Member States have the same the obligation to perform market surveillance according to the Regulations, the actual level of market surveillance varies between Member States. However, market surveillance for vacuum cleaners is probably not of high priority for any Member State. The differences in market surveillance costs are not linked to the interventions rather to the MS priorities and limited budget for market surveillance.

Conclusions on efficiency

The evaluation assessment has shown that the benefits of the regulations seem to outweigh its costs, both for business, end-users and for society as a whole.

The manufacturers have invested in improvements of the products, but they have been able to pass the costs on to the end-users. In addition, the manufacturers have benefitted from an increased turnover compared to the situation without the regulations.

The increased performance has resulted in increased purchase prices for end-users, but this is offset by the energy savings, which results in larger savings over the lifetime of the vacuum cleaner i.e. lower total costs of ownership.

Member State costs associated with the regulation are primarily related to market surveillance. These costs should be reduced, to incentivise market surveillance in all Member States at a sufficient level. In addition, the market surveillance costs will be reduced by establishing of the product registration database for energy related products covered by Energy Labelling Regulations²⁹⁰.

7.1.5 Relevance

Evaluation question 1: To what extent is the intervention still relevant?

The objective of the regulations was to reduce the energy consumption of vacuum cleaners and to provide consumers with reliable information about relevant performance parameters for vacuum cleaners allowing them to make a better-informed choice. In addition, the objective was to address the identified market failure i.e. that consumers buy vacuum cleaners according to the rated input power, without necessarily getting the assumed cleaning performance. This has during the last 10-20 years resulted in design of vacuum cleaners with a much higher input power than required.

The objectives have to a large extent been met, but the regulations are still considered relevant. The second power cap only entered into force in September 2017 and the vast majority of the saving related to this requirement (and the regulation) have still not been achieved. The same is the case for the labelling where the more ambitious energy classes A+, A++ and A+++ was introduced on the label in September 2017.

Furthermore, it is most likely that the consumers without the Energy Labelling and Ecodesign Regulations will again buy vacuum cleaners according to the rated input power and that the manufacturers will be influenced to place vacuum cleaners on the marked with still increasing power.

²⁹⁰ According the Energy Labelling Framework Regulation (EU) 2017/1369

Consumers are buying more and more vacuum cleaners of the types not covered by the regulations (robot and cordless vacuum cleaners). For these types a tendency to have excessive power consumption when standing still has been observed, often exceeding the annual energy of mains-operated vacuum cleaners. This consumption has not been decreased based on the Standby Regulation, which also shows the relevance of the regulations, also for these products. Furthermore, it shows that robot and cordless vacuum cleaners should be included in the scope of the regulations to avoid unnecessary standstill energy consumption and low cleaning performance in these vacuum cleaner types.

Evaluation question 2: To what extent have the (original) objectives proven to have been appropriate for the intervention in question?

The original objectives have been appropriate and have resulted in better designed products without unreasonably high input power of vacuum cleaners on the market. In addition, the marked failure has been corrected for vacuum cleaner types included in the scope of the regulations.

Evaluation question 3: How well do the (original) objectives of the intervention (still) correspond to the needs within the EU?

The objectives regarding energy savings and increased energy efficiency are in line with European policies such as the 2030 Climate and Energy Policy Framework, that sets targets for greenhouse gas emissions and improvement of energy efficiency at European level for the year 2030 (at least 40% cuts in greenhouse gas emissions, and at least 27% improvement in energy efficiency)²⁹¹.

Evaluation question 4: How well adapted is the intervention to subsequent technological or scientific advances?

A significant market trend for vacuum cleaners is a technology shift to more and more robot and cordless vacuum cleaners. However, these types of vacuum cleaners are not covered by the current Regulations. This undermines the Regulations' achievements and create inadequate market conditions.

The fact that robot and cordless vacuum cleaners are not in the scope of the current Regulations mean that there is no EU system of information to end-users for these types of vacuum cleaners, and the end-users will probably make their purchase decision according to the rated input power as was previous the case for the types of vacuum cleaners now covered by the regulations, and not be aware of their hidden energy consumption, such as in standstill.

²⁹¹ 2030 Climate and energy policy framework. Conclusion – 23/24 October 2014. EUCO 169/14. https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf

Only a very small share of vacuum cleaners is in the top energy classes of the label (A++ and A++). This means that the energy scale is still able to differentiate new and innovative solutions with regard to energy efficiency. However, the review study will propose a rescaling of the current A+++ to D scale to an A-G scale in order to align with the Framework Energy Labelling Regulation.

Evaluation question 5: How relevant is the EU intervention to EU citizens

According to the consumer survey conducted by APPLiA in 2018, the energy label is of relevance for a large share of consumers purchasing vacuum cleaners. A share of 25 % anticipate that the label will be a crucial consideration next time they will bey a vacuum cleaner, while 50 % anticipate that the label will be considered among other important items, as shown in Figure 63.

Q: Having seen the Energy Label, do you anticipate it will be a consideration when you purchase your next vacuum? | n

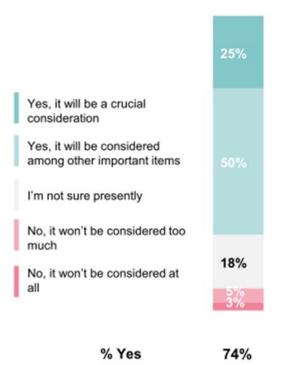


Figure 63: Importance of the energy label for future vacuum cleaner purchases

Conclusion on relevance

The regulations continue to be relevant for reducing the energy consumption of vacuum cleaners and contributes to achieve the targets in the EU 2030 Climate and Energy Policy Framework²⁹².

The Ecodesign Regulation prevents placing on the market of vacuum cleaners with too high rated input power and the energy labelling creates further market pull and functions as a comparable information source to compare products for end-users. Together the regulations have resulted in better designed products being placed on the market.

However, a large share of the potential savings has not been achieved yet because the second power cap and the energy label with A+++, A++ and A+ was not introduced before late in 2017.

The consumers that participated in the APPLiA survey find the label relevant and a large share anticipate that they will consider the information on the label next time they would buy a vacuum cleaner.

7.2 Baseline scenario - BAU

In order to estimate the effect of any changes in the regulations, the base line scenario with the current regulations was established. The baseline scenario, or Business As Usual (BAU), reflects the market development, energy consumption and resource consumption of vacuum cleaners if no changes are implemented to the current regulations. All scenarios are modelled from 2015 to 2030, including the BAU scenario.

The BAU scenario is built on the data presented in task 2-5 of the current market and product characteristics. The following assumptions are made regarding the development from 2018-2030:

- Sales (and thus stock) will follow the trends presented in task 2
- Robot vacuum cleaners are sold as hard floor vacuum cleaners only
- The average AE values for the four base cases will develop as shown in Table 67

²⁹² 2030 Climate and energy policy framework. Conclusion – 23/24 October 2014. EUCO 169/14. https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf

Product type	2020	2025	2030
Cylinder domestic	32	30	29
Upright domestic	28	28	28
Handstick mains-operated	29	28	28
Weighted average mains (base case 1)	31	30	29
Commercial (base case 2)	30	30	29
Cordless (base case 3)	43	49	52
Robots (hard floor only) (base case 4)	71	71	71

Table 67: Development of average AE values for domestic mains-operated and commercialvacuum cleaners 2020-2030

The annual energy consumptions in Table 67 are all based on the formulas given in chapter 3, which includes corrections for the performance. For both robot and cordless vacuum cleaners, the maintenance mode consumption makes up around half of th annual energy. Even though the poor carpet performance is removed from the robot calculation (because they are assumed to be sold as hard floor only), the generally high energy consumption while cleaning (around 40 Wh in the 20 m² test room), gives rise to high energy consumption²⁹³.

The total energy consumption for the entire stock in the BAU scenario can be seen in Figure 64. The line depicting the total, takes into account only the four base cases and not the dotted line for robot cleaners including carpet performance, which is also shown in Figure 64. It should be noted that the energy consumption for commercial cleaners is based on the actual use pattern (300 cleaning cycles per year), as described in task 3, rather than the label AE value.

As seen from the BAU scenario of the energy consumption, the domestic mains-operated are by far the most energy consuming base case, which is due to the high stock of these products. However, when going towards 2030, the stock is slowly shifted towards cordless and robot vacuum cleaners. With the increasing power of cordless motors, the energy consumption of the cordless stock is close to that of the mains-operated stock by 2030.

This also result in an increase of the overall energy consumption (i.e. the purple line showing the total consumption of the entire stock), both because the total stock increases and because the energy consumption of the cordless and robot products is not regulated in the current Regulations.

²⁹³ Note again the differences in how the energy consumption is measured for the different vacuum cleaner types, which are not directly comparable, i.e.

The energy consumption of commercial vacuum cleaners decreases only very slowly, and is more or less linear until 2030 due to the assumed constant sales and slowly decreasing AE values.

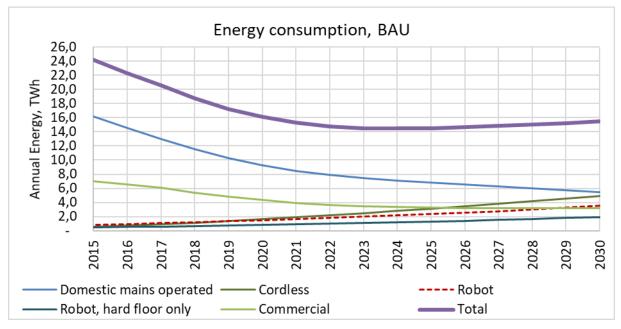


Figure 64: Expected energy consumption development in the BAU scenario, 2015-2030

The corresponding emission of greenhouse gasses (GHGs) for the four base cases in the BAU scenario can be seen in Figure 65. The GHG emissions does not increase at the same rate as the energy consumption, because it is expected that more and more renewable energy will be used in the electricity production in the EU.

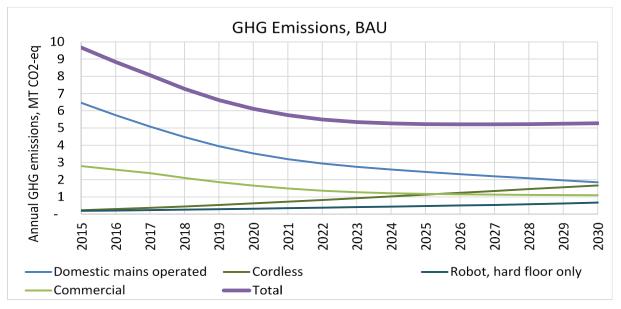


Figure 65: Expected annual greenhouse gas emissions in the BAU scenario 2015-2030

Another effect of the changes in energy consumption, is the change in costs for the enduser. Decreasing energy consumption results in savings for the end-user in terms of electricity costs, however, depending on the technology steps and development needed to achieve the energy savings, the product price will increase.

For mains-operated domestic and commercial vacuum cleaners, which have been in scope of the Regulations for some years now, data exist to make a correlation between development in AE values and consumer purchase price. Based on the GfK data, this correlation was calculated to be $2,1 \in$ increase in purchase price per kWh decrease in the AE value for domestic mains-operated vacuum cleaners²⁹⁴. For commercial vacuum cleaners, the correlation is $2,7 \in$ price increase per kWh AE decrease.

According to the MEErP method the consumer expenditure cost is calculated as all costs paid for by all end-users each year. Hence, the purchase price is paid the year the product is sold (thus based on sales and purchase price every year), while the energy consumption is paid over the course of the lifetime of the vacuum cleaners (thus based on stock energy consumption and electricity prices every year). Repair and maintenance costs as well as auxiliary costs (bags and filters) is split evenly over the lifetime of the vacuum cleaners.

Since the sales and stock of mains-operated vacuum cleaners decrease from 2016 to 2030, the end-user expenditure in EU basis decreases as well as seen in Figure 66. The stock of commercial vacuum cleaners decreases only slightly, so the decrease in electricity cost from 2016 to 2030 is a mix of decreasing stock and replacement of the stock with more energy efficient products. For cordless and robots the increase in consumer expenditure is mostly due to the increasing sales and for cordless to some extend the increasing energy consumption per product because the motor size is expected to increase, which is also seen by especially the sales costs increasing significantly.

²⁹⁴ Calculated

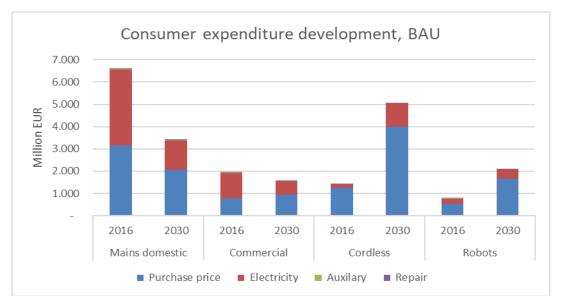


Figure 66: Expected development in consumer life cycle costs in the BAU scenario from 2016 to 2030

7.3 Policy scenarios for energy efficiency and performance

In this section three policy options, PO1, PO2 and PO3, are analysed and compared to the Business as Usual (BAU) scenario. These three options regard only the energy and performance-related requirements. All resource related aspects are treated in policy option PO4 and PO5.

In the scenario calculations, the performance thresholds that exist today for mainsoperated vacuum cleaners are suggested to be applied also to cordless and robot cleaners, including the dust pick-up requirements, the dust re-emission and the noise limits, in order to evaluate the effect of setting these requirements. The specific requirements can be seen in Table 68.

PO1 and PO2 includes both Ecodesign and Energy Labelling requirements, while PO3 is a scenario without Energy Labelling, but with stricter Ecodesign limits. The key difference between PO1 and PO2 is the AE and rated power thresholds. In PO1 the thresholds for AE are set at 36 kWh/year and 750 W for rated power, as suggested by some stakeholders. In PO2 the current thresholds for AE of 43 kWh/year and the power limit of 900 W are maintained. All other thresholds are the same in the two policy options, as seen in Table 68. PO3 follows the thresholds of PO1.

- Dust pick-up for hard floor should consist of an average results of a double hard floor test: one part being the crevice test, the other a flat floor debris test
- Dust pick-up for carpet should consist of an average results of a double carpet test: one part being the DMT8 dust test, the other a fibre on carpet test.

