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Sammanfattning 

Sveriges nationella mål är att inom 20 år ha en elproduktion som är fossilfri. I 
Sverige står vattenkraften för en stor del av den fossilfria produktionen, och med 
optimering kan vattenkraftsproduktionen ökas. I vårt projekt har vi arbetat med att 
få ned osäkerheterna som finns inom vattenkraftsbranschen om hur stora 
snövattenmängder som ligger i fjällterräng, och hur man kan förbättra 
tillrinningsprognoserna till vattenkraftbranschens regleringsmagasin. Inom 
kraftbranschen räknar man med att vårflodsprognoserna kan ha en osäkerhet på 20 
% i fjällnära terräng. Denna höga osäkerhetsnivå skapar förlust i potentiell 
vattenkraft om en del av smältvattnet måste spillas förbi kraftverkets turbiner då 
kraftverksmagasinen är fulla. Vi har med en ny metodik som vi tagit fram i 
projektet SNODDAS lyckats visa att man kan få ned osäkerheterna till 5 % med 
befintliga snöobservationer och förbättrade modeller. Detta skapar ett bättre 
planeringsutrymme för vattenkraften, och gynnar produktionen av hållbar elkraft. 
I vår metodutveckling har vi integrerat satellitobservationer och distribuerat och 
nedskalat dem till högre bildupplösning m h a markburna snöobservationer genom 
en maskininlärningsalgoritm, samt utvecklat en snödrevsmodul till det 
hydrologiska verktyget HYPE. All data har sedan assimilerats för beräkning av 
tillrinningsprognoser med lägre osäkerheter som direkt kan tillämpas av 
vattenkraftindustrin. Ett problem med vår metodik är att den till stor del bygger på 
manuella snöobservationer längs observationslinjer, vilket ger en relativt hög 
kostnad. I fortsatta studier vill vi undersöka om man kan ersätta de manuella 
observationerna med drönarmätningar som kan mäta över större ytor på kortare 
tid, vilket skulle kunna innebära att vår metod kan utvecklas för användning i 
industriell produktion i hela älvsystem. 

Summary 

Sweden's national goal is to have fossil - free electricity production within 20 
years. Hydropower accounts for a large part of fossil-free production in Sweden, 
and with optimization of the prognostic tools, the hydropower production can be 
increased. In SNODDAS we have worked towards reducing the uncertainties of 
the snow water volumes that are stored in mountainous terrain, and by this aid 
towards improved forecasts of the filling rates into hydropower reservoirs. The 
hydropower industry currently estimate that their spring flood forecasts have an 
uncertainty of 20% in mountainous terrain. This high level of uncertainty creates a 
loss of potential hydropower if part of the melt water has to be spilled past the 
power plant's turbines instead of being used in production. With a new 
methodology that we developed in the SNODDAS project, we have succeeded in 
showing that it is possible to reduce the uncertainties to 5% with existing snow 
observations and improved models. This creates a better planning space for 
hydropower, and benefits the production of sustainable electricity. In our method 
development, we have integrated satellite observations and distributed and scaled 
them down to higher image resolution using ground-based snow observations 
through a machine learning algorithm, and developed a snow drift module for the 
hydrological tool HYPE. All data have since been assimilated for the calculation 
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of inflow forecasts with lower uncertainties that can be applied directly in 
increased production of hydropower. A problem with our methodology is that it is 
largely based on manual snow observations along observation lines, which results 
in a relatively high cost. In further studies, we want to investigate whether it is 
possible to replace the manual observations with drone measurements that can fly 
over larger areas in a shorter time, and provide extensive snow depth data. This 
will increase the possibility to realize our higher ambition, to provide a snow 
observation methodology designed to be for use in industrial production in entire 
rivers. 

