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An IGDT-Based Energy Management System for
Local Energy Communities Considering
Phase-Change Thermal Energy Storage
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Abstract—Local energy communities (LECs) facilitate en-
ergy distribution, supply, consumption, storage, and trading for the
communities and their members. This article proposes an energy
management system (EMS) for optimal heat and power scheduling
in LECs. A novel model for the phase-change thermal energy
storage (TES) which is applicable in mixed integer linear problems
(MILP), is introduced. Furthermore, a risk-averse and risk-seeker
EMS is developed that incorporates the integration of TES to opti-
mize electricity and heat scheduling in LECs. The developed EMS
doesn’t require probability distribution functions of predicted data
which makes it valuable in cases with high levels of uncertainties or
lack of sufficient historical data. To validate the performance of the
proposed TES model, real time studies are conducted on an indus-
trial TES provided by Azelio company. Likewise, the effectiveness
and efficiency of the proposed EMS are evaluated on a real LEC at
Chalmers University of Technology campus, Gothenburg, Sweden.

Index Terms—Electricity and heat scheduling, energy
management system, local energy community, phase change
thermal energy storage, risk-averse model.

NOMENCLATURE

Indices
t Index of time.

Parameters
H,Stir Effectiveness of the heat exchanger of

Stirling engine.
ηd/ηch Charge/discharge efficiency of battery

energy storage.
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ηh,TES / ηh,SB Efficiency of TES/smart boiler heater.
ηGen Efficiency of TES output generator.
H,Stir
t Efficiency of Stirling engine thermody-

namic cycle.
ηMec,Stir Mechanical efficiency of Stirling en-

gine.
λe
t Electricity spot market price.

λh
t District heating variable heat price.

cdeg Parameter to emulate degradation cost
of battery.

CL/CS Specific heat of phase change material
(PCM) inside TES in in in liquid/solid
phase.

CW Specific heat of water.
Hidle,TES

t Idle losses of TES.
HL

t Heat demand of LEC.
HLat Latent heat of PCM in TES.
k Thermal convection parameter of SB

tank.
A Area of smart boiler tank.
M /M1 Big numbers in big M method.
mTES Mass of PCM inside TES tank.
PPV
t Forecasted PV power.

PL
t Forecasted value of electrical power.

T a
t Ambient temperature.

TCW
t Temperature of cold water in smart

boiler tank.
TL1/TL2 Temperature boundaries of PCM liquid

phase in TES.
TS1/TS2 Temperature boundaries of PCM solid

phase in TES.
T offset Offset value in enthalpy curve of PCM

in TES.
TTES,0
t Initial Temperature of PCM inside TES.

V Tank volume of smart boiler.
V HW
t Hot water demand.

THW
min , THW

max Minimum/maximum desired hot water
temperature.

Variables
αpv, αld Robustness/ opportunity index of PV

generation and load demand in IGDT
method.

Hch,TES
t /Hdis,TES

t Charge/discharge heat of TES.
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HIm,LEC
t /HEx,LEC

t Imported/Exported heat to LEC from
district heating.

HSB
t Heat input to smart boiler.

HR,Stir
t Residual heat of Stirling Engine.

P ch,BES
t /P dis,BES

t Charge/discharge power of BES.
nsh,Stir, pStir, Stirling engine shaft speed, pressure,

heat source temperature, heat sink tem
TH,Stir, TC,Stir

t perature.
P Im,LEC
t /PEx,LEC

t Import/export active power to/from
LEC.

PV Cur
t Curtailed power of PV.

PTES−Stir
t /P in,TES

t Output/input power of TES.
QTES

t Enthalpy of TES.
QH,Stir

t Input heat to thermodynamic cycle of
Stirling engine.

QC,Stir
t Low temperature heat output of thermo-

dynamic cycle of Stirling engine.
SoCt State of charge of battery energy stor-

age.
TTES
t Temperature of PCM of TES.

THW
t Hot water temperature of smart boiler

tank.
uch,BES
t /ud,BES

t Binary variables for charge/discharge of
battery energy storage.

uch,TES
t /udis,TES

t Binary variables for charge/discharge of
TES.

u1
t − u5

t Binary variables for linearizing TES
characteristic.

WStir
t Work output of the Stirling engine heat

cycle.
WM,Stir

t Mechanical work output of the Stirling
engine.

zaux1
t , zaux2

t , zaux3
t Auxiliary variables indicating enthalpy

of each region in enthalpy-temperature
curve.

Symbol
(•)/(•) Maximum/minimum bounds of (•).(•) Uncertain value of variable (•).
f1, f2, f3 Polynomial functions.

I. INTRODUCTION

THE increasing integration of distributed energy sources
(DERs) and the implementation of demand response pro-

grams in distribution networks, has highlighted the need of
considering them as an entity. To this end the European Commis-
sion’s has introduced the concept of local energy communities
in the EU legislation [1]. LECs are clusters of DERs which
collaborate to generate, distribute, and consume energy locally.
LECs, with both electricity and heat vectors, offer a comprehen-
sive and integrated approach to energy management. Through
combination of renewable resources with efficient storage sys-
tems, LECs are able to optimize the utilization of electricity
and heat, ensuring a reliable and sustainable energy supply for
their members. Indeed, battery energy storage (BES) enable
the storing and utilization of surplus electricity, while thermal

energy storage allows for the efficient storing and utilization of
excess heat, thereby maximizing the overall energy efficiency
and flexibility of the community.