- AE for cordless and robot vacuum cleaners is calculated based on the formulas presented in chapter 3.5.1 and 3.6.1, respectively.
- Tier 1 is modelled as applicable from January 2021, tier 2 from January 2025, however, this should be considered as an example only, to shows the effects, <u>not</u> as a fixed timing.

Ecodesign Parameter	arameter mains-operated domestic and		Requirements for Robot					
commercial Common parameters for Policy Options 1 and 2								
<i>dpu_{hf}</i> (new test)	≥0,98	≥0,98	≥0,98					
dpuc	≥0,75	≥0,6 in tier 1 ≥0,75 in tier 2	\geq 0,6 in tier 1 \geq 0,75 in tier 2					
Dust re- emission	≤1,00%	≤1,00%	≤1,00%					
Noise	≤80 dB(A)	≤80 dB(A)	≤80 dB(A)					
Run time		≥30 minutes	≥30 minutes					
Maintenance power		≤1 W	≤1 W					
Coverage factor		≥95,00%						
	Policy O	ption 1						
Annual Energy, AE	≤36 kWh/year	≤36 kWh/year	≤50 kWh/year in tier 1 ≤36 kWh/year in tier 2					
Rated power ≤750 W		≤750 W	≤750 W					
	Rescaling of	energy label						
	Policy O							
Annual Energy, AE	≤43 kWh/year	≤43 kWh/year	≤43 kWh/year					
Rated power	≤900 W	≤900 W	≤900 W					
	Rescaling of							
Policy Option 3								
Annual Energy	≤36 kWh/year	≤36 kWh/year	≤50 kWh/year in tier 1 ≤36 kWh/year in tier 2					
Rated power	≤750 W	≤750 W	≤750 W					
No Energy Labelling regulation								

Table 68: Policy Option 1, 2 and 3: Energy and performance related requirements. Where no
tier is mentioned, the requirement applies from tier 1

7.3.1 Existing performance parameters

The dust pick-up on hard floor is suggested to be maintained at ≥ 0.98 for all vacuum cleaner types, but with addition of a debris test, which simulates pick-up of some sort of debris on a flat surface as discussed in chapter 3.10.2. The dpu_{hf} should be an average of the performance in the debris test and the current crevice test, measured with the same nozzle and nozzle settings. This is expected to put even more emphasis on a good nozzle design, rather than just increasing suction power. Since the average hard floor dust pick-up for cordless and robot vacuum cleaners (both 0,98) is similar to the current threshold

of 0,98, it is assumed to be possible for these vacuum cleaner types to comply with the threshold in the first tier.

The dust pick-up on carpet is likewise suggested to be maintained at the current $\geq 0,75$ and to be applied to all vacuum cleaner types. However, also for this parameter it is suggested to alter and expand the test to be more consumer relevant. Hence, the tests should be conducted on a more representative carpet and the dpu_c should be an average of the performance in the dust test and a fibre test, as discussed in chapter 3.10.1. Since the average performance of cordless and robot vacuum cleaners are very poor on carpet compared to mains-operated vacuum cleaners, it is suggested to implement the requirements in two tiers for these product types. Furthermore, it is expected in the modelling that especially the robot vacuum cleaners will be declared as 'hard floor only' vacuum cleaners, in order to live up to the performance requirements. By adding the fibre test to the carpet performance measure, it is expected that setting a motion resistance cap is not necessary.

The dust re-emission and noise levels are also suggested to be maintained at the same levels of $\leq 1,00\%$ and ≤ 80 dB(A), which should be expanded to the other vacuum cleaner types. While there are arguments that the noise levels could be decreased further, it is suggested not to set a stricter requirement in the first tier to let manufacturers focus on bringing the products up to the current performance levels first.

7.3.2 New performance requirements

The performance parameters not included in the Regulations today are related to the battery performance (runtime and maintenance power) and autonomous operation (coverage factor) and are only relevant for the cordless and the robot vacuum cleaners.

The battery run time and the maintenance power requirements are applicable to both cordless and robot vacuum cleaners. The run time is a measure of how long the vacuum cleaner can be used when it is fully charged, before it needs charging again. In order to ensure that consumers are not mislead by different statements regarding run times, which is an important marketing parameter for battery driven vacuum cleaners, it is suggested to develop a standardised way of measuring (operational) run time, and potentially include it in the energy label.

The maintenance power is the power consumption in the so-called 'charged and docked' mode, i.e. when the vacuum cleaner is standing in the docking station fully charged. This mode includes any trickle charging, standby consumption etc. that the vacuum cleaner might need. This mode is the one the cordless and robot vacuum cleaners are in most of the time, and as seen by the BAU scenario calculations this is also the most energy

consuming mode today. The maintenance power can range between less than 0,5 W to 8 W. Hence the average value presented in the BAU covers a large variance, and large amount of energy is spent in this mode by some models. It is suggested to measure this energy consumption as an average consumption over 24 hours, in order to allow for the docking station to consume more energy for short time spans to perform relevant tasks.

The requirement of 1 W in maintenance power is based on the Standby Regulation, which in principle covers the battery driven vacuum cleaners and their docking stations, however, if the battery power is maintained in this mode with so-called 'trickle charging', it can be argued that the product is not in standby, and the requirements do not apply. The standby requirement (without info display) is 0,5 W, and considering that the battery types used today do not need substantial maintenance power (if any) the maintenance power requirement is set to 1 W²⁹⁵. The requirement is included in the vertical regulation for vacuum cleaners because of the general trend towards regulating standby and other low power modes in product specific regulations rather than in the horizontal standby regulation. Furthermore, since it is arguable whether this mode is indeed a standby mode, including it in the vacuum cleaner Regulation ensures a level playing field and reduces the risk of loopholes.

The coverage factor applies only to robot vacuum cleaners and is a measure of how much of the floor area in a given room the robot covers in its cleaning cycle. At low coverage rates, the cleaning performance measured in tests is not representative of the actual cleaning, because parts of the floor are not covered by the robot at all. By setting a minimum requirement of 95% coverage, it is ensured that maximum 5% of the floor is not cleaned by the robot. The threshold of 95% is set based on the average robot technology today.

7.3.3 Energy saving potentials

Based on the above requirements and the data presented throughout the study, the impact of PO1, PO2 and PO3 on energy consumption has been derived and compared to the BAU scenario. As seen from Figure 67, the energy consumption in all three scenarios is lower than in the BAU scenario from 2021 (the modelled implementation year), however the savings in PO3 (1,76 TWh/year in 2030) is roughly half of the savings in PO1 (3,63 TWh/year in 2030) and PO2 (3,30TWh/year in 2030).

²⁹⁵ In the Standby Regulation the measurement is not performed over a 24 hour period. <u>https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008R1275</u>

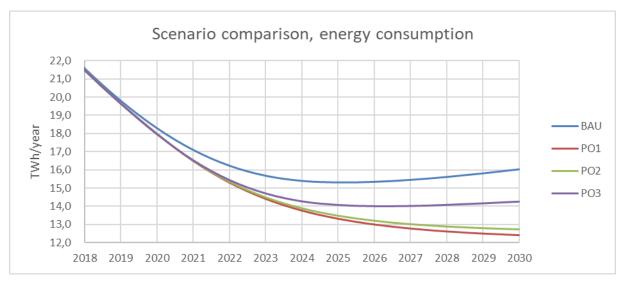


Figure 67: Energy consumption in PO1, PO2 and PO3 compared to BAU from 2018 to 2030

As shown in the BAU scenario, the greenhouse gas emissions follow the energy consumption, but with the assumption of more renewable energy in the electricity mix in the future. The comparison of GHG emissions in the scenarios can be seen in Figure 68. The PO1 scenario, which has the largest savings, results in savings of around 1,2 Mt CO_2 /year by 2030, corresponding to 23% of the annual vacuum cleaner stock greenhouse gas emissions in the BAU scenario.

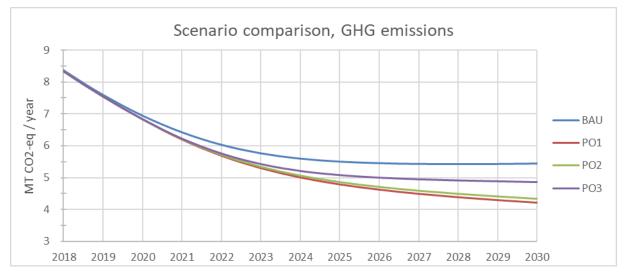


Figure 68: GHG emissions in PO1, PO2 and PO3 compared to BAU from 2018 to 2030

The energy savings in both PO1 and PO2 are primarily caused by the increased energy efficiency of cordless and robot vacuum cleaners, while only minor energy savings are attributed to setting stricter Ecodesign requirements for mains-operated vacuum cleaners as seen from Table 69. Hence the lower motor power threshold of 750 W and the limit for the Annual Energy of 36 kWh/year in PO1 does not contribute to significant energy savings

compared to maintaining the current thresholds, illustrated by the small difference between PO1 and PO2. This small saving potential for setting quite strict limits, is because most products are already way beyond the Ecodesign limit. The reason for this can be largely attributed to the Energy Labelling Regulation, and the fact that more than 50% of the products sold today are label class A²⁹⁶.

This is also the reason why setting only the Ecodesign limits and removing the energy label causes only half the savings as keeping both regulations, as modelled in PO3. It is assumed that without an energy label, the argument for selling more expensive products based on performance and the incentive to develop products with performance/energy consumption beyond the limit values, are removed. While the potential savings for cordless and robots is only a few percentage points lower than in the PO1 and PO2 scenarios, the increasing AE values (up to near the limit value) for domestic mains-operated and commercial vacuum cleaners causes the energy consumption for these base cases to increase.

The majority of the energy savings in all three policy options are achieved by including cordless and robot vacuum cleaners in scope of the Regulations. Since the cordless and robot vacuum cleaners are expected to increase in market share and annual energy consumption, it is important to include them in the regulation, not only for their energy saving potential, but also to provide a level playing field among products when cordless and robots starts to compete with and replace the mains-operated vacuum cleaners.

	2030 energy consumption, TWh			Annual savings in 2030, TWh			Annual savings, %			
	BAU	PO1	PO2	PO3	PO1	PO2	PO3	PO1	PO2	PO3
Domestic mains	6,34	6,19	6,31	7,13	0,15	0,04	-0,79	2%	1%	-12%
Commercial	2,82	2,78	2,82	3,39	0,04	-	-0,57	1%	0%	-20%
Cordless	4,90	2,45	2,45	2,60	2,45	2,45	2,30	50%	50%	47%
Robots	1,97	0,98	1,15	1,15	0,99	0,82	0,82	50%	42%	42%
Total	16,03	12,40	12,73	14,27	3,63	3,30	1,76	23%	21%	11%

Table 69: Energy savings for each base case in 2030 for PO1, PO2 and PO3

While the energy saving potential is higher in PO1 and PO2 than in PO3, all three scenarios result in roughly the same monetary savings for the end-users compared to the BAU scenario. Figure 69 shows the total end-user expenditure for all vacuum cleaners in the EU. The cost is composed of total sales costs each year and the electricity cost and maintenance cost of the stock (i.e. vacuum cleaners sold the previous years). This is also why in the PO3 scenario the total cost drops under the PO1 and PO2 scenarios in 2022-2027, because without the energy label the AE values increase slightly, causing lower

 $^{^{\}rm 296}$ Based on the 2017 label. Se task 2.

purchase cost, but the energy consumption of the stock is low. However, when the stock is replaced with the PO3 products (i.e. no Energy Labelling, only Ecodesign), the costs exceeds those in PO1 and PO2 (around 2028), due to the higher energy consumption.

The graph in Figure 69 shows, that in the long term (after 2030) the end-user costs will be lowest in the PO1 scenario, but still quite similar to the PO2 and PO3 scenarios. The difference between the scenarios will likely be more distinct in an even longer time perspective.

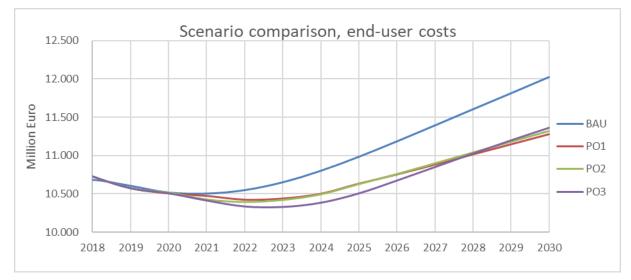


Figure 69: Total end-user expenditure for all vacuum cleaners in EU each year form 2018-2030.

For all the scenarios, the consumer expenditure is lower than in the BAU, however the effect varies between the base cases, as seen in Table 70. For all scenarios the effect on mains-operated domestic vacuum cleaners is small, and for both PO1 and PO2 the same is the case for commercial vacuum cleaners. Even though the energy consumption decreases for these products, the increase in purchase cost more or less level out the cost savings related to use of the product for end-users. For PO3, the energy consumption decreases for both domestic mains and commercial vacuum cleaners, but the larger number of use hours for commercial cleaners, means that the decreasing purchase cost (due to higher AE value), is not enough to offset the extra energy cost, as it is for domestic mains-operated vacuum cleaners.

Consumer expenditure, Million €			2020 Covingo		
Base case	Scenario	2016	2020	2030	2030 Savings
Mains-operated	BAU	6.933	5.776	3.595	
domestic	PO1	6.934	5.786	3.573	1%
	PO2	6.934	5.798	3.587	0%
	PO3	6.934	5.786	3.526	2%
Commercial	BAU	2.031	1.863	1.686	
	PO1	2.031	1.862	1.680	0%
	PO2	2.031	1.863	1.686	0%
	PO3	2.031	1.862	1.748	-4%
Cordless	BAU	1.417	2.361	5.052	
	PO1	1.417	2.328	4.501	11%
	PO2	1.417	2.328	4.501	11%
	PO3	1.417	2.328	4.486	11%
Robot	BAU	779	1.058	2.104	
	PO1	779	1.045	1.937	8%
	PO2	779	1.045	1.955	7%
	PO3	779	1.045	1.955	7%

Table 70: EU User expenditure for each base case

Based on the scenario calculations above, the energy savings in PO1 and PO2 are quite similar and approximately double that of the PO3 scenario. At the same time the consumer expenditure is roughly the same in all three scenarios (and might even be highest in PO3 in the long term). Based on these calculations, it is therefore not advised to follow the suggestions in PO3 of having only the Ecodesign Regulation.