Inledning/Bakgrund 

The national goal for energy production in Sweden is to by 2040 be free from 
fossil fuel, and such be powered by renewable energy resources. By this, the 
production from hydropower will likely be even more important in the national 
mix. An increase of hydropower can be achieved without a further exploration of 
new hydropower dams, as long as the production is increased within the existing 
hydropower plants. This can be satisfied by: 1), higher flux of water into the 
hydropower dams, and earlier onset of snow melt which is the prognostic trend in 
all the climate scenarios for the present century (www.smhi.se/klimat), and 2), 
higher efficiency in using the potential energy of the incoming water. Here we 
propose to increase the efficiency of hydropower production as an aid to meet the 
increasing demands of renewable energy. Due to its large capacity to store 
potential energy, hydropower is the battery of the national power grid. As the only 
renewable energy system that presently can store large amounts of potential 
power for a longer time frame, hydropower will be even more valuable to balance 
the growing and more volatile parts in the renewable mix, such as solar and wind 
power. Hydropower will play a key role in the future as a regulator in a future 
flexible and robust green energy system. One of the challenges for the 
hydropower industry is to predict the spring flood volume. Knowledge of the 
melting volumes are important for several reasons, as for dam safety, to be able to 
follow the regulation rules set up for each reservoir and to regulate the flow in a 
way that as much as possible will prevent damage on the environment and the 
public interest of river flow and water levels. Directly related to economic gain by 
the forecasts is the optimization of the hydropower production. The challenges to 
optimization rest on two main questions, one part is to achieve better knowledge 
of the potential production, and another part is the optimization of production 
during spring flood by minimizing the total spill beside the turbines. Spilling 
occurs when the inflow of water to reservoirs and rivers from snowmelt and rain 
is larger than what can be used for power production or can be stored in the 
reservoirs on a short-term basis. To avoid spill, hydrological forecasts are used to 
plan the power production on both shorter and longer time horizon, so that the 
remaining filling capacity in the reservoirs at any time during the snow melt 
period is large enough for the remaining accumulated snow water storage when it 
melts. The uncertainties of the total amount of snow water storage in the 
catchment, and its distribution in the catchment cascade the uncertainty of the 
water flow into the dam. In our estimates, the spill (loss) of potential energy one 
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anomalous year (2015) due to high inflow amounted 1 % of the net production in 
Umeälven. This number will vary between rivers and river parts due to difference 
in buffer capacity, but if we use this number as an average it will build up to 
significant numbers of lost energy production. It is not likely all of the spill can be 
avoided, but even a fraction of this will be a gain in the production of renewable 
energy. A further motivation to better manage the snow storages is the fact that 
anomalous melt / precipitation patterns seems to get more usual due to the 
warming trend, and such the melt season is gradually changing from a more finite 
period into something more like a continuum, or a series of episodes, which 
makes the characterization of snow storages ever more important for planning 
purposes.  
 
The estimation of snow water volumes has been a continuous enigma in mountain 
hydrology (Peck, 1972; Blöschl, 1999; Dozier et al., 2016). Many different 
methodologies and techniques have been tested and taken forward. With enough 
instrumentation, a catchment can be monitored; However, due to the 
inhomogeneous character of the snow cover, it is not economically feasible to 
cover enough area with instruments. Passive microwave remote sensing has been 
often used for large-scale snow mass monitoring, but rugged mountain terrain and 
the failure of current passive microwave sensors to estimate SWE in snow depths 
> 1 m (Chang et al., 1987; Pulliainen et al., 2020) have posed large obstacles to 
adopt a methodology solely reliant on satellite observations. One way to remedy 
the lack of a single standard method to monitor/measure the SWE is to use 
statistical methods such as assimilation techniques, where different sort of data 
will be homogenized into a statistically product for a best estimate of the SWE 
(Magnusson et al., 2014), and/or using machine learning for optimal distribution 
of patchy high resolution data to nudge well distributed, but low resolution data 
(Zhang et al., 2021).  
 
In our SNODDAS project we aim to utilize the full power of data assimilation and 
machine learning to combine manually derived observation data with remote 
sensing products from both drone and satellite platforms, combined with weather 
model products to produce transient snow volumes products over our test period 
2017-2020 for the Överuman catchment. The project was financed from The 
Swedish Energy Agency 2018-2021. 

Genomförande  

OBJECTIVES 
The main goal of the project is to improve the spring flood forecasts by 
developing a methodology for more accurate determination of the snow water 
equivalent (SWE) reservoir. The project´s aim is to improve the forecasts of the 
routing of water to an uncertainty better than 10% in mountain catchments, and 
with this reduce the current uncertainties for inflow into the hydropower 
reservoirs. Our expected outcomes for the project were to: 
 

1) develop a methodology that systematically integrate information from 
available remotely sensed snow products and terrestrial snow 
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measurements as inputs to models for snow and spring flood forecast, with 
the aim to reduce the part of the spring flow forecast error due to 
uncertainty in the size of the snow reservoir to below 10% on average, or 
better. 