Thermal energy storages are gaining significant attention as
one of the most promising ways to enhance flexibility in LECs.
This is primarily because TES offers a multitude of advantages,
large storage capacity, and cost-effectiveness [2]. As in [3] the
role of TESs in energy balancing of wind power in isolated elec-
trical grids are evaluated. Ref. [4] models the combined dispatch
of combined heat and power (CHP) units, TES, and heat pump
to explore the flexibility provision capability of them. In [5], the
LEC participates in both electricity and thermal energy markets
by integrating BES and TES in its scheduling. likewise, authors
of [6] present a multi objective decision-making framework to
determine the optimal scheduling of a LEC incorporated with
a TES. In the aforementioned studies, and similarly to many
other energy management studies [5], [6], [7], TESs are typically
modeled with only the consideration of thermal energy balance
and constraints on the maximum stored heat or released heat.
These works do not account for the thermodynamic equations of
the TES and instead regard the TES as analogous to a BES. Based
on the mode of heat transfers, TESs can be categorized in three
forms; sensible heat (SH), latent heat (LH) and thermo-chemical
heat storage [8]. Each category inherently possesses distinct
operational characteristics, which inevitably affect the flexibility
they can offer. However, previous studies have treated the dif-
ference between sensible heat TESs and latent heat TESs solely
based on the thermal energy balance equation. Consequently,
the existing modeling approaches fail to accurately reflect the
genuine disparities in system performance. In few EMS studies
such as [9] and [10], [11] the thermo-dynamic model of the TES
is considered. As in [9], [10] the heat transfer processes of the
TES with the entransy dissipation thermal resistance model has
been considered in the dispatch model of a CHP with a TES
[12]. This model is nonlinear and utilizes an iterative procedure
to solve the optimization problem. Authors of [11] present an
enthalpy-based model to analyze the thermal characteristics of
the Phase Change Material (PCM) integrated in the wallboard
of a smart building which acts similar to LH TES. These studies
assume that the PCM of the TES is constant in the phase
change mode and the temperature change of the PCM due to
the mixture of solid and liquid phases is not considered. More
importantly the TES can be modeled in one working region
i.e., latent, or sensible heat. In other words, if the LH TES
can provide heat in the solid and liquid phases of the PCM as
an SH TES this capacity is not considered. In many industrial
LH TESs, the sensible heat regions can constitute a significant
portion of the overall heat capacity of the TES and disregarding
this energy capacity underestimates the storage capability in
providing flexibility. To fill this gap, a novel model for phase
change TES is presented in this paper which is based on the
enthalpy-temperature equation of TESs. In the proposed model,
a more realistic assumption that the PCM melts over an interval
rather than a constant temperature, is considered and both the
SH and LH regions of the TES are precisely modeled, resulting
in a more realistic representation, and enabling the utilization
of the TES’s full capacity. Likewise, since all heat regions are
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modeled, the proposed model can be used for both SH and phase
change TESs applications. Furthermore, the model is linearized
with the big M method [13], making it applicable in MILPs.

The operation of a LEC requires the implementation of an
energy management system (EMS) to optimize electricity and
thermal energy scheduling of the available DERs. However, the
unpredictable nature of renewable generation and load demand
affects the performance of EMS. To tackle this issue, several
optimization methods have been developed, namely stochastic
optimization (SO) [14], robust optimization (RO) [15], and
interval optimization (IO) methods [16]. SO methods are based
on probability distribution functions (PDFs) of predicted data
which are used to create numerous scenarios with their prob-
abilities [17]. However, the accuracy of SO is dependent on
the accuracy of the PDFs, i.e., forecasts, and the number of
scenarios. In the real-word application the lack of sufficient data
to establish high accuracy forecast methods, not only degrades
the prediction, but also results in inaccurate PDFs and a non-
optimized solution. In RO methods the worst-case scenario is
realized enforcing a conservative and robust costly solution. To
deal with this, IO methods namely information gap decision
theory (IGDT) method are utilized in the developed EMS of
presented paper. The IGDT method only requires forecasted
values and lower and upper bands of predicted data which are
easier to obtain in real-world application from historical data.
Likewise, since in the IGDT method, the optimization problem
should neither be solved in different scenarios nor found the
worst-case scenario, the computational burden is low. Moreover,
IGDT method finds optimal solutions that are immunized against
all possible realizations of uncertain variables, unlike SO that
provides probabilistic guarantees for constraint satisfaction [18].
In [19], a bilevel optimization approach has been proposed to
coordinate the operation of multiple LECs within a system.
In the proposed model, the uncertainty of energy demands,
renewable power generation, and energy prices are considered
using the IGDT method. In [20], optimal scheduling of a
residential community with the presence of renewable energy
sources and electric vehicles has been modeled considering
uncertainties of RESs and EVs using the IGDT method. In the
developed EMS, IGDT method is utilized to handle the uncer-
tainties of PV and demand and a pre-specified level of cost is
guaranteed.

The performance of the proposed EMS is evaluated on a real
LEC at Chalmers University of Technology campus, Gothen-
burg, Sweden. In this LEC, Azelio TES.POD is virtually con-
nected as a community member [21] as part of the European
project SUNSETS [22]. Azelio TES.POD is a TES coupled with
a Stirling engine to produce electricity on demand. Likewise,
The TES model is validated with a detailed real time model
of the TES. In summary the contributions of the paper can be
described as:

1) A novel enthalpy-temperature-based model for phase
change TES is introduced. This model enhances industry
applications by simulating PCM melting over an interval,
accommodating both sensible and latent heat regions. It
provides a more accurate portrayal of TES behavior and
performance, enhancing its practical applicability.

Fig. 1. Enthalpy-temperature curve of Azelio TES.POD Aluminum alloy
PCM.

2) The nonlinear equality constraints introduced by the
TES model are linearized making it applicable to MILP
studies.

3) The proposed TES model is validated with a detailed real-
time model of an industrial TES i.e, Azelio TES.POD.

This paper is organized as follows: In Section II the proposed
phase change TES model is introduced. Meanwhile Section III
presents the EMS model, and the uncertainty handling approach
is described in Section IV. The case study and simulations
are conducted in Section V. Finally, conclusions are drawn in
Section VI.

II. PROPOSED LATENT HEAT TES MODEL

Latent heat storages exploit the enthalpy of phase change
as the storage mechanism. The storage material namely, phase
change material, transfers from solid to liquid and other way
around, to release and store heat. As PCM can absorb/release
a large amount of energy at an almost constant temperature,
therefore, latent heat TESs have a considerably higher energy
density compared to sensible heat TESs [2]. Azelio TES.POD is
based on Aluminum alloy phase change material and the latent
heat is the main portion of its stored heat. However, it can deliver
energy in the liquid and solid phases as a sensible heat TES, as
well. The enthalpy-temperature relationship of the Aluminum
alloy PCM is depicted in Fig. 1 which the amount of energy
delivered in each region is indicated.

In theory a eutectic mixture has a defined melting point,
and it changes from solid state to liquid state with a constant
temperature, however in reality this is seldom the case, and the
PCM melts over an interval. The width of this interval can be
defined via T offset as depicted in Fig. 1. In this paper a novel
enthalpy-based model for TES is proposed in which the TES
can operate in three regions of the enthalpy-temperature curve
of Fig. 1 enabling the TES to deliver energy in both sensible
and latent heat regions (solid and liquid phase as a sensible heat
and phase change region). Likewise, with the proposed model a
temperature offset based on Azelio experiments is considered in
the latent phase making the model more realistic. With respect
to Fig. 1, the enthalpy of the TES is presented as a function of
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the temperature in all the phase regions as follows:

QTES
t =

 TTES
t

TTES,0
t

mTESCTESdT

= mTESCTES

TTES
t − TTES,0

t


(1)

where, depending on the temperature of the PCM (TTES
t ), the

PCM can be in solid, liquid, or latent phase and the specific/latent
heat i.e., CTES is defined as follows:

CTES =

⎧⎨
⎩
CL TL1 < TTES

t < TL2

CLat TS2 ≤ TTES
t ≤ TL1

CS TS1 < TTES
t < TS2

(2)

The solid and liquid specific heats i.e.,Cs andCL are assumed
constant while CLat is derived from the slope of the enthalpy-
temperature curve of Fig. 1 which is the linearization of the latent
heat through the offset interval as follows:

CLat = HLat/2T offset (3)

Note that mTES is the mass of PCM of the TES tank and
is constant. The enthalpy difference equals to the charge and
discharge heat and idle losses in case of no charge/discharge as
(4). Equation (4) is transformed to the discrete form for time
steps of Δt as (5):

mTESCTES dT
TES
t

dt
= Hch,TES

t −Hdis,TES
t −Hidle,TES

t

(4)

mTESCTES

TTES
t+1 − TTES

t


=


Hch,TES

t −Hdis,TES
t −Hidle,TES

t


Δt (5)

Since CTES is correlated to the temperature based on (2), (5)
is not linear, Therefore, it is converted to a MILP with the big
M method [13] with the set of equations of (6)–(23) to make 3it
applicable in optimization and energy management studies. The
auxiliary variables zaux1

t , zaux2
t , zaux3

t will indicate the enthalpy
in each of the regions of the enthalpy-temperature curve of Fig. 1
while binary variables u1

t − u5
t enforce them to have values in

only one region per timestep.

zaux1
t + zaux2

t + zaux3
t =


Hch,TES

t −Hdis,TES
t

−Hidle,TES
t


Δt (6)

−Mu4
t,i ≤ zaux1

t ≤ Mu4
t,i (7)

mTESCL

TTES
t+1 − TTES

t

−M

1 − u4

t

 ≤ zaux1
t,i

≤ mTESCL

TTES
t+1 − TTES

t,i


+M


1 − u4

t


(8)

TL1 −M

1 − u4

t

 ≤ TTES
t < TL2 (9)

−Mu5
t ≤ zaux2

t ≤ Mu5
t (10)

mTESCLat

TTES
t+1 − TTES

t

−M

1 − u5

t

 ≤ zaux2
t

≤ mTESCLat

TTES
t+1 − TTES

t


+M


1 − u5

t


(11)

TS2 −M

1 − u5

t

 ≤ TTES
t ≤ TL1 +M


1 − u5

t


(12)

Fig. 2. Schematic diagram of the Azelio TES.POD.

−Mu1
t ≤ zaux3

t ≤ Mu1
t (13)

mTESCS

TTES
t+1 − TTES

t

−M

1 − u1

t

 ≤ zaux3
t

≤ mTESCS

TTES
t+1 − TTES

t


+M


1 − u1

t


(14)

TS1 < TTES
t ≤ TS2 +M1


1 − u1

t


(15)

TS2 − TTES
t−1


/M1 ≤ u1

t (16)
TTES
t−1 − TS2


/M1 ≤ u2

t (17)

u1
t + u2

t = 1 (18)
TTES
t − TL1


/M1 ≤ u4

t (19)
TL1 − TTES

t


/M1 ≤ u3

t (20)

u4
t + u3

t = 1 (21)

u5
t ≤ u3

t , u
5
t ≤ u2

t , (22)

u2
t + u3

t − 1 ≤ u5
t (23)

Azelio TES.POD is coupled with a Stirling engine and gen-
erator to deliver power on demand. The Aluminum alloy is
heated by an electrical heater to phase change. The heat of the
TES is transferred to the Stirling engine through a heat transfer
fluid, on demand. The Stirling engine drives a generator for
electricity, and the low temperature (55–65 °C) residual heat of
the Stirling engine can be utilized through the heat to energy
(H2E) technology. The schematic of the TES.POD is depicted
in Fig. 2. The charged power of the TES through the electrical
heater can be obtained as follows:

Hch,TES
t = ηh,TES P in,TES

t (24)

The charge and discharge power of the TES are constrained by
their operational limit represented in (25)–(27). Since the charge
and discharge circuits of the TES are decoupled simultaneous
charge/discharge is not possible, hence, (28) is added to prevent
simultaneous charge/discharge.

P in,TES
t ≤ uch,TES

t P in,TES
t (25)

0 ≤ Hch,TES
t ≤ uch,TES

t Hch,TES
t (26)

0 ≤ Hdis,TES
t ≤ udis,TES

t Hdis,TES
t (27)

uch
t + udis

t ≤ 1 (28)
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The discharged heat of the TES is directed through a Stirling
engine with a heat transfer fluid (29). The work as output of
the thermodynamic cycle of the Stirling engine, is related with
thermodynamic-work efficiency (ηW,TES) and the residual heat
is correlated to the input heat with the heat effectiveness of the
heat exchanger (H,TES). Note that functions for ηW,Stirand
H,TES are derived, with fitting experimental real data to poly-
nomial functions to QH,Stir

t , QC,Stir
t ,WStir

t , and Qloss,Stir
t as

(30)–(32) and collected from Azelio. The dynamic values of
ηW,Stirand H,TES correlates them to the heatsink temperature,
heat source temperature, speed and pressure of the Stirling
engine with respect to (30)–(32) at every timestep. Equation
(33) presents the energy balance in the thermo-dynamic cycle
of the Stirling engine. The heatsink temperature is considered to
follow the ambient temperature by (34) while the heat source
temperature is assumed to remain constant. The mechanical
work output of the Stirling engine is linked to its input heat
i.e., discharged heat from the TES (35) while its losses is
considered by (36). The residual heat of the Stirling Engine can
be calculated based on (37). The generator produces electricity
with the efficiency ηGen (38). The efficiency of the inverter is
considered in ηGen.The operational limits of the Stirling engine
are enforced by (39) and (40).