For PO1 and PO2 the difference is in the power and AE limit values, which is shown by the scenario calculations to result in low energy savings on EU level, because the energy label has already pulled the market towards better energy efficiency levels than set in the Ecodesign Regulation. At the same time, as shown in task 6, these stricter Ecodesign limits do not lead to lower life cycle costs for the end-users. It is therefore recommended to follow the concepts of PO2, and nuances of this option will be explored further in the following section.

7.3.4 Specific Ecodesign requirements in PO2

The scenario calculations above are based on implementing requirements on all the parameters given in Table 68. In this section the effect of the specific requirements in PO2 is elaborated.

As shown above, the savings are in particular caused by inclusion of cordless and robot vacuum cleaners in the scope of the Regulations. The majority of these savings comes from reduction of the maintenance mode power consumption, (i.e. the requirement of maximum 1 W maintenance power). As mentioned above, this is the mode where the

vacuum cleaner is standing in the docking station, fully charged. Table 71 shows the energy consumption of cordless and robot cleaners, divided into maintenance power consumption and power consumption for cleaning. In 2016 around half of the annual energy consumption is associated with the maintenance power, which is reduced drastically towards 2030 due to the proposed maximum power requirement, and is causing the vast majority of the total energy savings.

Base case	Mode	2016	2020	2025	2030
	Maintenance mode, kWh/year	21	12	8	8
Cordless	Cleaning, kWh/year	20	18	16	17
	AE, kWh/year	40	31	24	25
Robots,	Maintenance mode, kWh/year	35	17	8	8
hard floor	Cleaning, kWh/year	36	36	33	33
only	AE, kWh/year	71	52	41	41
Debete ell	Maintenance mode, kWh/year	35	17	8	8
Robots all	Cleaning, kWh/year	93	61	41	41
purpose	AE, kWh/year	128	78	49	49

Table 71: Energy consumption of cordless and robot vacuum cleaners in PO2, kWH/year

The remaining energy savings are caused partly by a decrease in cleaning energy power and partly by an increase in cleaning performance to meet the requirements for dpu_c of 0,75 and dpu_{hf} of 0,98 by 2025. In the scenarios it is assumed that robots are sold as hard floor vacuum cleaners only, due to the low carpet cleaning performance, and they are therefore not expected to meet the carpet requirement. However, even if the average robots and cordless vacuum cleaners can reach the dpu requirements, the performance span in the market is very wide, and the market share that will not be able to meet these requirements is not known. Hence, by implementing the requirement too soon for the market to adapt, many cordless cleaner models could be removed from the market. However, setting only energy requirements without performance requirements, could result in vacuum cleaners with very low power but also with very low performance, not able to remove any dust or debris (as the 'electric brooms' discussed in task 4).

The ASE of cordless cleaners does not have to decrease in order to fulfil the requirements because of the decrease in maintenance power. Actually, the ASE is expected to increase from 0,65 Wh/m² to 0,85 Wh/m² (as in the BAU scenario) due to increasing motor sizes in order to increase the performance.

The cleaning power of robots on hard floor, however, need to decrease from the current 42,5 Wh to 37,5 Wh in order to fulfil the requirements, and is expected to decrease even further to 35,5 Wh in 2030 due to the effect of the energy label.

According to the standardisation group working on robot vacuum cleaner standardisation, the test standards are still not mature to be used for Ecodesign and Energy Labelling purposes, partly because the technology is still very new and rapidly evolving, and partly because experience with testing is still too limited and repeatability data is not yet available (Round Robin tests ongoing). However, seeing that other fast developing technologies such as computers are also covered by Ecodesign Regulations, the speed of development of the technology should not be an issue in itself. On the other hand, the lack of robust testing methods could be a barrier for including robot vacuum cleaners in scope of the regulation, but this could be solved by considering a longer implementation time frame.

At the very least it is highly recommended that both cordless and robot vacuum cleaners are included in scope of the Ecodesign Regulation with requirements on the maintenance mode power consumption and preferably with the range of performance parameters covered in PO2.

7.3.5 Label rescaling

According to the Energy Labelling Framework Regulation, the energy label should be rescaled for all products to the original A-G scale and be future-proofed by ensuring that the highest class (A) is empty upon entering into force of the regulation. This also applies to vacuum cleaners. Today already a few A+++ models exist, but these products have carpet cleaning class C or lower. Hence, it is not possible as of today to have a product in the highest energy class that is also in the highest performance class on all parameters (i.e. and 'A+++/AAA' product). This will become even more difficult with the introduction of more consumer relevant testing (i.e. debris test on hard floor and fibre test on carpet). In order to rescale the label, it is therefore suggested to simple rescale the current A+++ to D scale directly to a new A to G scale, as shown in Table 72.

In addition to the energy classes, the assumed market distribution of the four base cases among the energy classes by the time of application is shown in Table 72. For the mainsoperated domestic cleaners the distribution is based on forecasting the label distribution from GfK for 2016 to 2021. For the other base cases, where there was no data regarding distribution, it was based on the average AE value. Cordless vacuum cleaners are assumed to be the only vacuum cleaner type that can achieve the A+++ (or A) rating, because of the small motors (low ASE) and the expected drastic decrease in maintenance power.

Current	Interval	New	Assumed 2021 market distribution					
label classes		label classes	Mains- operated Commercial domestic		Cordless	Robots tier 1	Robots tier 2	
A+++	≤ 10	А	0,0%	0%	5%	0%	0%	
A++	10 < AE ≤ 16	В	1,0%	3%	6%	0%	1%	
A+	16 < AE ≤ 22	С	2,0%	5%	21%	1%	3%	
Α	22 < AE ≤ 28	D	61,0%	48%	54%	3%	7%	
В	28 < AE ≤ 34	E	22,0%	34%	11%	7%	10%	
С	34 < AE ≤ 40	F	7,0%	8%	3%	14%	18%	
D	40 < AE	G	7,0%	2%	0%	75%	61%	

Table 72: Rescaling of the energy label and assumed distributions

As seen from Table 72, the only vacuum cleaner type for which more than 1% of the sales would be label A products in 2021 (upon application of the new energy label) is cordless cleaners. However, for cordless cleaners, as well as all other product types, the few label A products are assumed not to have "A" in all of the performance parameters. Hence, no "AAAA" products are expected to exist upon entering into force of the revised regulation²⁹⁷.

In addition to rescaling the energy classes on the label, it is also suggested to rescale the other performance scales shown on the label. This is primarily based on the findings of the standardisation work, which shows that the expanded uncertainties of the measurements exceed the label class width, as described in section 3.10.11. It is therefore suggested to reduce the number of classes on each scale from seven to four to make room for broader classes. The suggested performance class intervals are shown in Table 73. As noted previously, the standardisation groups are working on a suggestion for changing the dust re-emission scale to a logarithmic scale rather than a linear one.

Performance class	Dust pick up on carpet (<i>dpu_c</i>)	Dust pick up on hard floor (<i>dpu_{hf}</i>)	Dust re-emission (<i>dre</i>)
A	<i>dpu</i> _c >0,91	<i>dpu_{hf}</i> >1,11	dre≤0,02%
В	0,85≤ <i>dpu</i> _c <0,91	1,06≤ <i>dpu</i> _{hf} <1,11	0,02%< <i>dre</i> ≤0,2%
С	0,80≤ <i>dpu</i> _c <0,85	1,00≤ <i>dpu</i> _{hf} <1,06	0,20%< <i>dre</i> ≤0,60%
D	<i>dpu</i> _c <0,80	<i>dpu_{hf}</i> <1,00	dre>0,60%

²⁹⁷ This is also the case even if the performance classes are rescaled as suggested in Table 73, since the criteria for A remains the same as in the current Energy Labelling Regulation.

Parameters on the energy label

In order to include cordless and robot vacuum cleaners as new product types in the scope of the Energy Labelling Regulation, it might very likely be necessary to also change the label parameters and design. The current parameters, which are still relevant for the new products, are:

- Energy efficiency class
- Average annual energy consumption (kWh/year)
- Dust re-emission class
- Carpet cleaning performance class
- Hard floor cleaning performance class
- Sound power level

However, for cordless and robot vacuum cleaners, the battery run time is an important parameter for end-users and could be added as a number (in minutes) on the label for cordless products. For robots, a similar declaration could be made, however, some stakeholders have suggested instead to show the area the robot can cover within a given time, as a "covered area" per half hour measured in m², since this is more relatable for the end-users. Furthermore, it has been suggested to add a "navigation class" to the robot label, based on the coverage rate, since this is also an important parameter for end-users. However, with an Ecodesign requirement of 95% for the coverage rate, it should first be investigated if it is possible to make a label scale from 95% to 100%, without the uncertainties of the test method exceeding the class width, to avoid repeating the issues that was found for the cleaning performance classes.

7.4 Policy scenarios for resource efficiency

In this chapter two policy scenarios regarding resource efficiency are analysed and compared to the Business as Usual (BAU) scenario.

The difference between PO4 and PO5 is the requirement of a maximum amount of virgin material. The requirements included in both options, i.e. equivalent to PO4, are all aiding increasing product life through durability and repairability requirements. The virgin material requirement in PO5 is aiding increasing recycled content and thus minimising the environmental impact of extracting new materials.

Ecodesign Parameter	Requirements for mains-operated domestic and commercial	Requirements for cordless	Requirements for Robots
	Common parameters for	r Policy Options 4 an	d 5
Motor life	550 hours	600 hours	600 hours
Hose oscillation	40,000 oscillations	40,000 oscillations when a hose is present	
Battery lifetime		600 cycles and maintain 75% capacity	600 cycles and maintain 75% capacity
Spare part availability	8 years (domestic) 5 years (commercial)	6 years	6 years
Easy changeable repair-prone parts	Hose Power cord roll-up Wheels Filters Handle	Wheels Battery	Wheels Battery Brushes
Information requirements on repair	How to repair/change repair-prone parts	* How to repair/change repair-prone parts and how to best ensure battery longevity	How to repair/ change repair- prone parts and how to best ensure battery longevity
	Policy O	ption 5	
Maximum virgin plastic	1,4 kg for domestic mains 2,0 kg for commercial	1,2 kg	0,5 kg

Table 74: Policy Option 4 and 5: resource efficiency requirements

One of the important parameters of increasing product life is increasing the technical life, especially of critical components. It is therefore suggested to increase the current motor lifetime requirement from 500 hours to 550 hours²⁹⁸ for mains-operated domestic and commercial vacuum cleaners since this can be achieved at low costs (i.e. still achievable with universal motors) and is enough for a product lifetime of >10 years. For robot and cordless vacuum cleaners, which are used for more hours per year, at least 600 hours is required, which is enough for the 6 year lifetime with 100 hours of use per year considered in this study. This should not be a problem since the motor types used in cordless and robot vacuum cleaners often have much longer lifetimes than the universal motors with carbon brushed used in main-operated vacuum cleaners.

The current requirement of 40,000 hose oscillation is recommended to be maintained and also applied to cordless vacuum cleaners when a hose is present. For robot cleaners, a hose is never expected to be present.

²⁹⁸ This requirement is suggested disregarding of the motor is tested partly loaded or empty.

The important aspect of battery lifetime is suggested to be regulated with a minimum requirement for cordless and robot vacuum cleaners. No official measure for battery lifetime exists, but the computer Ecodesign Regulation has an information requirement of battery lifetime based on the number of charging cycles it can last. However, the battery capacity falls over time with the number of charging cycles, and the share of power drawn from the battery out of its total rated capacity (also called Depth of Discharge, DoD) is crucial for the lifetime in terms of the capacity left after a number of cycles. It is therefore recommended to set the requirement according to a definition including DoD and threshold for remaining capacity, for example 'after 600 charging cycles with 90% discharge in each cycle, 75% of the battery capacity should remain'²⁹⁹. This means that cordless and robots will need 2 batteries on average in their lifetime of 6 years, since they are used 200 times a year.

Besides durability requirements there are other possibilities to extend the lifetime of vacuum cleaners. Based on a Deloitte study³⁰⁰ it seems like the following options have a positive effect on the environment:

- Measures to ensure provision of information to consumers on possibilities to repair the product
- Measures to ensure provision of technical information to facilitate repair to professionals
- Measures to enable an easier dismantling of products
- Measures to ensure availability of spare parts for at least a certain amount of years from the time that production ceases of the specific models
- Different combination of the above-mentioned options

These measures are also applicable to the different types of vacuum cleaners and information about repair and repair instructions for certain parts are suggested. According to the study performed by Deloitte, the most beneficial measure is to ensure the availability of spare parts. However, the essential/critical spare parts vary. According to preliminary results from an ongoing study on the development of a scoring system for repair and upgrade³⁰¹, the most important aspects that define some parts as 'priority parts' are (listed in order of importance):

- 1. Their frequency of failure
- 2. Their functional importance

 ²⁹⁹ EN 61960:2011 could be used for measuring battery endurance in cycles (part 7.6.2 or 7.6.3 in the standard)
 ³⁰⁰ Deloitte (2016) Study on Socioeconomic impacts of increased reparability – Final Report. Prepared for the European Commission, DG ENV

³⁰¹ http://susproc.jrc.ec.europa.eu/ScoringSystemOnReparability/index.html

- 3. The steps needed for their disassembly
- 4. Their economic value and related repair operations
- 5. Their environmental impacts

Parts which are likely to fail and are reasonable priced are filters, hoses, power cables, wheels, handles and accessories in general. These parts are all essential for the function of the machine and are likely to be purchased if they break³⁰². Many of the same parts are assumed to be essential for cordless and robots. However, for cordless and robots the battery is also an important spare part, and for robots the rotating brushes.

It is therefore recommended to set requirements on the availability of critical spare parts throughout at least one lifetime of the product. This is 8 years for domestic mains-operated, 5 years for commercial, and 6 years for cordless and robot vacuum cleaners. The spare parts should be available for the specified number of years after the last unit of a specific model is produced. The repair prone parts should be possible for the user to change, without needing help from a professional repair person, and should therefore be possible to conduct without the need for special tools. Furthermore, an information requirement should be implemented regarding information to the end-user on how to change these parts, as well as how to best maintain the capacity of the battery in cordless and robot vacuum cleaners.