2) develop a method to determine the volume and distribution of the snow 
reservoir within a defined catchment and such be well adapted to the needs 
and the usability for the power industry. 

3) broaden the existing forum in the field within Scandinavia to exchange 
experience and knowledge with regard to snow reservoirs and routing into 
hydropower dams. 

The motivation for this project was the fast development in measurement 
technology and data assimilation, resulting in a greater precision in the estimate of 
the spatial distribution of snow and the total water content in a given snow 
reservoir. The purpose of the project was accordingly to take advantage of the 
methodological development and apply this where the hydropower industry 
currently has large uncertainties to determine robust prognosis of the spring flow, 
decrease these uncertainties, and such enable an increased production of green 
energy for the society.  
 
This main goal is parted with the following sub-goals, where we aim to: 
 

a. Develop an improved methodology for measuring snow depth and snow 
water content in montane catchments using ground-bound and remote sensing 
measurement methods with the aim of reducing uncertainties of snow water 
volumes . 
b. Develop an improved methodology for assimilating satellite and ground-
bound measurements in distributed snow models to by upscaling the low-
density microwave imagery satellite information using high density data from 
other sources.  
c. Improve our preferred snow model with a snow drift module, to better 
represent how wind and topography influence the snow distribution. This part 
will in combination with a) and b) aid to increase the forecast certainty of the 
inflow. 
d. Develop methodologies that can be freely implemented in the various water 
routing forecast models used. 
e. Evaluate the extent to which an improved snow volume forecast can 
contribute to a more resource-efficient regulation of hydropower dams with 
regard to established environmental requirements and production optimization. 
f. Evaluate the extent to which assimilation of the snow reservoir's water 
content improves the spring flood forecast as compared to other uncertainties 
that affects the hydrological routing modeling.  
g. Initiate a Scandinavian forum for experience in the field of snow 
measurements and the use of snow measurement information (instruments, 
techniques, methods and tools) which would mean increased co-operation in 
R&D between academy, research institutes and industry. 
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PROJECT GROUP 
The project was carried out as a collaboration between Uppsala University, 
SMHI, Vattenregleringsföretagen, Uniper and Vattenfall, and disseminated by 
Energiforsk's program for hydrological development in the hydropower industry 
(HUVA). People active in the project and their role were:  
 
Uppsala University (UU): Prof. Veijo Pohjola*, snow expert and project leader; 
Dr. Rickard Pettersson, technical expert on snow measurements from ground 
measurements and UAV technology; Dr. Jie Zhang, remote sensing and machine 
learning expert. BSc Viktor Fagerström, UAV/drone engineer. UU was 
responsible for producing high-resolution data from remote sensing techniques of 
the snow volume distribution in the test areas. 
SMHI: Dr. David Gustafsson*, hydrologist and expert on modeling snow packs 
and hydrological routing, as well as data assimilation techniques. Dr. Ilaria 
Clemenzi, hydrologist and snow pack expert, responsible for implementing the 
snow distribution model and hydrological model calibration. SMHI was 
responsible for snow distribution modeling, data assimilation, runoff modelling 
into the dam, and for assessment of the economic value of our improved modeling 
efforts. 
Vattenregleringsföretagen (VRF): Björn Norell*, hydrologist and expert in 
snow observations and our primus motor providing the links between academia, 
institutes and industry. Also responsible for snow assessments and the annual field 
campaigns under the auspices of VRF, and is the project's contact person for 
Uniper, Vattenfall, and Energiforsk (HUVA) and the other hydropower 
companies. Dr. Wolf Marchand, SWECO, snow radar expert, hired by 
Vattenregleringsföretagen to maintain the snow radar observation of snow depths 
in the annual campaigns at Överuman. 
(names with asterix are those who have the main responsibility to SNODDAS in 
each of the organizations). 

 
WORK PACKAGES 
Work package 1: Ground-based snow observations.  

Observations of snow depth (SD) and snow water equivalent (SWE) volumes in 
the Överuman catchment. This WP engaged all three partners, where VRF carried 
the main responsibility for the field operations, and in particular for the ground-
based snow line surveys, UU managed the UAV/drone-based 
observations/validations, and SMHI the snow drift observations/validations. Our 
industry contacts provided us snow observation data from two other catchments 
we used further in our assessment of our methodology. 
 
Work package 2: Snow cover modeling and data assimilation.   