QH,Stir
t = Hdis,TES

t (29)

QH,Stir
t = f1


nsh,Stir, pStir, TH,Stir, TC,Stir

t


(30)

QC,Stir
t = f2


nsh,Stir, pStir, TH,Stir, TC,Stir

t


(31)

WStir
t,i = f3


nsh,Stir, pStir, TH,Stir, TC,Stir

t


(32)

QH,Stir
t = QC,Stir

t +WStir
t +Qloss,Stir

t (33)

TC,Stir
t = T a

t + 20 (34)

WStir
t = ηW,Stir

t QH,Stir
t (35)

WM,Stir
t = ηMec,Stir WStir

t,i (36)

HR,Stir
t = H,Stir

t QH,Stir
t (37)

PTES−Stir
t = ηGen WM,Stir

t (38)

udis,TES
t HR,Stir

t ≤ HR,Stir
t ≤ udis,TES

t HR,Stir
t (39)

udis,TES
t WStir

t ≤ WStir
t ≤ udis,TES

t WStir
t (40)

III. ENERGY MANAGEMENT SYSTEM MODEL

In this section the EMS model and its components are de-
scribed. The objective function is:

Min

t

λe
t


P Im,LEC
t − PEx,LEC

t


+ ceP Im,LEC

t

+

t

λh
t


HIm,LEC

t −HEx,LEC
t



+ cH,varHIm,LEC
t + cH,fixed

+

t

ccurPV Cur
t +


t

cdeg

P ch,BES
t + P dis,BES

t


(41)

The first term represents the cost of exchanging active power
with the distribution network. λe

t denotes the spot price plus
taxes, while ce refers to the network tariff (a fixed fee for utilizing
the network) when the LEC imports energy. The second term
accounts for the cost of heat exchange with the district heating
system, including the cost of energy exchange and the power
cost. The distribution system operator charges district heating
consumers based on cH,var for the peak power input, and cH,var

as a fixed annual cost scaled to an hourly value. The third term
presents the cost of PV curtailment. To prevent repeated charging
and discharging of the BESS, the fourth term is included to
simulate the degradation cost of the BESS. The TES, on the
other hand, does not have any degradation cost associated with
it [21].

A. Constraints on BESS

The BESS is charged and discharged considering the follow-
ing constraints:

0 ≤ P ch,BES
t ≤ uch,BES

t P ch,BES
t (42)

0 ≤ P d,BES
t ≤ ud,BES

t P d,BES
t (43)

uch,BES
t + ud,BES

t ≤ 1 (44)

SO Ct = SOCt−1 +Δt

P ch,BES
t ηch − P d,BES

t /ηd


(45)

SOCt ≤ SOCt ≤ SOCt (46)

(42) and (43) limit the maximum charge and discharge power of
the BES, while (44) prevents simultaneous charge and discharge
of it. The BES SOC is updated in each timestep by (45) and its
minimum and maximum is constrained by (46).

B. Constraints on Smart Boiler

A water storage tank supplies hot water demand of the
buildings. Electricity can be fed to the smart boiler heater to
produce heat, or it can receive heat through a heat exchanger
directly by the heat network. The residual heat from Azelio
TES utilizing its H2E technology, or the input heat from the
district heating system, can be directed to the smart boiler via
the heat exchanger, represented by (47). The active electricity
power of the boiler serves as input to a controllable heater with
the efficiency of ηh,SB . It is assumed that the water storage
remains consistently full, with any consumed hot water being
replaced by an equal volume of cold water in each time interval
[8]. The temperature of the water storage can be calculated using
(48). It should be noted that the equilibrium temperature of the
storage water, resulting from the combination of cold input water
and the remaining hot water in the storage, can change due to the
replenishment of hot water consumed by the user and thermal
convection, where heat is lost through the tank’s exterior walls
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to the surrounding environment.

HSB
t = ηh,SB .PSB

t +HSB−H
t (47)

THW
t+1 =


V HW
t . (TCW

t − THW
t + V.THW

t


/V

+HSB
t /V CW − kA


THW
t − T a

t


/V CW (48)

C. Constraints on Electrical and Heat Power Balance

The electrical load demand of the LEC should be supplied
by resources and the main grid which is considered as (49). The
heat demand is composed of hot water demand and space heating
demand, which is supplied by the residual heat of Azelio TES,
boiler and district heating as in (50).

PEx,LEC
t − P Im,LEC

t = PPV
t + P d,BES

t + PTES−Stir
t

− P in,SB
t − P ch,BES

t − P in,TES
t − PL

t − PV cur
t (49)

HEx,LEC
t − HIm,LEC

t = HR,TES
t −HSB

t −HL
t (50)

D. Power Exchange Limits

The exchanged electrical power and heat with the upstream
grid is constrained by (51) and (52). (53) prevents simultane-
ously import and export to the grid:

0 ≤ P Im,LEC
t ≤ uIm

t .P Im,LEC
t (51)

0 ≤ PEx,LEC
t ≤ uEx

t .PEx,LEC
t (52)

uIm
t + uEx

t ≤ 1 (53)

IV. UNCERTAINITY HANDLING USING IGDT METHOD

The load demand and PV generation can be forecasted based
on historical data and weather prediction models as described
in [23]. However, the forecast models are not perfect and are
associated with inaccuracy. Thus, the model should be optimized
under uncertainty. In this section, first the IGDT method is
presented to address the risk of uncertainties from renewable
generation and load demand. Then, the EMS based on the
risk-averse (RA) and risk-seeker (RS) strategies are formulated.

A. IGDT Method

The IGDT method determines the optimal robust region (RR)
for each uncertain variable to increase the robustness against
uncertainty or decrease the cost. The modeling approach in-
cludes two distinct formulations, namely the RA strategy for the
robustness-based EMS and the RS strategy for the opportunity-
based EMS. The RA strategy aims to achieve a balance between
minimizing uncertainty with accepting a higher operation cost
for the LEC to enhance robustness of scheduling. This can be
formulated as follow:

Max (αpv, αld) (54)

TOC ≤ TOC × (1 + UB) (55)

(1)− (40) , (42)− (50) (56)

TOC =

t

λe
t


P Im,LEC
t − PEx,LEC

t


+ ceP Im,LEC

t

+

t

λh
t


HIm,LEC

t −HEx,LEC
t



+ cH,varHIm,LEC
t + cH,fixed +


t

ccurPV Cur
t

+

t

cdeg

P ch,BES
t + P dis,BES

t


(57)

PL
t = (1 + αld) PL

t , αld ≥ 0 (58)

PPV
t = (1 − αpv) PPV

t , αpv ≥ 0 (59)

The RS strategy focuses on reducing operation cost using
deviations of uncertain variables, even if the scheduling involves
a greater risk. This can be formulated as follows:

Min (αpv, αld) (60)

TOC ≤ TOC × (1 − UB) (61)

(1) − (40), (42) − (50) (62)

(57) (63)

PL
t = (1 − αld) PL

t , αld ≥ 0 (64)

PPV
t = (1 + αpv) PPV

t , αpv ≥ 0 (65)

The conservatism degree of the optimal scheduling against
uncertain variables can be controlled through a definite UB.
Note that the developed RA and RS based EMSs in (54)–
(65) are multi-objective optimization problems which can be
solved using the augmented ε-constraint method. Mathemat-
ical details of the augmented ε-constraint method are given
in [24].