In PO5 a requirement for the maximum amount of virgin plastic is suggested in order to promote recycling. As explained in task 6, the requirement is suggested as a specific maximum amount in kilos, rather than a percentage to avoid increasing the total product weight to reach the limit. The requirement is set based on the 65% recycling goal from the WEEE Directive, i.e. the requirement states that maximum 35% (rounded to closest 100 g) of the plastics used, can be virgin plastics. Where the WEEE Directive targets the end of life aspects (collecting and recycling) the Ecodesign targets the design phase and thus the products placed on the market. Since metals are already recycled at high rates, this requirement is based only on the plastic, which has much lower recycling rates.

The main barrier for such a requirement is how to ensure compliance, since it is not possible to easily tell apart recycled and virgin materials, neither for metals nor plastics. One solution is paper to have a trail of documentation for the material used and declarations from suppliers about the material's origin. Another is the visual inspection, since recycled plastic is always black, because it is a mix of different colours of plastic. Hence, other colours of plastic are almost always virgin material.

³⁰² For upright vacuum cleaners, also the belts in the nozzle are expected to be changed if they break

In order to calculate the effect of the two resource policy options, it was assumed that all the requirements in PO4 results in 2 years additional lifetime (increasing lifetime from 8 to 10 years) for mains-operated domestic vacuum cleaners, corresponding to 25%. Similarly, the lifetime of the other base cases is assumed to increase with 25%.

7.4.1 Material energy saving potentials

Based on the above requirements and the data presented throughout the study, the impact of PO4 and PO5 has been derived and compared to the BAU scenario. What is compared in this section is the material energy, i.e. the energy consumed for production and embedded energy of materials, not the energy consumed by the vacuum cleaners in the use phase.

As seen from Figure 70, the material energy in both scenarios is lower than in the BAU scenario from 2026. The savings in PO4 is roughly half of the savings in PO5.

Figure 70: Material energy in PO4 and PO5 compared to BAU from 2018 to 2030

As shown previously, the greenhouse gas emissions follow the energy consumption, which is also the case for material energy and GHG emissions. The PO5 scenario, which has the largest savings, results in savings of around 0.2 Mt CO₂-eq/year by 2030 as seen in Figure 71.

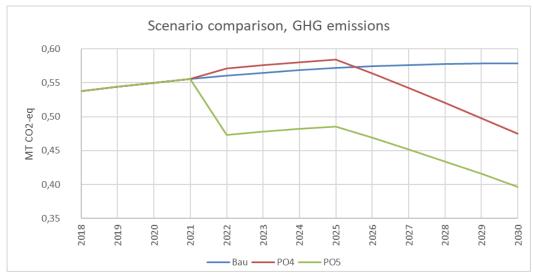


Figure 71: GHG emissions in PO4 and PO5 compared to BAU from 2018 to 2030

The savings in PO4 and partly PO5 are caused by an assumed increase in the lifetime of vacuum cleaners of 25% (from 8 to 10 years for mains-operated domestic vacuum cleaners). However, this means that more material (spare parts) are used per vacuum cleaner and that the vacuum cleaners will miss out a potential energy improvement according to the longer lifetime. This means that the material energy will increase, until the sales will be reduced (due to the increased lifetime). When the sales are reduced the overall impacts are also reduced.

In PO5 the potential reduction in material energy is already visible in 2022 as recycled materials has less embedded energy and require less energy during the manufacturing. Hence it will have an immediate positive impact on the environmental performance. The material energy savings for each base case in 2030 is presented in Table 75.

	2030 Material energy, TWh			2030 savings, TWh		2030 savings, %	
	BAU	PO4	PO5	PO4	PO5	PO4	PO5
Domestic mains- operated	4,26	3,44	2,71	0,82	1,55	19%	36%
Commercial	1,23	0,99	0,78	0,24	0,45	20%	36%
Cordless	4,21	3,51	2,85	0,70	1,36	17%	32%
Robots	1,32	1,10	0,93	0,23	0,39	17%	30%
Total	11,02	9,04	7,27	1,98	3,75	18%	34%

Table 75: Material energy savings for each base case in 2030 for PO4 and PO5

The energy saving potential is higher in PO5 than in PO4, which is also reflected in the end-user expenditure compared to the BAU scenario. Figure 72 shows the material end-user expenditure for all vacuum cleaners in the EU. The cost is composed of the total sales,

the purchase price, increased costs for spare parts and the cost of loss in efficiency (i.e. higher energy costs) when the lifetime is increased. The increased cost of spare parts is responsible for increased cost compared to BAU until the sales are reduced after 2025. For PO5 it is assumed that the purchase price of vacuum cleaners will decrease by 10% since recycled plastic is cheaper than virgin plastic. This has an immediate effect and reduces the cost compared to BAU in 2022.

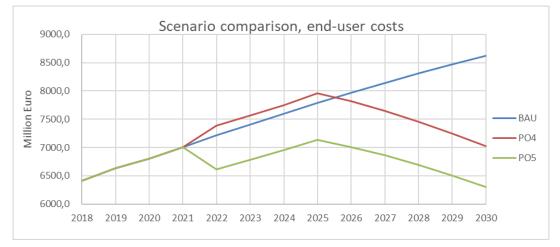


Figure 72: Material end-user expenditure for all vacuum cleaners in EU each year form 2018-2030.

For all the scenarios, the consumer expenditure is lower than in the BAU as seen in Table 76. However, the purchase price of vacuum cleaners might increase if spare parts are made available for a longer period of time as more expenses can occur e.g. higher stocks of spare parts. Also, if the demand for recycled plastic increases it may increase the price of recycled plastic.

Consumer expenditure, Million €			Year	2030 Savings	
Base case	Scenario	2016	2020	2030	2050 Savings
Mains-operated domestic	BAU	3174	3048	2060	0%
	PO4	3174	3048	1660	19%
	PO5	3174	3048	1488	28%
	BAU	807	862	866	0%
Commercial	PO4	807	862	784	10%
	PO5	807	862	707	18%
	BAU	1275	2027	4012	0%
Cordless	PO4	1275	2027	3189	21%
	PO5	1275	2027	2872	28%
	BAU	561	864	1686	0%
Robot	PO4	561	864	1390	18%
	PO5	561	864	1240	26%

Table 76: EU Material end-user e	expenditure for each base case
----------------------------------	--------------------------------

7.5 Conclusions and recommendations

Based on the discussion and analyses throughout the report, the following concrete recommendations are given:

- Remove the definition of "full size battery operated vacuum cleaner" and instead use the definitions of robot and cordless vacuum cleaners. Have only one category for cordless vacuum cleaners without any sub-division. Leave handheld vacuum cleaners not intended for cleaning the floor out of the scope.
- Include cordless and robot cleaners in scope of both the regulations
 - Consider the timing of when they should be included from, which might not be the same for both product types, and might to some extent depend on finalisation of the test standards
 - Analyse in more detail, preferably with additional data, which requirements are appropriate and consider implementing them in two tiers to give the market and the manufacturers time to adapt
 - At the very least make sure that a maximum limit of 1 W is set for the maintenance mode within a relatively short time frame
- Include a debris test in the hard floor cleaning performance and a fibre pick-up test in the carpet cleaning performance
- Rescale the label to an A-G scale and rescale the performance parameters scales to only four classes (A-D).
 - The timing of revising the regulation and including more nuanced performance standards is important. Changing the standards might influence the limit value of Ecodesign requirements and the energy label scales.
- Set the verification tolerances according to the measured expanded uncertainties when final results are available, and in accordance with the new label scales
- Set stricter Ecodesign limits regarding rated power and AE values is not necessary, as long as the Energy Label Regulation is continued, and is thus not recommended. It is however recommended to maintain the energy label.
- Include run time on the energy label for robot and cordless vacuum cleaners
- It is not recommended to test performance parameters with part load unless the uncertainty issues can be solved and a likewise solution is found to simulate the dust loading of filters in bagless vacuum cleaners. As it is now, all vacuum cleaner types benefits from being tested with an empty receptacle.
- Set Ecodesign requirements for battery lifetimes for cordless and robot vacuum cleaners

- Maintain the durability requirement for hose oscillations and set increased motor lifetime requirements depending on product type
- Set requirements to spare part availability and easy changeable repair-prone parts for all vacuum cleaner types, with specific parts depending on the type.
- Set information requirements on how to change the repair-prone parts in case they break (all vacuum cleaner type) and how to best prolong the battery lifetime (cordless and robot vacuum cleaners)
- Set requirements for maximum content of virgin plastics for each product group.

In conclusion, it is recommended to implement a combination of Policy Option 2 and 5 in order to achieve the largest environmental impact improvements and ensure that no excessive costs are placed on end-users or market actors.

I. Annex A – Elaboration of standards

Elaboration of standards under request M/540

The responsible WG dealing with Mandate M/540 is WG 6 "Surface cleaning appliances" that operates under CENELEC TC 59X, the broad CENELEC TC that is responsible for standards regarding "Performance of household and similar electrical appliances". WG 6, Surface cleaning appliances, has subdivided specific parts of the mandate into several sub-working groups as shown in Table 77.

Sub-working group	Specific part
WG 06-01	Water filter vacuum cleaners
WG 06-02	Uncertainties for vacuum cleaners
WG 06-03	Commercial surface cleaning appliances
WG 06-04	Durability of suction hoses

Table 77: CENELEC TC 59X WG 6 sub-working groups

CENELEC TC 59X WG 6 Surface cleaning appliances cooperates very closely with their counterparts on IEC level within IEC SC 59F (see Table 78). IEC WGs agreed to address considerable content of the Standardisation Request (M/540) because it is relevant worldwide. Examples: full-size battery operated vacuum cleaners, robot vacuum cleaners etc. Also other relevant issues are handled in the respective IEC WGs - e.g. Wilton carpet test (in IEC SC 59F WG 9). Experts are mostly the same in both CENELEC and IEC WGs. Meetings are held in combination or jointly as far as possible.

Working group	Title
IEC TC 59 SC 59F/ WG2	Acoustical noise of household appliances
IEC TC 59 SC 59F/ WG3	Dry surface cleaning appliances
IEC TC 59 SC 59F JWG4	Wet surface cleaning appliances linked to ASTM-INTERNATIONAL
IEC TC 59 SC 59F/ WG5	Surface cleaning robots
IEC TC 59 SC 59F/ WG6	Commercial surface cleaning machines
IEC TC 59 SC 59F/ WG7	Cordless (battery operated) vacuum cleaners
IEC TC 59 SC 59F/ WG9	Test equipment and test material
IEC TC 59 SC 59F/ AG1	CAG Chairman's Advisor Group
IEC TC 59 SC 59F/ AG2	Hard floor cleaning
IEC TC 59 SC 59F/ AG3	Advisory group on airborne noise from surface cleaner

 Table 78: IEC TC 59 SC 59F Working groups and advisory groups

IX. Durability of the hose and operational lifetime of the motor

Durability testing of the hose and operational motor lifetime are part of the new EN 60312-1:2017 standard which was handled through a Unique Acceptance Procedure $(UAP)^{303}$ and has recently been harmonised³⁰⁴.

The efforts of CLC TC59X WG 6 to produce a harmonised standard implementing the durability requirements was closely linked to the special review study on vacuum cleaners of the European commission prepared by VHK³⁰⁵. This special review study followed Article 7(2) of Commission Regulation (EU) No 666/2013 on Ecodesign requirements for vacuum cleaners³⁰⁶, which specified that the durability requirements on hose (at least 40 000 oscillations) and motors (at least 500 hours at half-loaded receptacle) had to be reviewed. The study started in December 2015 and the final study report was published in June 2016.

Durability of the hose

The current test set-up and test-procedure in Clause 6.9, 'Repeated bending of hose' in the harmonised standard EN 60312-1:2017 has been used for many years by industry and consumer associations and is in principle unproblematic. For the durability test of the hoses the problem lay with the definition of the hoses: Which hoses (primary, secondary) of which types of vacuum cleaners (cylinder, upright) will need to be subject to the test.

Both upright and cylinder vacuum cleaners are, for the purpose of the current Regulation, dry vacuum cleaners. Section 6.9 of the harmonised standard EN 60312-1:2017 defines primary and secondary as follows:

"This test is only applicable to hoses that constitute the primary structural link between the floor-supported main body of a cylinder vacuum cleaner and a separate cleaning head or cleaning head/tube assembly that, in normal use, is used to clean a floor from an upright standing position (see Figure Z.1).

This test is not applicable to hoses that, in normal use, remain affixed at both ends to a vacuum cleaner with a cleaning head that, in normal use, forms an integral part of, or is permanently connected to, the vacuum cleaner housing. This configuration can often be

³⁰³ The Unique Acceptance Procedure (UAP) is a procedure which may be applied to an EN standard, in order to achieve rapid approval. The UAP combines the 2 voting stages (Enquiry and Formal) and does not allow technical comments. The duration of a UAP is approximately 1 year. ³⁰⁴ OJ publication C 267/4, 11-08-2017

³⁰⁵ <u>http://ia-vc-art7.eu/</u>

³⁰⁶ Commission Regulation (EU) No 666/2013 of 8 July 2013 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to Ecodesign requirements for vacuum cleaners, OJ L 192, 13.7.2013, p. 24–34

found on upright vacuum cleaners. (see Figure Z.2)³⁰⁷. Such hoses may be released at one end to allow other cleaning tasks to be carried out (see Figure Z.3)³⁰⁸.

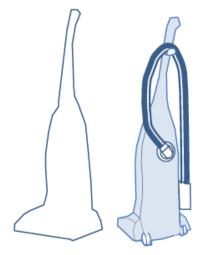


Figure Z.1 – Typical cylinder vacuum cleaner with primary hose

Figure Z.2 – Typical upright vacuum cleaner with secondary hose (contour front and back)

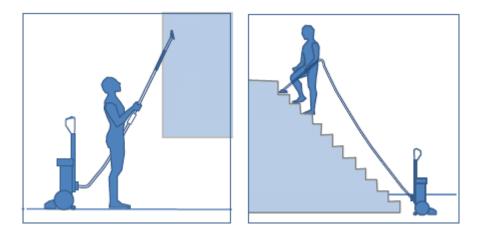


Figure Z.3 – Typical upright vacuum cleaner with secondary hose used for cleaning curtains (left) and stairs (right).