Modeling of the distribution of SD and SWE in the terrain with assimilation of 
satellite and ground-based observations: a). Satellite data module - development 
of a methodology to estimate downscaled distributions of SD and SWE from 
satellite microwave imagery (UU); b). Distributed snow modelling module - 
development of a distributed snow model for integration in hydrological models, 
and for assimilation of distributed snow observations (SMHI); and c). Data 
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assimilation module - development of a data assimilation scheme to enable 
assimilation of the distributed snow data developed in WP1 and in WP2 a) in the 
snow model developed in task b (SMHI). 
 
Work package 3: Hydrological model forecasting and snow data assimilation. 

Assimilation of snow data in hydrological models and hydropower reservoir 
inflow forecasting: The data assimilation methods developed in WP2 were 
adapted to hydrological modelling, to enable assimilation of the ground and 
satellite-based snow data from WP1 and 2 in spring flood runoff forecasting 
models. The objectives of the work package were twofold: a) to develop and 
demonstrate a set of data assimilation methods that could be applied in the 
hydrological models available to the hydropower industry, and b) to assess the 
degree of improvement in spring flood forecasting skill gained by assimilating the 
snow data developed in WP1 and WP2 compared to traditional and climatological 
forecasting methods. First, we compared the direct updating methodology used by 
VRF to assimilate the ground-based snow survey data in the HBV model to the 
more advanced Ensemble Kalman data assimilation scheme available in the 
HYPE model used by SMHI. Secondly, we assessed the added value of 
assimilating the snow products from WP2 compared to the original snow data 
from WP1. In all cases, the improvement in spring flood forecasts were compared 
with the degree of improvement in the assimilation of other available satellite-
based snow products. In addition, the choice of snow model complexity, and the 
snow model calibration strategy was further assessed as part of the spring flood 
forecasting experiments. 
 
Work package 4: Evaluation. 

Evaluation of how the improved spring flood forecasts can contribute to a more 
resource-efficient water management with regard to both production optimization 
and established environmental requirements. Within H2020 IMPREX, SMHI has 
developed a simplified economic model for comparing the production value of 
different spring flood forecasts, considering current production capacity, degree of 
filling of the reservoirs, and established rules for degree of filling and bottling. 
This model will be further developed to include different types of environmental 
requirements that may limit regulation in the magazines. The work package will 
develop a method for estimating at a given location the degree to which the 
uncertainty in the spring flood forecast depends on the start condition (snow 
information) compared with the weather development during the spring flood 
period. This knowledge can be used to assess the value of adding information 
from snow measurements at this site, and is partly a co-financing through the 
IMPREX project. 
 
Work Package 5: Delivery. 

This work package is the dissemination of our results, including scientific 
publications, dissemination and discussion of our results with the scientific 
society and the hydropower industry as well as our reporting to the Swedish 
Energy Agency. 
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used a snowmobile pulled ground penetrating radar (GPR) system developed by 
Wolf Marchand at SWECO, managing a continuous record of snow depths along 
the lines. The observations were completed by a team following the GPR unit, 
that stopped at a series of snow observation points, were the snow depths were 
probed, and the snow density was measured by bulk samples. There are totally 70 
observation points spread along with an even distance along the eight 
observations lines (Appendix 6). The snow measurements were performed during 
field campaigns, once per year, close to the start of snowmelt by accurate snow 
depth radar measurements and manual sampling of density. The eight snow 
courses together have a total length of 75 km. Table 7:1 in Appendix 7, show the 
properties of the snow lines. 

Snow depth 
The measurements of snow depth were made by ground penetrating radar (GPR) 
with the measuring equipment mounted on a sledge. During the measurement the 
GPR transmitter sends a diverging beam of energy pulses into the subsurface and 
the receiver collects the energy reflected from interfaces between media of 
differing electrical properties. The large contrast between the snow and the 
underlying base (e.g. soil, rock and ice) makes it possible to effectively measure 
the snow structure (Ragulina et al., 1995).  

The snow depth is calculated from the two-way time (TWT) by: 𝑆𝐷 = v TWT2   

where v is the velocity of the radar pulse. 

For dry snow v can be estimated by an empirical formula of the relative real 
dielectric constant for snow, which is dependent on the specific density of snow 
(Kovacs et al., 1995). Therefore, the snow depth calculations are dependent on 
good estimates on the snow density. 