V. CASE STUDY

A. Test System

The proposed EMS is tested on a LEC located at Chalmers
University of Technology campus which its schematic is shown
in Fig. 3. The LEC consists of a smart building and campus
facilities i.e., PV and loads. The DERs of the smart building
are PV, Lithium-ion battery, smart boiler, and Azelio TES.POD.
The boiler and Azelio TES are virtually connected to the LEC
as they are located at Åmål, Sweden and Patras, Greece tests
sites, respectively. The LEC is connected to the electricity dis-
tribution network and district heating, facilitating exchange of
both electricity and heat. The data of DERs are given in Table I.
Likewise, Fig. 4 shows the forecasted hourly load demand, PV
generation, and electricity spot prices, which represent real data
for a day in August 2022. The district heating price remains
constant throughout each month and is considered to be 0.1
SEK/kWh for the month of August. The outdoor temperature
and hot water demand of the LEC are depicted in Fig. 5.
Note that the hot water temperature can vary between 55 ◦C
to 75 ◦C .
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Fig. 3. Schematic of LEC located at Chalmers campus.

TABLE I
DATA OF THE DERS IN LEC

B. Simulation Results

The results of the single objective RA and RS based EMS for
robustness and opportunity indexes are presented in Fig. 6. It
can be observed that in the RA strategy, as the robustness index
increases, the total operation cost also increases to provide more
robustness against forecast errors of PV generation and load
demand. On the other hand, in the RS strategy, with increasing
the opportunity index, total operation cost reduces. This implies
that there is an availability of more PV generation or less load
demand in real-time compared to their predictions. Moreover,
the results indicate that variations of αpv are larger than αld

which is due to the low penetration of PV in the LEC. Hence,
in the studied LEC, the accuracy of load prediction is more
significant compared to the prediction of PV generation.

The Pareto optimal frontier of robustness and opportunity
indexes with solving multi-objective RA and RS based EMSs
for UB = 5% are obtained and illustrated in Figs. 7 and 8,
respectively. Likewise, the best compromise solution of each

Fig. 4. Hourly forecasted load demand, PV generation, and spot market
electricity price.

Fig. 5. Hourly outdoor temperature and hot water demand.

Fig. 6. Variations of αld and αpv versus total operation cost in the the single
objective RA and RS based EMS.

Fig. 7. Pareto frontier in RA strategy with UB = 5%.
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Fig. 8. Pareto frontier in RS strategy with UB = 5%.

Fig. 9. Optimal power scheduling of LEC in RA strategy.

Fig. 10. Optimal heat scheduling of LEC and SB temperature in RA strategy.

strategy is indicated which is acquired by applying the fuzzy set
theory. As can be seen, the scheduling is robust against 1.8% of
load demand increment and 14.4% of PV generation decrement.
Likewise, operation cost of the LEC can be reduced by 5% with
13.3% of load demand decrement and 14.4% of PV generation
increment.

Due to the space limit, only the optimal power and heat
scheduling results for the best compromise solution of RA strat-
egy are shown in Figs. 9 and 10, respectively. As can be observed,
the BESS and TES units are discharged during high-price hours
(8:00–12:00, 18:00–21:00) and charged during low-price hours
(1:00–5:00, 23:00–24:00). This strategy enables flexibility in
terms of energy arbitrage for the LEC. The TES.POD residual
heat provides heat for the LEC in most hours. A portion of

Fig. 11. Temperature of TES and charge/discharge profile.

this heat is allocated for meeting the hot water demand through
the SB, while the excess heat is exported to the district heating
system for additional revenue. However, during hours 23:00 and
24:00, when the TES.POD does not provide residual heat due to
not being discharged during these hours, the heat requirement
for the SB is fulfilled by importing heat from the district heating
system. Azelio TES’s H2E technology efficiently harnesses the
otherwise wasted residual heat from the TES unit, contributing to
an overall improvement in the energy efficiency of the LEC. As
observed, the SB does not consume heat during the initial hours,
leading to a decrease in its temperature to the lower permissible
bound of 55 °C. From hours 11:00 to 23:00, the SB utilizes heat
to compensate for its losses and maintain the temperature at the
same level. At hour 24:00, additional heat is used to increase the
temperature back to its initial value, as forced by the optimization
process. It’s worth noting that since the prices of district heat vary
monthly but remain constant daily, the specific hour at which the
SB is charged more does not impact the overall operation.

Fig. 11 depicts the charge/discharge profile and the PCM
temperature of the TES system. It is evident that the TES charges
during low price hours and discharges during high price hours.
As the TES charges, the temperature rises from its initial value,
transitioning from the phase change region to the liquid sensible
heat region. Subsequently, during discharge at later hours of the
day, the temperature decreases, re-entering the phase change
region. Notably, the sensible heat region exhibits a significant
temperature change despite a relatively small enthalpy change,
whereas in the phase change region a large amount of heat
corresponds to a minimal temperature change. It is noteworthy
to highlight that unlike previous studies, the proposed model
considers not only all enthalpy-temperature regions but also the
interval in which the PCM undergoes melting. This comprehen-
sive approach enhances the accuracy and effectiveness of the
model compared to earlier research.

C. Verification of the IGDT Performance

To check the robustness and opportuneness of the proposed
EMS, Monte Carlo Simulations (MCS) are conducted. To this
end, 1000 profiles of load demand and PV generation are gener-
ated assuming normal distributions for forecasting errors. Then,
the EMS is solved for each scenario. The histogram of resulting
operation costs is shown in Fig. 12. It is evident that with respect
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Fig. 12. Histogram of LEC operation costs using the proposed IGDT based
approach and MCS.

TABLE II
COMPARISON OF THE IGDT-BASED MODEL WITH SO-BASED AND RO-BASED

MODELS

to the average value of the MCS, each UB could lead to either
an economic, conservative, or opportunistic scheduling for the
LEC. For instance, RA strategies with aUB of 1% are economic,
while those with a UB of 4% are conservative. Similarly, RS
strategies with a UB of 3% are economic, whereas those with
a UB of 5% are conservative. Therefore, from Fig. 12 one can
conclude that a greater distance of UBs from the MCS average
values signifies more conservative or opportunistic strategies,
whereas UBs that lead to economic strategies tend to be closer
to the MCS average values. This fact can be used by the operators
of the LEC to determine the preferred UB according to their
strategy and accuracy of predictions.

D. Comparative Analysis With Existing Uncertainty
Handling Methods

To compare the performance of the IGDT method with ex-
isting uncertainty handling methods, SO and RO methods are
used to implement the proposed model. The SO model is based
on which is a two-stage stochastic optimization problem. The
MCS technique is employed to generate 10000 profiles of load
demand and PV generation. Then, K-means clustering algorithm
is applied to decrease the number of generated scenarios to 25.
The RO model is based on [25], aims to ensure the robustness
of solution with probability greater than 95%, the budget of
uncertainty is set to 8 in this study.