The test is not applicable for:

• Hoses that are permanently housed within other components of a vacuum cleaner, or that cannot be removed from a vacuum cleaner without the use of tools;

³⁰⁷ A test regarding durability of such hoses is under development. <u>https://www.techstreet.com/standards/bs-en-60312-1-</u> 2017?product_id=1950146

³⁰⁸ Section 6.9.1 of the harmonised standard EN 60312-1:2017

- Hoses that join two or more components, where, in all usage modes, the structural link between those components is provided by features other than the hose itself (an example is shown in Figure Z4);
- Hoses that are provided as additional accessories or where another primary hose is provided for general use.

Figure Z4 – Example of a hose joining two or more components

Durability of the motor

Clause 5.9, Performance with loaded dust receptacle, is excluded³⁰⁹ from the harmonised standard EN 60312-1:2017. This part of the standard explains how to load the receptacle which is needed for the operational motor-life test:

6.Z3.1 Purpose

The purpose of this test is to determine the stationary operational life-time of a dry vacuum cleaner suction and agitation device motor.

6.Z3.2 Test method

The dry vacuum cleaner, equipped as in its normal operation with hose and tube (if applicable) and nozzle, shall be operated as stated in 4.6. It is allowed to run intermittently with periods of 14 min 30s on and 30 s off in maximum power setting.

This test is operated with a half loaded receptacle; hence the dust receptacle shall be loaded with 50 % of the amount of test dust required according to 5.9. Alternatively, an empty dust receptacle can be used during the test. In this case the recommended testing time shall be increased by 10 % of the stated motor life value for testing with a half loaded dust receptacle.

³⁰⁹ Clauses 5.9, 6.15, 6.Z1.2.3, 6.Z1.2.4, 6.Z1.2.5, 6.Z2.3 and 6.Z3 are not part of the present citation. In clause 7.2.2.5 read 'A2 fine test dust' instead of 'test dust'.

The tube grip of dry vacuum cleaners with suction hose or the handle of other dry vacuum cleaners shall be held as for normal operation at a height of 800 mm \pm 50 mm above the test floor. The nozzle shall not be in contact with the floor, but lifted 1 cm off the floor.

If the dry vacuum cleaner is provided with an agitation device, it shall be running. If manufacturer's instructions require different settings of the agitation device for use on carpets and use on hard floor, the agitation device shall be operated with the respective settings for 50% each of the total testing time.

Test with half loaded dust receptacle: After 50 h \pm 5h of operation, the vacuum cleaner shall be equipped with a clean dust receptacle and new filters (see 4.5). This procedure, with the receptacle loaded with the same amount of test dust as for the first cycle, shall be repeated in steps of 50 h \pm 5h.

Test with empty dust receptacle: After 100 h \pm 5 h of operation, the vacuum cleaner shall be equipped with a clean dust receptacle and new filters (see 4.5).

Changing or maintenance of dust receptacles and filters shall be carried out in accordance to the manufacturer's instructions and this shall be recorded, see 4.5. End of life is reached when the suction motor and, if applicable, the agitation device stops operating or the recommended testing time has elapsed.

NOTE The 30 second off period is not included in the calculation of overall motor life."

X. Water filter vacuum cleaners

As water filter vacuum cleaners were not addressed in existing standards, this aspect has been added to the harmonised standard EN 60312-1:2017. All tests were checked and amended where necessary in order to make them applicable for water filter vacuum cleaners. The following definitions have been added to the 2017 version:

Water filter vacuum cleaner: Dry vacuum cleaner that uses water as the main filter medium, whereby the suction air is forced through the water entrapping the removed dry material as it passes through.

Water filter system: removable water filter components which are in contact with the water"

XI. Full size battery operated vacuum cleaners

Work on this part of the mandate is mostly done by IEC SC 59F WG 7. The new draft standard "IEC 62885-4 Surface cleaning appliances – Part 4: Cordless dry vacuum cleaners for household or similar use – Methods for measuring the performance" focusses on battery operated vacuum cleaners to be used on the floor by the user from an erect standing

position and is based on the EN 60312-1 for dry vacuum cleaners. The new draft standard IEC 62885-4 is currently at CD stage. It is subject to parallel voting on CENELEC level.

All tests were checked and amended where necessary for battery operated vacuum cleaners. This includes specific measurement methods for the energy consumption of the batteries. Another parameter which is considered to be highly relevant for battery operated vacuum cleaners is "run time". This is the duration such an appliance can be used by customers while a reasonable suction power is provided. A new test was elaborated which is included in the draft standard.

Handheld battery operated vacuum cleaners for above-the-floor cleaning are left for a future edition.

XII. Robot vacuum cleaners

Robot vacuum cleaner standards are developed on a worldwide level by IEC SC 59F WG 5 and in cooperation with CENELEC TC 59X WG 6 the potential Energy labelling and Ecodesign requirements will be addressed in a new standard "IEC 62885-7 Surface cleaning appliance – Part 7: Dry-cleaning cleaning robots for household use – Methods of measuring performance". The new standard amends the existing test standard IEC (EN) 62929:2014 - Cleaning robots for household use. Dry cleaning: Methods of measuring performance.

IEC 62929:2014 is applicable to dry cleaning robots for household use in or under conditions similar to those in households. The purpose of this standard is to specify the essential performance characteristics of dry cleaning robots and to describe methods for measuring these characteristics. This standard is neither concerned with safety nor with performance requirements.

IEC 62929 contains measurement of:

- Dust removal from hard flat floors and from carpets box test
- Dust removal from hard flat floors and from carpets straight line test
- Autonomous navigation/coverage test
- Average robot speed

The following additional tests are planned for the next voting stage³¹⁰ of the new draft standard IEC 62885-7:

• Obstacle overcome capability

³¹⁰ CDV is Committee Draft for Vote, similar to the Enquiry vote within CENELEC and is estimated to take place June 2018 <u>http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP_ORG_ID:1395</u>

- Energy consumption
- Debris pick-up box and or straight line
- Fibre pick-up box

The overall conclusion by the Standardisation work group (TC 59X WG 6) is that the standards are not mature enough to be used for Energy Labelling / Ecodesign purposes. The main reasons are:

- There is limited experience with tests because standard is new (published in 2014) or under development
- There is no data for repeatability available; RRT has yet to be concluded
- Still considerable change on the market

The forecasted publication date is September 2018³¹¹.

XIII. Measurement with a partly loaded instead of an empty receptacle

The difficulty within this part of the Mandate lays in the difficulty to define the half- or part load. It is already difficult to define when a receptacle is "full". Besides the difficulty with the definitions described above, the main concern with the partly loaded testing is the increased uncertainty and the increased cost and complexity. The benefit is that it will mimic real life better.

A Round Robin Test (RRT)³¹² is being carried out (started November 2017) in order to establish the measurement uncertainty, repeatability and reproducibility of testing with a "partly loaded receptacle". The focus of the RRT is on volume, namely maximum usable volume313 (1a) and conditions for a loaded receptacle 314(1b). Next to that its purpose is to determine the uncertainty of air data315 (2) for empty receptacle, partly loaded receptacle and with a 200 g loaded dust receptacle. The plan is to finalize the testing part of this RRT around March 2018.

The Vacuum cleaners tested are:

- full size, mains-operated, bagless, upright with dust receptacle 1-2 L
- full size, mains-operated, bagged, cylinder with dust bag approx. 5 L

³¹¹ <u>http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP_ORG_ID:1395</u>
³¹² Seven test labs are involved

³¹³ According to EN 60312-1:2017, section 5.7

³¹⁴ Amount of DMT 8 dust to reach each of the 3 conditions for a partly loaded receptacle (EN 60312-1:2017, section 5.9)

³¹⁵ According to EN 60312-1:2017, section 5.8

• Small size, mains-operated, bagged, cylinder with dust bag approx. 2 L

There are consumer test organisations like ICRT, Siftung Warentest and others who already conduct their tests with a partly loaded dust receptacle. But they use a fixed amount of test dust for loading rather than an individual amount for each vacuum cleaner under test. Stiftung Warentest, for instance, feeds 200g test dust prior to most of the tests.

Using a fixed amount of test dust reduces complexity and time/cost considerably. But there is still discussion about whether it is fair to feed 200g for all vacuum cleaners regardless of their size. Consumer test organisations conduct tests usually as "comparative tests", i.e. 20 vacuum cleaners once a year in one certain laboratory. So, only repeatability matters for such tests. The situation is different when it comes to market surveillance. In principle, hundreds of vacuum cleaners must be able to be checked in all laboratories in the 28 Member States over a period of more than 10 years. In this case reproducibility matters.

The RRT mentioned above aims to determine reproducibility and expanded uncertainty for tests with a partly loaded receptacle. The result has to be taken into account when defining intervals for label classes and tolerances for market surveillance. Ultimately, a careful balance must be found between the simulation of real life conditions on the one hand and cost/complexity and uncertainty on the other.

In order to have reproducible, reliable and accurate data the testing of vacuum cleaners is not done by hand, but by machines that are specially built to test vacuum cleaners as the one seen in Figure 73.

Figure 73: test rig for vacuum cleaner testing³¹⁶

³¹⁶ APPLIA workshop on consumer relevant testing methods for vacuum cleaners July 2016 VDE test lab in Offenbach

XIV. Measurement with market-representative carpet(s) and hard floor(s)

This part of the mandate is executed in close collaboration with CEN TC 134, Resilient, textile and laminate floor coverings. TC 134 presented figures of EU market shares for floor coverings. As can be seen in Figure 74, carpets cover about 24% of the total floor area, hard floors about 30% (laminate and parquet), resilient floors about 17%, and ceramics about 29%.

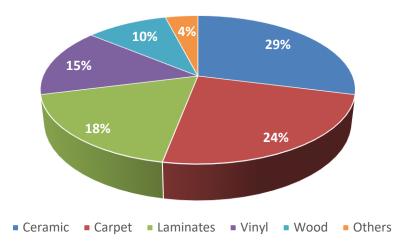


Figure 74: Total EU market for floor coverings in 2015, equalling 1900 million m2 and 15% of global market³¹⁷

Carpets

The analysis also showed that domestic cut pile and domestic loop pile, shown in Figure 75, will cover around 90% of the domestic carpet share in the EU. Therefore, two cut pile and two loop pile carpets are chosen and will be distributed to the test labs³¹⁸.

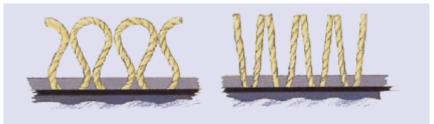


Figure 75: left: domestic loop pole, right: domestic cut pile³¹⁹

Resilient floors

For resilient floors also two samples are proposed; the Cushion Vinyl (embossed) and Luxury Vinyl Tiles (LVT) planks. The pictures shown in Figure 76 are examples of Cushion

³¹⁷ EU market share floor coverings (Source: presentation CEN TC 134 at the February 2017 meeting in Hartmannsdorf)

³¹⁸ Status as of November 2017

³¹⁹ Picture source: presentation CEN TC 134 at the February 2017 meeting in Hartmannsdorf

Vinyl and Luxury Vinyl Tiles planks and might differ from the samples distributed to the test labs and are merely shown as illustration.

Figure 76: left: Allura Vinyl Tile³²⁰, right: Viva Cushion vinyl³²¹

Laminate

For laminate floors also two kinds are proposed the Quick Step Impressive³²² and Colours Gawler³²³.

Parquet

One kind of parquet is proposed the Maxistab³²⁴.

Testing

The WG proposed to test at least 3 differently performing appliances (high, medium, low performing products) and check the influence in ranking to the current test floors. It is estimated that delivery of floors (distribution and shipment) will be around January/February 2018, with first test results from labs possibly in March 2018.

XV. Consumer organization tests

Which?

Which? is an independent consumer organization based in the UK. Every year they test over 3600 products and cover the essential features of a product. Tests performed on cylindrical and upright vacuum cleaners are³²⁵:

 Cleaning of fine dust and dirt: For the carpet test a machine spreads super-fine dust over a carpet and grinds it in. The vacuum cleaner is then placed onto a test rig, which pulls and pushes it back and forth five times as it sucks up the dust. This test is repeated for smooth and creviced wood floors.

³²⁰ https://www.forbo.com/flooring/nl-nl/producten/luxe-vinyltegels-en-stroken/allura/ba9wax

³²¹ https://www.forbo.com/flooring/en-uk/products/for-your-home/novilon-cushion-vinyl/novilon-viva/bqsjty#7400

³²² https://www.quick-step.be/nl-be/campagnes/impressive-laminaatvloeren

³²³ http://www.classen.de/en/laminate-flooring

³²⁴ https://www.meisterwerke.com/de/declaration-of-performance/markenauswahl/schulte-raeume/

³²⁵ http://www.which.co.uk/reviews/vacuum-cleaners/article/how-we-test-vacuum-cleaners

- Cleaning of large debris: Vacuum cleaners are also challenged to pick up larger debris. For this Which? uses a large amount of dry rice.
- Dust re-emission: To test if vacuum cleaners keep fine dust safely locked away inside, specialist machinery is used to test how much dust and fine particles the vacuum cleaners retain.
- Suction power while the bag or canister fills up: The vacuum cleaner is put on the test rig again, and measuring takes place on the suction power when bags or canisters are empty, and again when they are filled with dust and debris.
- The time it takes to pick up pet hair and longer hair: Real cat and dog fur are combed into an area of carpet and the time is measured how long it takes to pick all of the hair up. This test is repeated for longer hair of real human and it is tested how long it takes to remove the fluff from a cushion with the provided upholstery tool.
- Manoeuvrability: A panel of experts was asked to assess the manoeuvrability of the vacuum cleaner in common scenarios, from vacuuming up and down stairs to moving it across different and uneven surfaces. They also check how easy it is to change and use the attachments and to empty the bag or canister.
- Noise: The sound of each vacuum cleaner is tested in a lab

Certain assessments are more important than others and so Which? carries out different weights to categories the vacuum cleaners: 75% cleaning and filtration 20% ease of use 5% noise and energy use.

Which? tested also robot vacuum cleaners³²⁶ and the focus was on:

 Dust and dirt removal: Super fine Arizona sand is spread over thick Wilton carpet, and chunky lentils are spread over a hard floor to test how effectively each robot can pick up mess from different surfaces. After the robot vacuum cleaner returned to its charging station the amount of dust/dirt pick up is measured.