To be able to verify and calibrate the radar signal the snow depth is checked 
manually at specific control points. The control points, a total of 72, are located at 
each kilometer with the coordinates located from the map which means that they 
are randomly distributed regarding the snow conditions. A plot of all snow depths 
is shown in Appendix 1. 

The reason why the snow depth measurements is prioritized with such a number 
of samples is the natural variation of the accumulated snow. According to the 
measurements the range of snow depth along the snow courses normally is 
between zero and 5-9 m (Appendix 7, Table 7:2). Snow course #6 usually have 
the deepest snow with the highest value 2018 when 10,2 m was found. Courses #2 
and #7 have the highest mean value, but also the highest variation of the mean 
value. All together the variation of snow depth is 64 % of the mean value. 

Snow density 
By use of a McCall snow sampler the snow density was sampled at each control 
point along the snow courses. The sampler is pushed preferably through the whole 
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snowpack, the snow depth noted on the sampler and a snow core taken up and 
weighed. Care must be taken not to lose any snow before weighing. 

With density measurements at different snow depths at the control points the 
relationship between the snow depth and the density can be determined. The 
relationship is then been used to interpolate the density to every radar point along 
the snow course. By taking an additional sample to a-bout the half snow depth at 
sites where the snow is deeper than 2 m this relationship can be further accurately 
established. Normally the density is between 350 and 550, where the highest 
values mostly are found in very deep snow. The maximum allowed density in the 
interpolation is 600 kgm−. The density variation (standard deviation) is 8 % of 
the mean density, which defends the sparse number of density measurements in 
the survey, compared to the depth sampling. 

 
Figure 3 show the SWE along snow line 1, which is situated in the northeastern 
corner of the catchment (Figure 1). Data from all of the lines and all of the years 
are shown in Appendices 1 and 2. The dashed distribution between radar samples 
120-180 are values we do not trust. 

Snow water equivalent 
The direct purpose of establishing the measurement program was to give 
additional data of snow water equivalent (SWE) for updating of the operational 
HBV inflow forecasting model. An additional goal was also to gain data for the 
continuation of the development of hydrological tools for hydrological forecasting 
models. The SWE is the amount of water received in a defined area of the 
snowpack calculated by multiplying the relation between the snow density and the 
density of water with the snow density: 𝑆𝑊𝐸 = density snowdensity waterSD 

where the density of water = 1000 kgm-3. 
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Snow course #8 was not measured in 2018 and #3 and #7 not measured in 2019. 
The calculations of the total SWE in the catchment is dependent on all eight snow 
courses and the missing measurements has been completed by estimations, where 
the factor of the mean snow depth divided by the total SWE the earlier years was 
used. The measurement system has been set up and evaluated with all snow 
course samples together, which means that the length of the snow courses should 
be included in the calculations if the mean values of the snow courses are used. 
The result of the snow measurements during the five years show an accuracy 
between ±5 % of the value of an updated model. 

Statistics on the SWE data is shown in Appendix 7 (Table 7:4). As in the snow 
depth data it is apparent that the variation in the yearly maximum is much bigger 
in snow course #1 than in the other snow courses. The variation (standard 
deviation) among the SWE data is bigger than among the snow depths, 0,77 % of 
the mean value. 

 

Figure 4. Overestimation of the model simulated SWE in percent of the value in 
the model after updating the snow to give the same inflow volume as the measured 
spring flood. 

Calibration of filling rates using snow course SWE 

The simulated snow storage in the operational inflow model was each year 
corrected directly after obtaining the measurement result. Figure 4 show an 
evaluation of the error in the HBV simulated SWE the 1st of May, which is the 
date of the last spring flood forecast. The blue bars describe the error without 
snow correction and the red bars with correction. The comparison was made 
against the same model after correcting the snow storage to give the same 
simulated spring flood inflow volume as the measured volume.  
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hence restricting the flight times to 20-30 minutes and approximately 0.5km2 of 
coverage.  

We flew over the two test surfaces A and B during the spring campaign March 
2020 to get the winter (snow) surface DEM (Hw) and repeated the same mission in 
September to get the bare ground surface DEM (Hs). The snow depth (SD) was 
then calculated by subtracting the winter surface from the summer surface for 
each coordinate, such as SD = Hw–Hs. During the spring campaign we also 
managed manual probing for validation of the drone derived snow depths. In 
addition to these measures, we also tested if it was possible to use the airborne 
laser data DEM from Lantmäteriet (HL), to assess the cost of lower uncertainties 
by having two sets of campaigns. Similarly, the subscript U denote UAV borne 
measurements. 