To compare the above methods, the day-ahead schedules
obtained by each model are analyzed by MCS against various
realizations of uncertainties as described. The summary of the
results is given in Table II. As can be seen, total operation cost
in IGDT-based model is slightly higher than SO (1.4% increase)

Fig. 13. Sensitivity analysis of cost and PV curtailement with PV peneteration
of LEC with and without TES.

and is 0.5% lower than that obtained by RO. Likewise, the
IGDT-based model demonstrates the most efficient utilization
of PV generation, as evidenced by its lowest PV curtailment.
Although the expected cost of the IGDT-based model is higher
than that of the SO-based model, it has the lowest standard
deviation, indicating minimal variation in real-time costs. Ro-
bustness level is the ratio of Violated scenarios to all scenarios.
Violated scenarios occur when the provided schedule fails to
maintain the total operation cost below the predefined value
in the IGDT-based model. Referring to Table I, it is clear that
the IGDT-based model has the best robustness level. Likewise,
the IGDT-based model stands out as the most efficient method
in terms of computational time, a highly desirable feature for
real-world applications.

E. Sensitivity Analysis on the PV Hosting Capacity of LEC

To investigate the role of Azelio TES on enhancing the PV
hosting capacity of the LEC, a sensitivity analysis is carried
out, consisting of two distinct cases. In the first case, no TES is
employed, while in the second case, Azelio TES is dispatched.
Fig. 13 illustrates the levels of PV curtailment and operational
costs incurred by the LEC at various PV integration levels: 15%
(baseline)-100%. Up to a PV penetration level of 45%, neither of
the cases experience PV curtailment. However, at PV penetration
levels of 60% and 75%, a notable distinction arises between the
two cases. In case 1, without any TES, PV curtailment occurs,
whereas in case 2, the utilization of Azelio TES eliminates PV
curtailment by leveraging its flexibility capabilities. This can
be further elaborated in Fig. 14 which showcases the charge
profile of the TES during a PV penetration level of 75%. During
peak PV hours (from 12:00 to 16:00), the TES is charged to
prevent PV curtailment. In higher PV penetration levels, both
cases experience PV curtailment to some extent; however, the
implementation of Azelio TES still plays a significant role in
reducing the amount of curtailment. It is important to note that
even with the TES, complete avoidance of PV curtailment in
high penetration scenarios is unachievable due to the limited
capacity of the TES, which restricts further charging during
periods of high PV generation. Furthermore, the cost analysis
reveals that case 2 consistently exhibits lower expenses across
all PV penetration levels compared to case 1. This cost disparity
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Fig. 14. Validation of proposed model with Azelio real-time model – Charge
operation.

is primarily attributed to the contribution of the TES in enabling
energy arbitrage and generating income for the LEC. As PV
penetration levels increase, the cost difference between case
1 and case 2 becomes more pronounced. This is because the
TES not only provides income through energy arbitrage but also
helps mitigate the costs associated with PV curtailment in high
penetration scenarios.

F. Validity of the TES Model

The main objective of this section is to investigate the va-
lidity of the proposed model for the TES with Azelio real
time study models. Although the proposed model is a novel
enthalpy-temperature based model for TES which also considers
the liquid and solid phases of the TES, however, to make it
tractable in optimization studies some simplifications are made
comparing to real-time study models. For example, the TES
in this study is modelled as a non-dimensional mass of PCM,
while Azelio models the TES as a discretized 2D-axi-symmetric.
Additionally, the properties of the cooling system fluid and the
heat transfer fluid are considered constant and independent from
temperature, which is not the case in the Azelio in-house model,
where the fluid property models are temperature dependent. An-
other significant difference lies in the Stirling engine controller,
which Azelio has designed to regulate both engine speed and
pressure as function of requested power output, heat source and
heat sink temperature, according to a detailed engine mapping.
On the other hand, the proposed TES.POD model used in this
study operates the engine with less strict boundaries.

To validate the assumptions made in the linearized model,
the proposed model’s results are compared to what the Aze-
lio in-house TES.POD model would produce under the same
assumptions and inputs. The optimized charge and discharge
profiles resulted from 75% PV penetration of Fig. 14 in the
proposed linearized model are shown in Figs. 15 and 16. Note
that there is not a direct match between optimization inputs and
the Azelio in-house model, therefore the following adjustments
were considered:
 The “Charge power” in Fig. 14 is the available charging

power for the TES.POD, not necessarily the actual power
input. The charging power controller may curtail the power
as the TES approaches full charge to prevent overheating
of the PCM. The “Discharge power” in Fig. 15 repre-
sents the required power at the AC generator output. The
TES.POD discharge controller adjusts the engine setpoint

Fig. 15. Validation of proposed model with Azelio real-time model – discharge
operation.

Fig. 16. Validation of proposed model with Azelio real-time model – discharge
operation, residual heat of Azelio TES.

(pressure and speed) to match the power request at the
inverter output. To account for power losses downstream
of the AC generator, the proposed linearized model power
request was reduced. However, the temperature limits con-
sidered in the model of Section III prevent overcharging or
over-discharging.

 The optimization TES model was initialized at 849.8 K,
which corresponds to setting the Azelio in-house 2D model
to homogenously 833 K as the real-life measured temper-
ature is the temperature of the outer surface of the tank,
close to the tank lid.

 Regarding the residual heat profile, it was necessary to
increase the proposed model’s residual heat output by 3
kW, representing the cooling needs of the Stirling engine
oil, before comparing it to the Azelio in-house output.

Results from the validation process are shown in Figs. 14, 15
and 16 for the charging power, discharging power and residual
heat, respectively. Fig. 14 clearly shows an exact match between
the charging power profile calculated by the proposed linearized
model for this scenario and what the Azelio TES.POD model
is able to charge in the TES. More significant differences can
be noted during the discharge operation (Fig. 15). Here, the
most significant difference is seen at the start and stop of each
discharge: the Azelio in-house model starts the discharging one
hour later than what the proposed linearized model simulated,
and it finishes one hour earlier. This is caused purely by dif-
ferent modelling approaches. The proposed linearized model
simulates with a fixed hourly timestep, while the Azelio in-house
modelling software uses a solver with variable timestep, which
depends on the complexity of the computational state, and
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is always shorter than 30 s. The proposed linearized model
charging power and discharging power request profiles are then
automatically linearly interpolated by the solver to adjust to the
variable timestep. Consequently, there are timesteps when both
the charging power and discharging power request are not null,
e.g., between the 6th and 7th hour, as seen in Fig. 15 Azelio
TES.POD model always prioritises charging over discharging
and therefore it triggers the discharge start only when the charg-
ing power has reached 0 kW, e.g., after the 7th hour from the
start in Fig. 15.