Similar to the cord vacuum cleaners test above real cat and dog fur are combed into an area of carpet and the amount of hair picked up is measured (not the time).

• Floor coverage: A specially designed room complete with tables, chairs, lamps, rugs and low hanging curtains is built to see how well each robot gets on navigating around a typical room. Cameras have been installed in the room and

³²⁶ http://www.which.co.uk/reviews/robot-vacuum-cleaners/article/how-we-test-robot-vacuum-cleaners

sensors have been attached (in three places) on each robot so that can be monitored what spots the robot covers and which areas it fails to reach.

- Navigation round obstacles: The maximum height of a ridge is tested so that each robot vacuum cleaner can climb over. Furthermore, a wide array of everyday obstacles is put in the path of each robot to see how they handle this. The test room has a tangle of wires, tables and chairs, a domed floor lamp and fold out chairs in it to try and trip up each robot cleaner.
- User friendliness: The out of the box setting is tested furthermore, it is tested how easy it is to programme and schedule a cleaning cycle and also how easy or difficult it is to do regular maintenance on your robot, such as emptying the dust container and cleaning any filters.

Which?'s overall ratings for robot vacuums ignore price and are based on: Cleaning - 52% Navigation and obstacle avoidance - 28% Ease of use - 18% Noise - 2%

Cordless vacuum cleaners³²⁷ are tested focusing on:

• Dust removal and re-emission: Fine Arizona sand is used to see how much dust each vacuum cleaner picks up, as well as how much is re-emitted. The test continues till the vacuum cleaners' battery is only 20% charged. Also here, the ability to pick up pet fur is tested, both the amount as the time it takes to pick it up is measured.

The suction of each cordless model is tested on three different surfaces laminate, floorboards and carpet. 25g of dust is used and a test comprises of two runs on each surface type, the amount dust in the canister is measured at the end.

- Battery lifetime: The time is measured how long it takes to fully charge and run completely empty. This test is performed on the most powerful setting (not standard as most manufacturers use). To further test the battery also the pick-up capabilities is tested when only 20% of its charge remains.
- Noise: The sound of each vacuum cleaner is tested

Overall ratings are based for 75% on suction, filtration and battery for 20% on ease of use and 5% noise.

Stiftung Warentest

Stiftung Warentest is an independent German consumer organization who tests products and services according to scientific methods in independent institutes and publishes the

³²⁷ http://www.which.co.uk/reviews/cordless-vacuum-cleaners/article/how-we-test-cordless-vacuums

results in their publications. The Stiftung Warentest tested corded vacuum cleaners, battery and robot vacuum cleaners.

Corded vacuum cleaners are tested according to the following features:

- Dust absorption test: The standardized dust intake is measured in accordance with the EN 60312-1. For the test of Duracord carpet, smooth hard floors and crevices the receptacles are filled with 200 grams of test dust or when this is not possible the vacuum cleaners are tested with a negative pressure of 40 percent of the initial value. Also the fibre uptake is measured.
- Handling: Five persons (testers) make an everyday test and they assess the operating instructions, set up and dismantling of the devices, as well as handles, switches, displays and storage - additionally and the carrying of the devices. Further test points: How well can carpet and hard floors, stairs and upholstery be cleaned, cleaning of the nozzles, changing of the dust bag and filter or empty the receptacle.
- Dust retention capacity: the fine dust content in the inlet and exhaust air is compared as the degree of separation. The more dust remains in the filter, the higher the separation efficiency, the better.
- Noise: sound power level is tested according EN 60704-2-1.
- Power Consumption: during the dust absorption test described above the electricity consumption of the vacuum cleaner is measured. (the result refers to 10m²).
- Durability test: The life time of the motor is tested by letting the vacuum cleaner run up to 600 hours; and up to 95 hours for cordless hand-held vacuum cleaners with assessment of the battery time reduction.

Impact test are performed so will a vacuum cleaner hit 1.000 times a post and go 10.000 over sleepers. The nozzle must exceed 1.200 falls from a height of 80cm and the cable extraction must succeed 6.000 pulls. Furthermore the hose fittings are pivoted for 40000 and the pipes and hoses are squeezed with a load of 70 kg for 10 seconds.

• Safety: In accordance with EN 60335-1 and -2-2, the electrical safety of the vacuum cleaners is checked.

Battery operated vacuum cleaners are tested the same way as the corded vacuum cleaners the only differences are that with the dust absorption test 25 grams and 50 grams are fed to the vacuum cleaner. The Battery recharge times are evaluated, and the vacuum cleaners will undergo 67.500 cycles on the crank test instead of the threshold test. The following features have been tested for robot vacuum cleaners:

- Dust absorption test: The tests were conducted in accordance with EN 62929 on carpet and hard floors.
- Navigation: The navigation test is carried out in a test room in accordance with EN 62929, the inventory was slightly modified (compared to the dust absorption test room) and an additional outdoor area of approx. 2 m² was created before the entrance door.
- Handling: Five experts evaluated the instruction manual and tested benefits of the cleaner controls/displays, the ease of emptying the dust box, cleaning of filters and unit and remote-control capability, defined space and carrying the device.
- Environmental characteristics: Sound power was tested according to EN 60704-2-1 on carpet and hard floors

Dust re-emission was tested according to EN 60312-1 and the annual power consumption for daily cleaning of the test room (about 20 square meters) was calculated, including running and charging times, maintenance charging of the battery and maintenance mode power consumption of the charger.

• Durability: The vacuum cleaners ran non-stop in a test room with short pile carpet for 16 weeks. They ran until the battery had to be charged. After recharging, they continued cleaning again.

Consumentenbond

The Dutch independent consumer organization tested cylinder vacuum cleaners³²⁸. The features that were tested are:

- Cleaning performance: Tests are performed on carpets and hard floors including crevices. To test the cleaning of pet fur/hair synthetic fibers are used to mimic real pet hair. Furthermore, the suction power is measured when the receptacle fills up.
- Durability test: Motor lifetime is tested according to EN 60312-1 chapter 6.10.
 The mechanism to roll up the cable is tested by unwinding it 1.000 times and let it roll up again.
- Dust re-emission
- Energy consumption: The energy consumption is measured while vacuuming 10m² of carpet and hard floors.
- Noise

³²⁸ https://www.consumentenbond.nl/stofzuiger/hoe-wij-testen

II. Annex B – GfK data coverage

Data coverage of the data purchased from GfK.

Country	Coverage	Population	BNP (bill. EUR)
Austria	90%	8 690 076	349.5
Belgium	88%	11 311 117	421.6
Czech Republic	89%	10 538 275	163.9
Germany	74%	82 175 684	3 134.0
Denmark	83%	5 659 715	266.2
Spain	83%	46 445 828	1 114.0
Finland	82%	5 487 308	214.1
France	90%	66 759 950	2 225.0
Great Britain	95%	65 382 556	2 367.0
Greece	95%	10 783 748	175.9
Croatia	75%	4 190 669	45.8
Hungary	94%	9 830 485	112.4
Ireland	90%	4 724 720	265.8
Italy	89%	60 665 551	1 672.0
Luxembourg	70%	576 249	54.2
Netherland	81%	16 979 120	697.2
Poland	93%	37 967 209	424.3
Portugal	94%	10 341 330	184.9
Romania	90%	19 760 314	169.6
Sweden	85%	9 851 017	462.4
Slovenia	85%	2 064 188	39.8
Slovakia	89%	5 426 252	81.0
Bulgaria	0%	7 153 784	47.4
Cyprus	0%	848 319	17.9
Latvia	0%	1 968 957	25.0
Lithuania	0%	2 888 558	38.6
Estonia	0%	1 315 944	20.9
Malta	0%	434 403	9.9
Total		510 221 326	14 800
Total coverage		430 709 693	12 580
		84%	85%

III. Annex C - Sales and stock data

Vacuum cleaner sales in each category, 1995 to 2030, million units.

Year	Cylinder domestic	Cylinder commercial	Upright Domestic	Upright Commercial	Handstick Mains	Handstick cordless	Robot	Total
1995	14,81	1,78	2,61	0,31	0,30	0,51	-	20,32
1996	14,81	1,78	2,61	0,31	0,30	0,51		20,32
1997	14,81	1,78	2,61	0,31	0,30	0,51	_	20,32
1998	14,81	1,78	2,61	0,31	0,30	0,51	_	20,32
1999	14,81	1,78	2,61	0,31	0,30	0,51	_	20,32
2000	14,81	1,78	2,61	0,31	0,30	0,51	_	20,32
2001	15,82	1,90	2,79	0,34	0,32	0,55	_	21,71
2002	13,71	1,64	2,42	0,29	0,28	0,48	-	18,81
2003	15,88	1,91	2,80	0,34	0,32	0,55	-	21,80
2004	15,95	1,91	2,82	0,34	0,32	0,55	-	21,89
2005	16,92	2,03	2,99	0,36	0,34	0,59	-	23,22
2006	19,02	2,28	3,36	0,40	0,38	0,66	-	26,10
2007	23,52	2,82	4,15	0,50	0,47	0,82	-	32,28
2008	25,16	3,02	4,44	0,53	0,51	0,87	-	34,53
2009	25,09	3,01	4,43	0,53	0,50	0,87	-	34,43
2010	25,01	3,00	4,41	0,53	0,50	0,87	-	34,33
2011	24,80	2,98	4,18	0,50	0,57	0,99	0,15	34,18
2012	25,96	3,12	4,17	0,50	0,68	1,18	0,32	35,92
2013	25,82	3,10	3,94	0,47	0,76	1,31	0,48	35,88
2014	25,17	3,02	3,64	0,44	0,82	1,42	0,63	35,13
2015	25,28	3,03	3,44	0,41	0,91	1,56	0,79	35,43
2016	25,73	3,09	3,29	0,39	1,00	1,74	0,97	36,22
2017	25,47	3,06	3,04	0,37	1,08	1,86	1,13	36,01
2018	25,90	3,11	2,87	0,34	1,18	2,04	1,32	36,78
2019	26,30	3,16	3,02	0,36	1,17	2,57	1,34	37,92
2020	25,07	3,01	2,91	0,35	1,25	4,24	1,45	38,28
2021	24,58	2,95	2,62	0,31	1,46	5,72	1,57	39,22
2022	24,03	2,95	2,61	0,31	1,56	6,55	1,78	39,80
2023	23,43	2,95	2,60	0,31	1,66	7,39	2,00	40,35
2024	22,77	2,95	2,58	0,31	1,77	8,25	2,22	40,85
2025	22,06	2,95	2,56	0,31	1,87	9,11	2,45	41,32
2026	21,31	2,95	2,53	0,31	1,98	9,99	2,67	41,74
2027	20,51	2,95	2,50	0,31	2,08	10,87	2,90	42,12
2028	19,67	2,95	2,46	0,31	2,18	11,75	3,12	42,46
2029	18,79	2,95	2,43	0,31	2,28	12,63	3,35	42,75
2030	17,88	2,95	2,38	0,31	2,38	13,51	3,58	43,00

Year	Cylinder	Cylinder	Upright	Upright	Handstick			
	domestic	commercial	Domestic	Commercial	Mains	cordless	Robot	Total
1995	14,8	1,8	2,6	0,3	0,3	0,5	-	20,3
1996	29,6	3,5	5,2	0,6	0,6	1,0	-	40,6
1997	44,4	5,2	7,8	0,9	0,9	1,5	-	60,7
1998	59,1	6,7	10,4	1,2	1,2	1,9	-	80,5
1999	73,6	7,9	13,0	1,4	1,5	2,3	-	99,6
2000	87,4	8,8	15,4	1,6	1,8	2,6	-	117,5
2001	100,9	9,5	17,8	1,7	2,0	2,9	-	134,7
2002	110,0	9,6	19,4	1,7	2,2	3,0	-	146,0
2003	118,5	9,8	20,9	1,7	2,4	3,2	-	156,6
2004	124,2	10,0	21,9	1,8	2,5	3,3	-	163,7
2005	128,7	10,3	22,7	1,8	2,6	3,5	-	169,5
2006	133,8	10,7	23,6	1,9	2,7	3,6	-	176,4
2007	142,8	11,7	25,2	2,1	2,9	3,9	-	188,6
2008	153,1	12,9	27,0	2,3	3,1	4,2	-	202,6
2009	163,2	13,9	28,8	2,5	3,3	4,5	-	216,1
2010	172,9	14,8	30,5	2,6	3,5	4,8	-	229,1
2011	182,0	15,5	31,9	2,7	3,7	5,2	0,2	241,1
2012	191,5	16,1	33,2	2,8	4,1	5,7	0,5	253,7
2013	199,6	16,5	34,0	2,8	4,5	6,2	0,9	264,5
2014	205,6	16,6	34,3	2,7	4,9	6,9	1,5	272,5
2015	210,0	16,7	34,0	2,6	5,4	7,5	2,2	278,5
2016	213,2	16,8	33,4	2,5	5,9	8,3	3,0	283,2
2017	214,9	16,8	32,3	2,4	6,5	9,2	3,9	286,0
2018	216,2	16,9	30,9	2,2	7,2	10,0	4,9	288,5
2019	217,5	17,0	29,7	2,2	7,8	11,4	5,8	291,4
2020	217,3	16,9	28,5	2,1	8,4	14,2	6,7	294,2
2021	216,5	16,8	27,2	2,0	9,1	18,3	7,6	297,5
2022	215,1	16,7	26,1	1,9	9,9	22,9	8,5	301,0
2023	213,0	16,6	25,1	1,9	10,7	28,0	9,5	304,7
2024	210,2	16,5	24,3	1,8	11,5	33,5	10,5	308,3
2025	206,7	16,4	23,6	1,8	12,3	39,2	11,7	311,7
2026	202,4	16,3	23,0	1,8	13,2	45,0	12,9	314,7
2027	197,5	16,3	22,6	1,7	14,1	51,0	14,2	317,3
2028	192,0	16,3	22,1	1,7	15,0	56,9	15,6	319,5
2029	186,0	16,3	21,8	1,7	15,9	62,8	16,9	321,3
2030	179,6	16,2	21,5	1,7	16,8	68,6	18,4	322,8

Calculated stock of each vacuum cleaner category, 1995 to 2030, million units.