Results 

Figure 5a show the calculated snow depths from test area B using Hs as 
reference.,with the point measurement of HUw at the exact spot of the manual 
probing. The number of probings on this site were 18, and the distribution of the 
probing, with an average snow depth of 1.61 m is shown in the boxplot 5b. The 
distribution of the calculated SD from the UAV survey generated a point cloud of 
2 105 data points using HLs as reference and 5 107 data points using HUs as 
reference. The distribution of these data clouds is shown in Figure 5c and 5d 
respectively. Table 1 present the data from the study of the two test areas. 

 
Table 1. Statistics from the different methods to derive snow depth (SD) in the 
two test areas A and B. The subscripts P, L, and U, mark manual probing, HL, and 
HU respectively. We used the nearest point of L and U to P here. 

 Site A n Ẋ σ Site B n Ẋ (m) σ (m) 

SDP  8 0.74 0.52  18 1.57 0.64 

SDL  8 0.85 0.79  18 1.76 0.71 

SDU  8 0.73 0.75  18 1.69 0.66 
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Figure 6. Assessment of UAV derived snow depths (SD). Both panels show the 
average SD using the two different models for the snow free surface HLs (blue)and 
HUs (red)), compared to the probed average SD. The averaged SD data is shown 
both as total average and an average of model data only at the probed positions. 

Figure 6 and Table 1 summarizes the results from our test campaign using 
UAV/drone as a tool to collect snow depths over an extended area. Figure 5 show 
the average SD using the two different models for the snow free surface (HLs 
(blue)and HUs (red)), compared to the probed average SD. The averaged SD data 
is shown both as total average and HUs at the probed position. This shows a 
relatively good comparison of the modelled SD with comparison the probed SD. 
Using HUs brings a significant better fit with probed SD than HLs does. Not 
surprising, there is a generally better fit using the point average modelled SD at 
the probed points, rather than using a total average of modelled SD using all data. 
The better fit using Hl in Site B than in Site A can probably be explained by the 
fact that the airborne laser data from Lantmäteriet may have larger uncertainties in 
the steep terrain with more vegetation than in the tree free tundra land unit at site 
B. It seems from this study that the cost for taking forward a snow free DEM 
using UAV for reference has a better argument in more complex terrain/land 
cover, than in terrain with simpler cover. The conclusion of this study is that UAV 
borne photogrammetry provide a good and reliable tool to estimate snow depths, 
even in complex terrain, and prove a good tool to measure/monitor the snow cover 
and the snow depth distribution over larger areas.  
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WP2 Snow cover modeling and data assimilation 

Summary: The snow cover of the Överuman catchment was modelled in several 
steps, and using a set of methodologies over the period 2017-2020: 1. The GPR 
observations from WP 1 was re-gridded and used as input in all the steps below; 
2. In the satellite data module we used passive microwave (AMSR2) data as a 
proxy for snow amount (SD/SWE) in combination with the ground observations 
to calculate the distribution of the snow pack using a machine learning application 
to 500 m resolution for the field observation week as a control point 2019 and 
2020; 3. We further downscaled the Copernicus SWE product to 500 m resolution 
over the catchment to create a continuous satellite product with daily resolution 
between 2018 - 2020; 4. In the snow model module, a distributed snow model was 
developed and implemented in the hydrological model HYPE. The snow model 
simulates SWE distribution as a result of the spatial distribution of temperature, 
precipitation, including an explicit snowfall distribution as a function of wind 
direction and topographical sheltering effects. The model was calibrated using the 
snow GPR data from WP1 and reservoir inflow data, using a novel methodology 
for calibration considering the snow distribution characteristics; 5. the data 
assimilation module of the HYPE modelling system was further developed to 
enable assimilation of the different datasets of distributed snow information 
developed in the project and developed in other parallel projects, including the 
GPR survey data from WP1, the machine learning SWE and downscaled satellite-
SWE data from WP2, fractional snow cover data from the European Space 
Agency projects Snow CCI and AI4Arctic, and from the EU FP7 CryoLand 
project.  