Similarly, the same situation takes place once again when the
discharge is stopped, with the Azelio model stopping the dis-
charge one hour earlier than in the proposed linearized model. As
this difference is independent from the quality of the proposed
model and irrelevant to the validation of it, the power difference
between Azelio and the proposed model outputs was calculated
only when Azelio TES.POD model power output is not null.
The Azelio TES.POD model supplies generally less power than
the proposed linearized model, with a power difference that
increases as temperature of the storage decreases. This is due to
the highly detailed TES model in use at Azelio, which replicates
the different temperatures inside and outside the PCM. As the
PCM is cooled from the outside, the outermost layers of the
PCM are the first to solidify, meaning that the same heat flow
will be transferred to the Stirling engine at lower temperature
due to the thermal gradient across the solid zone. This causes
a decrease in the electrical power output. This power tapering
effect is most accentuated at lower temperatures’, e.g., between
the 21st and 24th hour in Fig. 15. Given the charge and discharge
profile presented in Figs. 14 and 15, the PCM was not melted
enough to supply constant temperature heat for the next 7 hours
and, as a consequence, the TES.POD would experience tapering
in the last couple of hours of discharge. This behaviour is com-
pletely absent in proposed model as here the TES is considered
a non-dimensional mass always at homogenous temperature.
However, the proposed model delivers, on average, only +0.56
kW electricity more at generator output than the Azelio model,
with a maximum difference nearing +1.8 kW. These results are
considered acceptable, considering the significant differences
in the modelling approach. Therefore, the proposed linearized
model model is considered valid for the performed studies.

Finally, the comparison of the proposed linearized model and
Azelio TES.POD models in terms of residual heat is shown
in Fig. 16. As the residual heat profile is directly linked to
the one of the power outputs, the conclusions drawn regarding
the latter apply in this case as well. It is interesting to discuss
about how the Stirling engine efficiency comes into effect. The
thermal power difference spikes between the 10th and 12th hour
in Fig. 16 can be explained by a change in Stirling engine setpoint
in the Azelio TES.POD model leading to higher efficiency
(and therefore less residual heat) compared to the proposed
linearized model. Similarly, it is interesting to notice that that
the thermal power output difference decreases while the power
output difference increases by the end of the second discharge
in Fig. 16. This happens because of the temperature tapering in
the Azelio model, causing the efficiency of the Stirling engine to
decrease and the amount of heat that the cooling system needs

to cool to increase. On average, the proposed linearized model
supplied +1.09 kW thermal additional power compared to the
Azelio model.

VI. CONCLUSION

This paper presented an IGDT based EMS for optimal heat
and power scheduling in LECs. A novel enthalpy-temperature
based model for the TES was specifically designed for appli-
cation in MILPs and validated by real time studies of Azelio
industrial TES. The validation study revealed that the proposed
model exhibits a high level of accuracy when compared to the
real-time model. This suggests that the model reliably captures
the behavior and performance of the TES system while it can
effectively be used in both operational and planning MILP
studies. The role of Azelio TES.POD on enhancing the PV
hosting capacity of the LEC was investigated and shown that
hosting capacity can be increase to more than 75% without any
PV curtailment. The uncertainties of PV and load were modeled
by IGDT method, and the Pareto front optimal solutions showed
with increasing the UB more robustness is provided against
forecast errors of PV and load. The best solution among Pareto
optimal front was selected based on the accuracy of the con-
ducted forecasts and the results were presented. A Monte-Carlo
simulation was conducted with considering the PDFs of fore-
casted errors of load demand and PV power retrieved from the
forecasts. It was shown that with selecting the appropriate UB,
the prespecified operation cost can be guaranteed. Compared
with SO and RO, the IGDT-based model is notably more robust,
albeit with slightly higher costs than SO. The suggested future
direction involves conducting a practical EMS to co-optimize
energy and flexibility utilizing Azelio thermal energy storage
within the LEC.

REFERENCES

[1] S.-L. Penttinen, P. Aalto, and T. Haukkala, EU Electricity Market Reform
and the Adoption of the Clean Energy Package Addressing System Flexi-
bility. Bandung, Indonesia: Eltran, 2020.

[2] S. Kuravi, J. Trahan, D. Y. Goswami, M. M. Rahman, and E. K. Stefanakos,
“Thermal energy storage technologies and systems for concentrating solar
power plants,” Prog. Energy Combustion Sci., vol. 39, no. 4, pp. 285–319,
2013.

[3] S. Wong and J.-P. Pinard, “Opportunities for smart electric thermal storage
on electric grids with renewable energy,” IEEE Trans. Smart Grid, vol. 8,
no. 2, pp. 1014–1022, Mar. 2016.

[4] J. Kiviluoma et al., “Harnessing flexibility from hot and cold: Heat storage
and hybrid systems can play a major role,” IEEE Power Energy Mag.,
vol. 15, no. 1, pp. 25–33, Jan./Feb. 2017.

[5] M. Jadidbonab, B. Mohammadi-Ivatloo, M. Marzband, and P. Siano,
“Short-term self-scheduling of virtual energy hub plant within thermal
energy market,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3124–3136,
Apr. 2020.

[6] M. M. Bidgoli, H. Karimi, S. Jadid, and A. Anvari-Moghaddam, “Stochas-
tic electrical and thermal energy management of energy hubs integrated
with demand response programs and renewable energy: A prioritized
multi-objective framework,” Electric Power Syst. Res., vol. 196, 2021,
Art. no. 107183.

[7] D. Steen, M. Stadler, G. Cardoso, M. Groissböck, N. DeForest, and
C. Marnay, “Modeling of thermal storage systems in MILP distributed
energy resource models,” Appl. Energy, vol. 137, pp. 782–792, 2015.

[8] G. Tk and V. Raj, “Use of phase change material (PCM) for the improve-
ment of thermal performance of cold storage,” MOJ Curr. Res. Rev, vol. 1,
no. 2, pp. 49–61, 2018.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 25,2024 at 00:43:28 UTC from IEEE Xplore.  Restrictions apply. 



MOHITI et al.: IGDT-BASED ENERGY MANAGEMENT SYSTEM FOR LOCAL ENERGY COMMUNITIES 4481

[9] Y. Dai et al., “A general model for thermal energy storage in combined
heat and power dispatch considering heat transfer constraints,” IEEE Trans.
Sustain. Energy, vol. 9, no. 4, pp. 1518–1528, Oct. 2018.

[10] Y. Dai et al., “Integrated dispatch model for combined heat and power
plant with phase-change thermal energy storage considering heat transfer
process,” IEEE Trans. Sustain. Energy, vol. 9, no. 3, pp. 1234–1243,
Apr. 2017.