IV. Annex D - Calculated collection rate

Based on data collected from Eurostat the collection rate is calculated in Table 79.

	Average EEE placed on the market 2011-2013	Weee collected 2014	Collection rate ³³⁰
Austria	17,270	8,415	49%
Belgium	40,998	13,028	32%
Bulgaria	2,986	3,790	127%
Cyprus	1,095	124	11%
Czech Republic	15,448	6,235	40%
Germany	172,507	126,943	74%
Denmark	13,955	5,405	39%
Estonia	1,281	331	26%
Greece	12,510	3,246	26%
Spain	48,850	14,263	29%
Finland	8,926	2,680	30%
France	158,873	34,478	22%
Croatia	3,699	317	9%
Hungary	10,853	5,633	52%
Ireland	10,403	1,920	18%
Iceland	504	354	70%
Italy	68,298	20,983	31%
Liechtenstein	53	117	219%
Lithuania	2,250	1,422	63%
Luxembourg	1,604	412	26%
Latvia	1,256	400	32%
Malta	752	8	1%
Netherlands	20,233	10,219	51%
Norway	16,831	5,570	33%
Poland	45,977	19,495	42%
Portugal	10,653	8,594	81%
Romania	14,240	1,021	7%
Sweden	24,301	5,790	24%
Slovenia	2,458	940	38%
Slovakia	5,259	1,969	37%
United Kingdom	149,963	34,770	23%
Total	884,286	338,872	38%

Table 79: Calculated collection rate in EU 2014³²⁹

 $^{^{329}}$ Due to how the numbers are calculated it is possible to collect more than 100 % (This is also related to how the values are compiled in each country)

V. Annex E- Test results

NETHERLANDS Consumentengids June 2017, Steeds wisselen van mondstuk?. p/52-56													
Consumentengia	s June 20)17, St	eeds wis		/an moi 55%	nastuk	?. p/52		20% 10%	9%	6%		
Model & Brand	Fri ce	Test score	hardfloor	crevices	carpet dust	carpet fibres	full bag	ergonomics	dust re-emiss noise	dust	~	bag (zak)or nobag (bak)	€ power
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	180 180 180 160 170 180 170 105 240 195 230 140 160 160 170 80 80 330 100 330 155 175 290 330 205 170 250 350	7.5 7.4 7.4 7.4 7.3 7.1 7.0 7.0 7.0 7.0 7.0 6.8 6.7 6.6 6.6 6.6 6.4 6.2 2.2 6.2 6.2 6.2 2.2 6.2 5.8 5.4	7.7 7.9 7.8 7.9 7.5 7.2 7.1 7.2 7.1 7.2 6.4 7.4 7.0 5.8 6.9 7.6 6.7 5.6 6.3 5.8 5.6 5.6 5.8 5.1 5.5 5.6 5.8 5.1 5.5 5.6 5.8 5.1 5.5 7.5	$\begin{array}{c} 7.8 \\ 7.9 \\ 7.8 \\ 7.9 \\ 6.6 \\ 8.7 \\ 6.9 \\ 8.3 \\ 7.1 \\ 7.0 \\ 6.7 \\ 6.7 \\ 6.8 \\ 7.1 \\ 7.0 \\ 4.9 \\ 7.5 \\ 6.9 \\ 4.4 \\ 6.6 \\ 6.1 \\ 6.8 \\ 7.9 \\ 4.6 \\ 8.9 \\ 5.4 \\ 2.7 \\ 5.2 \end{array}$	7.1 7.7 7.5 7.6 8.7 6.4 6.3 8.8 5.5 5.1 7.5 8.8 2.2 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.3 2.2 8.4 8.5 7.6 8.5 3.2 8.5 3.2 4.5 7.6 3.6 4.7 4.8 6.5 3.0 4.6 8.6 3.0 4.6 8.6	7.6 8.2 8.0 8.3 7.0 8.2 6.5 7.7 6.2 8.0 7.7 6.2 8.0 7.7 7.2 8.0 7.7 7.2 8.1 8.0 7.7 7.2 8.1 7.5 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 7.7 7.2 8.1 8.0 7.7 7.2 8.1 8.0 7.7 7.2 8.1 8.0 7.7 7.2 8.1 8.0 7.7 7.2 8.1 8.0 7.7 7.6 7.7 7.2 8.0 7.7 7.2 8.1 8.0 7.7 7.6 7.7 7.6 7.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.7 7.6 7.7 7.6 7.7 8.0	$\begin{array}{c} 10.0\\ 9.1\\ 8.9\\ 9.1\\ 10.0\\ 7.5\\ 10.0\\ 7.5\\ 9.5\\ 9.1\\ 10.0\\ 5.3\\ 6.4\\ 5.2\\ 3.7\\ 6.2\\ 7.5\\ 7.1\\ 6.4\\ 1.3\\ 3.4\\ 7.7\\ 2.0\\ 5.9\\ 1.3\\ 4.6\\ 1.3\\ 1.8\end{array}$	8.0 7.8 7.9 7.7 8.1 7.5 7.9 8.0 7.8 7.2 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.9 7.7 8.1 7.9 8.0 7.2 7.8 7.8 7.8 7.9 7.1 7.7 8.1 7.9 7.8 7.9 7.1 7.7 8.1 7.9 7.1 7.7 8.1 7.9 7.8 7.8 7.9 7.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.7 8.1 7.8 5.6 7.3 8.1 1.0	7.5 8.3 7.0 8.4 6.7 8.3 6.9 8.3 5.0 9.9 5.8 9.9 6.2 9.8 4.6 9.7 5.6 9.9 5.7 8.4 6.8 9.5 4.8 9.9 5.7 8.5 6.1 9.9 5.5 9.1 4.7 7.7 4.3 9.0 5.9 8.7 5.0 9.9 6.4 8.3 3.9 7.1 6.7 9.6 5.0 9.9 4.7 9.7 5.5 8.2 6.1 9.8 3.5 9.2	5.9 5.0 5.7 5.2 8.0 7.5 8.2 4.3 7.6 6.8 5.8 5.2 4.3 7.6 6.8 5.2 4.3 7.6 5.8 5.2 4.3 7.6 5.8 5.2 4.3 7.6 5.8 5.2 4.3 7.6 5.8 5.2 4.3 7.6 5.8 5.2 4.3 7.2 2.8 3.0 9.7 4.0 6.8 4.0 6.8 4.0 4.0 6.8 4.0 4.0 6.1 4.8 7.7 4.0	$\begin{array}{c} 6.7\\ 6.5\\ 7.4\\ 6.0\\ 6.3\\ 6.5\\ 7.2\\ 6.3\\ 6.5\\ 7.2\\ 6.3\\ 6.6\\ 7.2\\ 6.5\\ 7.4\\ 7.7\\ 6.5\\ 7.4\\ 7.5\\ 7.6\\ 5.5\\ 7.4\\ 5.8\\ 8.8\\ 1.5\\ \end{array}$	zak zak zak zak zak zak zak zak zak zak	800 800 700 650 700 650 750 800 650 750 600 750 700 750 700 700 650 620 650 900 750 750 800
29 30 average	70 100 187.8	5.4 5.3 4.6 6.6	6.4 4.3 6.7	5.2 7.1 3.4 6.6	4.7 2.6 6.2	6.1 5.8 7.4	7.9 2.1 6.3	7.8 7.9 7.4	5.5 9.2 6.0 4.3 5.5 6.5 5.7 8.9	4.0 3.8 1.7 5.6	8.0	zak bak	800 800 750 714.0

NETHERLANDS

Consumentengids July/August 20	018, Strenaere reaels	voor stofzujaers, p/26-29

Consume	interigiu	s Jury,	_		0, Su	engei	_			zuige	13. p/				1		
Model & Brand	Price	Test score	Cleaning total	hardfloor	crevices	carpet dust	carpet fibres	full bag	ergonomics	Hardfloor	Carpets	dust re-emiss	noise	Energy	Bag	power	Energy efficiency
	Eur		55%						20 %			10%	9%	6%		w	
1	180	7.5	7.8	6.9	8.6	8.4	10	7.0	5.4	4.7	4.0	9.4	8.5	7.8	Yes	550	A+
2	190	7.5	7.5	6.9	6.9	8.4	9.4	7.8	6.9	6.9	6.2	9.4	5.8	8.2	Yes	550	A+
3	140	7.3	7.9	7.3	8.5	8.3	10	7.3	5.4	6.2	3.2	9.3	6.5	6.3	Yes	700	А
4	150	7.3	7.2	6.9	6.3	7.0	10	7.5	6.2	8.5	4.7	9.8	8.2	6.5	Yes	700	А
5	155	7.3	7.5	8.7	6.4	7.0	7.5	8.1	5.8	7.7	4.7	9.9	7.5	6.3	Yes	650	А
6	240	7.2	6.7	7.4	8.3	8.4	1.1	8.0	5.9	6.9	5.5	9.9	10	6.7	Yes	650	Α
7	300	7.2	6.8	6.5	8.2	8.2	2.1	7.7	6.1	6.2	3.2	10	8.3	8.5	Yes	650	A+
8	220	7.1	7.1	7.1	5.5	6.5	9.5	8.0	5.6	8.5	5.5	9.9	7.6	6.8	No	650	А
9	120	6.9	6.7	6.6	8.6	8.3	2.5	7.9	5.4	3.2	1.7	9.7	7.8	7.5	Yes	750	А
10	275	6.9	6.8	6.2	5.9	8.6	6.4	7.6	5.7	7.7	2.4	9.9	7.4	5.4	Yes	650	А
11	495	6.8	7.7	5.6	8.5	8.3	10	7.9	4.2	6.9	4.7	9.1	4.9	6.3	No	700	А
12	70	6.6	6.9	4.9	8.1	7.7	6.2	7.9	5.5	6.2	4.7	9.1	3.9	7.4	No	700	Α
13	80	6.6	6.9	7.5	8.4	5.7	7.5	6.9	4.7	5.5	4.0	7.7	7.2	7.7	Yes	700	Α
14	120	6.6	6.6	6.5	8.5	8.2	2.4	7.9	5.2	4.7	4.0	8.6	7.7	6.9	Yes	750	A
15	65	6.5	6.4	5.6	6.2	7.5	5.1	7.5	5.8	7.7	4.7	9.8	5.1	6.7	Yes	750	A
16	260	6.5	5.6	4.6	4.7	7.2	3.2	8.0	6.0	8.5	4.7	9.9	9.8	6.4	Yes	650	A
17	80	6.4	6.3	7.0	6.5	7.4	3.7	7.4	6.3	9.2	4.7	9.9	3.1	6.9	Yes	600	A
18	140	6.4	6.9	5.8	7.7	8.2	5.3	7.9	4.5	3.2	3.2	8.2	4.6	7.4	No	700	A
19	150	6.4	7.1	5.0	8.3	7.2	10	7.3	4.2	6.9	2.4	9.0	3.5	6.4	No	650	A
20	280	6.4	6.4	6.6	8.6	8.2	1.3	7.1	5.0	6.9	6.9	9.9	4.5	7.3	No	600	A
21	325	6.4	7.0	4.2	6.7	8.3	10	7.2	4.9	7.7	4.0	9.9	4.8	2.7	No	890	С
22	150	6.3	6.6	8.2	1.9	8.7	5.7	8.0	6.8	9.2	6.2	8.2	3.8	2.1	Yes	890	С
23	295	6.3	6.4	7.4	5.2	8.7	2.1	7.8	4.6	7.7	3.2	9.9	8.1	3.0	No	850	A
24	95	6.2	6.4	5.3	8.9	8.4	1.5	8.0	5.4	5.5	3.2	9.3	3.1	6.5	Yes	650	A
25	160	6.2	6.4	7.2	2.2	8.5	6.8	8.0	6.6	10	4.7	8.1	4.4	2.2	Yes	890	C
26	175	6.1	6.6	5.9	7.6	8.1	5.7	7.7	4.1	7.7	4.7	7.7	5.1	6.8	Yes	620	A
27	65	5.5	6.2	4.1	8.3	7.9	3.0	8.1	5.2	6.2	4.0	1.7	4.6	7.0	Yes	700	A
28	75	5.5	6.1	5.6	8.4	8.2	1.1	7.9 0 1	5.3	7.7	5.5	3.9	2.9	7.4	Yes	700	A
29 30	395	5.5	4.5	4.6	2.7	4.5	2.0	8.1	6.3	10	9.2	9.0	4.6	7.5	No	650 700	A+
30 31	65	5.3 5.3	5.9 5.1	5.2	8.3 4.0	5.8 7.5	3.9 4.8	7.3 7.5	4.7 5.2	5.5	3.2 4.0	9.3 8.5	8.1 4.5	7.6	Yes	700 650	A
31	90 49	5.3 4.8	5.1 4.4	2.8			4.8	1.0	5.2 4.6	8.5 8.5	4.0 6.2	8.5 8.4	4.5 2.4	6.9 7.2	No	650 700	A
52	49	4.0	4.4	5.8	0.2	0.0	1.0	1.0	4.0	0.5	0.2	0.4	2.4	1.2	No	700	A
average	176.5	6.5	6.6	6.1	6.8	77	5.3	7.5	5.4	7.1	4.5	8.8	5.9	6.4		693.4	
average	1/0.3	0.5	0.0	0.1	0.0	/./	5.5	7.3	5.4	/.1	7.5	0.0	5.5	0.4		055.4	

BELGIUM, Test Achats, June 2017

Cylinder types

Model (all with bag)	<u>Euro</u>	<u>w</u>	kg
1	200	800	7
2	265	700	7.2
3	194	800	7.4
4	120	600	5.6
5	133	600	5.6
6	134	750	5.8
7	325	750	7.8
8	181	750	8.1
9	181	750	6.7
10	162	800	5.8
11	213	650	7.5
12	97	700	5.4
13	161	600	5.3
14	319	650	7.8
15	163	650	6.2
16	108	750	5.9
17	157	800	6.2
18	150	800	6.3
19	69	700	5.8
20	80	700	6.3
21	116	700	6.1
22	75	700	4.8
Average	163	714	6.4