[11] F. Wei et al., “A novel thermal energy storage system in smart building
based on phase change material,” IEEE Trans. Smart Grid, vol. 10, no. 3,
pp. 2846–2857, May 2018.

[12] Q. Chen, “Entransy dissipation-based thermal resistance method for heat
exchanger performance design and optimization,” Int. J. Heat Mass Trans-
fer, vol. 60, pp. 156–162, 2013.

[13] M. Mohiti, M. Mazidi, N. Rezaei, and M. - H. Khooban, “Role of vana-
dium redox flow batteries in the energy management system of isolated
microgrids,” J. Energy Storage, vol. 40, 2021, Art. no. 102673.

[14] M. Kermani, E. Shirdare, A. Najafi, B. Adelmanesh, D. L. Carnì, and
L. Martirano, “Optimal self-scheduling of a real energy hub considering
local DG units and demand response under uncertainties,” IEEE Trans.
Ind. Appl., vol. 57, no. 4, pp. 3396–3405, Oct. 2021.

[15] Y. Li, M. Han, M. Shahidehpour, J. Li, and C. Long, “Data-driven distribu-
tionally robust scheduling of community integrated energy systems with
uncertain renewable generations considering integrated demand response,”
Appl. Energy, vol. 335, 2023, Art. no. 120749.

[16] M. Tostado-Véliz, A. R. Jordehi, S. A. Mansouri, and F. Jurado, “A
two-stage IGDT-stochastic model for optimal scheduling of energy
communities with intelligent parking lots,” Energy, vol. 263, 2023,
Art. no. 126018.

[17] M. Dolanyi, K. Bruninx, J. - F. Toubeau, and E. Delarue, “Risk-
based constraints for the optimal operation of an energy com-
munity,” IEEE Trans. Smart Grid, vol. 13, no. 6, pp. 4551–4561,
Jun. 2022.

[18] M. Jasinski et al., “Operation and planning of energy hubs under
uncertainty—a review of mathematical optimization approaches,” IEEE
Access, vol. 11, pp. 7208–7228, 2023.

[19] S. Dorahaki, M. Rashidinejad, S. F. F. Ardestani, A. Abdollahi, and
M. R. Salehizadeh, “Probabilistic/information gap decision theory-based
bilevel optimal management for multi-carrier network by aggregating
energy communities,” IET Renewable Power Gener., vol. 17, no. 6,
pp. 1436–1465, 2023.

[20] D. Masihabadi, M. Kalantar, Z. Majd, and S. V. S. Saravi, “A novel
information gap decision theory-based demand response scheduling for a
smart residential community considering deep uncertainties,” IET Gener.,
Transmiss. Distrib., vol. 17, no. 6, pp. 1383–1399, 2023.

[21] “Azelio thermal energy storage.” Accessed: Feb. 8, 2024. [Online].
Available: https://www.azelio.com/the-solution/technology/

[22] “Modular control systems for maximizing solar energy utilization and
grid service provisions by residential PV systems coupled with thermal
storage,” [Online]. Available: https://sunsets.upatras.gr/

[23] M. Mohiti, M. Mazidi, and D. Steen, “A risk-averse energy management
system for optimal heat and power scheduling in local energy communi-
ties,” in Proc. IEEE Int. Conf. Environ. Elect. Eng. IEEE Ind. Commercial
Power Syst. Europe, 2022, pp. 1–6.

[24] M. Yazdaninejad, N. Amjady, and S. Dehghan, “VPP self-scheduling strat-
egy using multi-horizon IGDT, enhanced normalized normal constraint,
and bi-directional decision-making approach,” IEEE Trans. Smart Grid,
vol. 11, no. 4, pp. 3632–3645, Jul. 2019.

[25] M. Mazidi, H. Monsef, and P. Siano, “Robust day-ahead scheduling
of smart distribution networks considering demand response programs,”
Appl. Energy, vol. 178, pp. 929–942, 2016.

Maryam Mohiti received the B.Sc. and M.Sc. de-
grees from the Sharif University of Technology,
Tehran, Iran, in 2011 and 2013, respectively, and the
Ph.D. degree in electrical engineering from the Uni-
versity of Tehran, Tehran, Iran, 2019. She is currently
a postdoc Researcher with the Chalmers University
of Technology, Gothenburg, Sweden. Her research
interests include microgrids, energy storages, energy
systems, and energy forecast.

Mohammadreza Mazidi received the B.S. and M.S.
degrees in electrical engineering from the Iran Uni-
versity of Science and Technology, Tehran, Iran, in
2010 and 2012, respectively, and the Ph.D. degree
from the University of Tehran, Tehran, in 2016. He is
currently a Researcher with the Chalmers University
of Technology, Gothenburg, Sweden. His research
interests include renewable-based power system plan-
ning, operation, and control and energy systems.

Niccolò Oggioni received the B.Sc. degree in en-
ergy engineering from the Alma Mater Studiorum
University of Bologna, Italy, in 2017, and the M.Sc.
degree in sustainable energy engineering from the
Royal Institute of Technology, Stockholm, Sweden,
in 2019. Between 2019 and 2023, he was part of the
Research and Technology team as a System Engineer
with Azelio AB, where he developed models of ther-
mal energy storage based on phase-change materials.
He is currently a Energy Storage Product Specialist
with Soltech Energy Solutions, where he supports and

optimizes the operation and maintenance of BESS power plants in Sweden.

David Steen received the M.Sc. and Ph.D. degrees in
electrical engineering from the Chalmers University
of Technology, Gothenburg, Sweden, in 2008 and
2014, respectively. He is currently a Researcher with
the Department of Electrical Engineering, Chalmers
University of Technology. His research interests in-
clude modeling and control of integrated energy sys-
tems and distributed energy resources such as solar
PV, wind power, electric vehicles, and energy storage.

Le Anh Tuan (Member, IEEE) received the B.Sc.
degree in power systems from the Hanoi University
of Technology, Hanoi, Vietnam, in 1995, the M.Sc.
degree in energy economics from the Asian Institute
of Technology, Bangkok, Thailand, in 1997, and the
Ph.D. degree in power systems from the Chalmers
University of Technology, Gothenburg, Sweden, in
2004. He is currently an Associate Professor with the
Division of Electric Power Engineering, Department
of Electrical Engineering, Chalmers University of
Technology. His research interests include modeling,

optimization, control and protection of integrated energy systems, and active dis-
tribution networks with high level of renewables and energy storage, wide-area
monitoring and control of large power transmission systems, machine learning
applications to power systems, modeling and design of energy, and ancillary
service markets.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 25,2024 at 00:43:28 UTC from IEEE Xplore.  Restrictions apply. 

https://www.azelio.com/the-solution/technology/
https://sunsets.upatras.gr/