GERMANY Stiftung Warentest, 2017, Cylinder type vacuum cleaners

								Energy Label classes			
Model	Price Euro	Declared W	Measured W	Volume Receptacle	Cable m	Weight kg	Length hose cm	Energy	Re-emission	Carpet	Hardfloor
Bag											
1	208	650	800	2.2	12.3	7.5	107	А	А	В	А
2	240	800	743	3.4	10.6	7.4	104	А	А	В	А
3	157	750	753	2.1	9.1	6.5	90	А	А	С	А
4	197	750	852	2.6	12	7.4	91	А	А	А	А
5	228	750	796	3	11.1	6.7	92	А	А	А	А
6	283	650	721	2.6	10.9	8.1	81	А	А	В	А
No bag											
7	278	700	786	1.7	10.7	8.7	108	А	А	С	А
8	286	800	899	1.5	9.5	8.6	103	А	А	В	А
9	310	650	743	1.9	10.7	8.1	88	А	А	С	А
10	192	750	803	1.3	8.9	7.1	92	А	А	А	А
11	187	700	782	1.5	11.9	7	91	А	А	С	А
12	130	800	766	2.1	9.3	6.7	90	А	А	С	А
	225	729	787	2.2	10.6	7.5	94.8				

GERMANY Stiftung Warentest, Feb. 2018, Cordless vacuum cleaners

Battery run-time min

Model	Price Euro	Volume Receptacle L	Weight kg	Maximum power (W)	Minimum power (W)	Measured battery charge time (min.)	Battery price Euro
1	400	0.9	3.7	15	82	310	100
2	500	0.6	2.6	8	27	209	65
3	250	0.5	3.1	19	62	306	105
4	175	0.4	2.5	14	42	140	38
5	205	0.6	3.4	18	67	116	68
6	169	0.6	2.8	37	76	202	72
7	120	0.4	2.5	30	74	255	60
8	100	0.4	2.9	17	-	283	50
9	151	0.7	2.3	30	-	181	50
10	100	1.0	2.2	15	-	276	30
Avg.	217	0.6	2.8	20		228	64

GERMANY Stiftung Warentest, June 2018, Cylinder type vacuum cleaners

							Energy Label classes			
Model	Price Euro	Declared W	Measured W	Volume Receptacle L	Cable m	Weight kg	Energy	Re-emission	Carpet	Hardfloor
Bag										
1	279	550	633	3.4	11.7	7.4	A+	А	С	А
2	227	650	827	2.2	12.1	7.5	А	А	В	А
3	165	600	684	2.4	9.8	6.2	А	А	В	А
4	229	700	845	2.3	11.8	7.4	А	А	А	А
5	130	750	764	1.6	9.0	6.4	А	А	В	А
6	125	800	757	2.0	9.1	6.8	А	А	С	А
7	159	500	474	2.3	8.9	5.6	A+	А	А	А
8	79	750	742	2.2	8.8	5.2	А	А	D	А
9	219	500	577	3.2	13.1	7.0	A+	А	В	А
10	90	700	687	1.8	8.8	6.2	А	В	D	В
11	76	750	770	1.8	8.6	4.9	А	А	С	А
No bag										
12	355	700	786	3.7	10.8	8.7	А	А	В	А
13	340	550	598	2.6	9.5	8.6	A+	А	С	А
14	150	750	776	1.9	9.2	6.8	А	А	С	А
15	177	700	776	1.9	7.3	5.8	А	В	С	А
16	199	650	621	2.4	10.3	7.2	A+	А	С	А
17	250	750	755	2.5	11.1	8.3	А	А	А	А
18	73	700	717	2.0	9.1	5.9	А	А	D	А
19	149	800	758	2.4	8.0	6.7	А	А	А	А
20	250	600	633	2.0	9.6	7.3	А	А	С	В
Avg.	186	673	709	2.3	9.8	6.8				

Other tests

https://robomow.jimdo.com/vorwerk-vr200/

Intelligente Eckenreinigung (D-Shape n Hindernis und Abgrundsensor / Room	Positioning System Room Clear	erstellt eine genau ning und automatis	systematisch in Bah e virtuelle Karte, w ches Aufladen / Hig		rtierung&Navigatio 5 er ist und wie er zu gleistung - extra star	ur Basis zurückfinde rkes und effizienter	t / Wochenreinigun s Saugsystem	NUCLEMENTS INCOMENTS	
		Neato Bo	tvac Serie		10.00000000	leato Botvac D-Seri		Vorwerk	
		-0-	-0-)		Neu: SpinFic	NUATO BOTIAC DAS	kzeug, leiser	W100	VR200
	Basis Balloc 70e	Name Radian Ta	None Define: 20	Neste Botton' 85				C	V
Standard Filter	1	0	0	0	1	0	0	1	0
Mikro HEPA Filter (Pertormance)	0	1	1	3	0	3	0	0	0
Ultra-Leistungsfilter (Utra-Performance)	0	0	0	0	0	0	3		
Standard-Lamellenbürste Teppich	1	1	1	1	1	1	1	0	0
Anti-Allergie & Tierhaarbürste	0	0	1	1	1	1	1	1	1
Bürstenbreite (cm / Zoll)	27,6/10,9	27,6/10,9	27,6/10,9	27,6 / 10,9	27,6/10,9	27,6/10,9	27,6/10,9	24/9,4	24/9,4
Abstand Rundbürste-Seitenwand (cm)	2	2	2	2	2	2	2	4	3
Seitenbürste	1	1	1	1	1	1	1	1	1 (vorne)
Abstand Seitenbürste-Ecke (cm)	4	4	4	4	4	4	4	4	0
Akku (Typ/Volt/mAh)	NIMH/12V/3.600		NIMH/12V/3.600	NIMH/12V/3.600	NBMH/12V/3.600		Lilon/14,4V/4.200	Lilon/14,49/4.400	Lilon/14,4V/4.400
Wh	43,2	43,2	43,2	43,2	43,2	43,2	60,5	64	84
Ultraschall-Sensoren	nein	nein	nein	nein	nein	nein	nein	nein	3 vorne
Sensoren am LDS (Bumper)	nein	nein	nein	nein	nein	nein	nein	nein	2
Boden / Wand / Stollinger-Sensoren	2/1/4	2/1/4	2/1/4	2/1/4	2/1/4	2/1/4	2/1/4	2/1/4	3/1/4
Staubbehälter (Liter)	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,5
Lautstärke in dB (ECO-Modus)	75 (-)	75 (-)	75 (-)	75(-)	70 (-)	70 (-)	70 (67)	70 (-)	70 (67)
Luftfluss in CFM (Cubic Feet per Minute)	32,7	32,7	32,7	32,7	32,7	32,7	38,75		
Saugsystem	High Performance III	High Performance III	High Performance III	High Performance III	High Power IV	High Power IV	High Power IV	196	2.63
Display (Anu.d.Parben / Gratie / Janier)	4/3,5×2,8/7	4/3,5 × 2,8/7	4/3,5×2,8/7	4/3,5 x 2,8/7	4/3,5 x 2,8/7	4/3,5×2,8/7	>4/3,5x2,8/6	sw-ws/4,6 x 4,4/7	3/3,5x2,8/6
Fernbedienung IR / App (WLAN)	nein/nein	nein/nein	nein / nein	nein/nein	nein / nein	nein/nein	nein/ja	nein/nein	ja/geplant
Kletterhilfe	nein	nein	nein	nein	nein	nein	nein	nein	ja .
Spot-Reinigung (m) / Modus 1x-2x	1,2 x 1,8 / nein	1,2 x 1,8 / nein	1,2 x 1,8 / nein	1,2 x 1,8 / nein	1,2 x 1,8 / nein	1,2 x 1,8 / nein	2x2+4x4/ja	1,2 x 1,5 / nein	1,2 x 1,5 / nein
Trage/Transport-Funktion	Griffmulde	Griffmulde	Griffmulde	Griffmulde	Griffmulde	Griffmulde	Griffmulde	Griffmulde	Griff ausklappbar
Hygien. Entleerung Staubbehälter	nein	nein	nein	nein	nein	nein	nein	nein	ja
Größe (B x L x <u>Höhe</u>) (cm)	33,5 x 32,1 x 10,1	33,5 x 32,1 x 10,1	33,5 x 32,1 x 10,1	33,5 x 32,1 x 10,1	33,5 x 32,1 x 10,1	33,5 x 32,1 x 10,1	33,5 x 32,1 x 10,1	33 x 32 x 10	34 x 34 x 9
Erscheinungsjahr	2014	2014	2014	2014	2015	2015	2015	2011	2014

VI. Annex F - Impacts over a lifetime of vacuum cleaners calculated in the EcoReport Tool

	Material	Manufacturing	Distribution	Use	Disposal	Recycling	Total				
		Other Reso	ources & Waste								
Total Energy (MJ)	523	177	206	2 434	10	-59	3 293				
of which, electricity (MJ)	71	106	0	2 420	0	-10	2 587				
Water – process (litre)	52	2	0	1	0	-5	49				
Water – cooling (litre)	710	50	0	115	0	-36	839				
Waste, non-haz./landfill (g)	949	572	154	1 280	39	-225	2 769				
Waste, hazardous/ incinerated (g)	48	0	3	39	0	-3	87				
		Emiss	ions (Air)								
GWP100 (kg CO ₂ -eq)	24	10	15	104	0	-4	149				
Acidification (g SO ₂ -eq.)	139	42	44	460	0	-23	662				
VOC (g)	0	0	2	54	0	0	56				
Persistent Organic Pollutants (ng i-Teq)	11	1	1	6	0	-4	14				
Heavy Metals (mg Ni eq.)	18	3	8	25	0	-5	48				
PAHs (mg Ni eq.)	36	0	6	6	0	-11	37				
Particulate Matter (g)	52	7	274	10	1	-13	331				
Emissions (Water)											
Heavy Metals (mg Hg/20)	55	0	0	11	0	-14	53				
Eutrophication (g PO ₄)	3	0	0	1	0	0	4				

Table 80: All impact categories for mains-operated domestic vacuum cleaners. The life cyclephase with the highest impact for each of the categories is highlighted with red text.

Table 81: All impact categories for commercial vacuum cleaners. The life cycle phase with the highest impact for each of the categories is highlighted with red text.

	Material	Manufacturing	Distribution	Use	Disposal	Recycling	Total		
Other Resources & Waste									
Total Energy (MJ)	883	284	230	11 064	12	-119	12 355		
of which, electricity (MJ)	46	170	0	11 040	0	-2	11 255		
Water – process (litre)	59	3	0	1	0	-2	60		
Water – cooling (litre)	993	79	0	501	0	-12	1 560		
Waste, non-haz./landfill (g)	1 507	964	166	5 7 <mark>42</mark>	48	-348	8 080		
Waste, hazardous/ incinerated (g)	61	0	3	175	0	-1	238		
		Emiss	ions (Air)						
GWP100 (kg CO2-eq)	38	16	16	473	0	-7	536		
Acidification (g SO2-eq.)	253	68	48	2 091	0	-53	2 408		
VOC (g)	0	0	2	247	0	0	249		
Persistent Organic Pollutants (ng i-Teq)	23	6	1	26	0	-8	48		
Heavy Metals (mg Ni eq.)	34	13	8	112	0	-12	156		
PAHs (mg Ni eq.)	144	0	7	27	0	-47	131		
Particulate Matter (g)	63	11	342	45	1	-16	445		

Emissions (Water)								
Heavy Metals Hg/20)	(mg	95	0	0	48	0	-29	116
Eutrophication (g PO4)	4	0	0	2	0	0	7

Table 82: All impact categories for cordless vacuum cleaners. The life cycle phase with thehighest impact for each of the categories is highlighted with red text.

	Material	Manufacturing	Distribution	Use	Disposal	Recycling	Total			
Other Resources & Waste										
Total Energy (MJ)	552	170	170	2 183	5	-66	3 014			
of which, electricity (MJ)	28	101	0	2 178	0	-1	2 306			
Water – process (litre)	36	1	0	0	0	-2	37			
Water – cooling (litre)	598	47	0	103	0	-18	730			
Waste, non-haz./landfill (g)	1 041	583	136	1 132	22	-198	2 717			
Waste, hazardous/ incinerated (g)	38	0	3	35	0	-1	74			
	Emissions (Air)									
GWP100 (kg CO2-eq)	26	9	12	93	0	-4	137			
Acidification (g SO2-eq.)	168	41	37	413	0	-29	629			
VOC (g)	0	0	1	49	0	0	50			
Persistent Organic Pollutants (ng i-Teq)	17	4	1	5	0	-4	22			
Heavy Metals (mg Ni eq.)	23	9	7	22	0	-6	55			
PAHs (mg Ni eq.)	96	0	5	6	0	-24	83			
Particulate Matter (g)	43	6	171	9	0	-9	221			
Emissions (Water)										
Heavy Metals (mg Hg/20)	79	0	0	10	0	-18	72			
Eutrophication (g PO ₄)	3	0	0	0	0	0	3			

Table 83: All impact categories for robot vacuum cleaners. The life cycle phase with thehighest impact for each of the categories is highlighted with red text.

	Material	Manufacturing	Distribution	Use	Disposal	Recycling	Total		
	Other Resources & Waste								
Total Energy (MJ)	748	76	170	4,071	3	-18	5,051		
of which, electricity (MJ)	424	45	0	4,068	0	-11	4,527		
Water – process (litre)	112	1	0	1	0	-3	111		
Water – cooling (litre)	281	21	0	183	0	-2	484		
Waste, non-haz./landfill (g)	895	259	136	2,103	4	-26	3,371		
Waste, hazardous/ incinerated (g)	40	0	3	65	0	-1	106		
		Emiss	ions (Air)						
GWP100 (kg CO2-eq)	40	4	12	174	0	-1	229		
Acidification (g SO2-eq.)	297	18	37	771	0	-8	1,114		
VOC (g)	1	0	1	91	0	0	93		
Persistent Organic Pollutants (ng i-Teq)	9	2	1	10	0	0	20		

Heavy Metals (mg Ni eq.)	106	4	7	42	0	-3	156	
PAHs (mg Ni eq.)	50	0	5	10	0	-2	63	
Particulate Matter (g)	204	3	171	18	1	-6	392	
Emissions (Water)								
Heavy Metals (mg Hg/20)	57	0	0	18	0	-2	74	
Eutrophication (g PO ₄)	2	0	0	1	0	0	3	