Satellite data module 

Introduction 

Due to inaccessibility and a lack of ground measurement networks, accurate 
quantification of snow water storage in mountainous terrains still remains a major 
challenge. Remote sensing can provide dynamic observations with extensive 
spatial coverage, and has proved a useful means to characterize snow water 
equivalent (SWE) at a large scale. However, current SWE products show very low 
quality in the mountainous areas due to very coarse spatial resolution, complex 
terrain, large spatial heterogeneity and deep snow. More information on factors 
that impact the snow distribution, such as topography and vegetation (Dong et al, 
2005; Stähli and Gustafsson, 2006; Veitinger et al., 2014), should be incorporated 
to improve the mountain SWE retrieval from satellites.  

Different from traditional statistical methods, machine learning techniques are 
able to reproduce nonlinear effects and interactions among variables and are also 
robust to overfitting (Hastie et al., 2009, Alpaydin, 2020), and provide great 
potentials for better explaining the complex snow processes in the mountain 
environments. Random forest regression is an ensemble machine learning 
technique based on multiple decision trees to get more accurate and stable 
predictions (Breiman, 2001; Segal 2004; Hastie et al., 2009). Compared with 
other machine learning methods, random forest regression shows its advantages 
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due to its high interpretability and ability in reducing overfitting, measuring 
feature importance, and dealing with smaller sample sizes.  

We explored the potential of random forest regression for improving the 
estimation of mountain snow water storage in the Överuman Catchment, using 
satellite observations, topographic factors, land cover information and ground 
SWE measurements from the spatially-distributed snow survey in WP1. A 
random forest regression model for SWE estimation was developed and then 
applied to the entire catchment for per-pixel SWE estimation. For comparison, a 
multiple linear regression model using the same input parameters was also 
developed in parallel for spatial SWE estimation.  

In addition to machine learning approach, to ensure the continuous monitoring of 
snow amount during the entire snow season, we have also used another approach 
based on snow distribution probability derived to downscale the current existing 
Copernicus SWE product, thus leveraging the temporal coverage and daily 
temporal resolution of Copernicus SWE product and at the same time increasing 
the spatial resolution. The work implements the downscaling based on the snow 
distribution probability derived from the climatological snow cover duration. The 
overview of those two approaches are described below. 

Machine learning approach 

Methods: A machine learning (random forest regression) model is developed to 
improve the estimation of mountain snow water storage in the Överuman 
Catchment (Figure 7).   

Frequency: The method is developed based on the ground truth data collected 
during the field campaign, and thus follows the frequency of field campaigns. 

Method development: first time:The method uses a machine learning approach, by 
integrating satellite observations, topographic factors, land cover information and 
ground SWE measurements from the spatially-distributed snow survey in WP1. 
To our knowledge, this has been the first efforts that the machine learning 
approach has been introduced for improving the quantification of snow water 
storage in Swedish mountain catchments from satellite and ground observations. 
To further test the method, we have also applied our model in another hydropower 
catchment (Ankarvattnet/Blåsjön). 

Outcome: Spatial distribution of SWE in the Överuman Catchment close to the 
peak of snow accumulation at 500m resolution., and spatial distribution of SWE 
in the Ankarvattnet/Blåsjön Catchment close to the peak of snow accumulation at 
500 resolution   

Evaluation/comments: Advantages: the method shows improved SWE estimation 
in terms of both spatial resolution and accuracy, demonstrating great potential for 
regional applications (especially in areas with large spatial heterogeneity like 
mountains). Limitations: limited frequency constrained by the frequency of 
ground truth from field campaigns 

 







  20 (42)  
  

  
  

 

 

 

 

Figure 9. SWE distribution in the Överuman Catchment from random forest 
regression (upper) and multiple linear regression (lower) 2019-03-27. 

 

Results satellite module-SWE downscaling from snow distribution probability 

Figure 10a shows the spatial distribution of SWE in the catchment during the 
2019 field campaign period as downscaled from the Copernicus SWE product, 
and a comparison with the original Copernicus SWE product (Figure 10b) and the 
SWE product based on machine learning approach (Figure 10c). As seen from  
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mountain areas. The downscaled Copernicus SWE product shows much improved 
quality in term of spatial details and higher SWE values, but still have significant 
missing data and underestimation. 

HYPE module 

Methods: dynamic snow pack mass balance modelling integrating meteorological 
information such as time-series of air temperature and precipitation to produce 
timeseries of snow water equivalent, snow depth, and snow density, and snow 
melt runoff averaged and distributed over the hydropower reservoir catchment. 

Frequency: Daily 

Method development: 1. a snow fall distribution model implemented in the HYPE 
hydrological model, 2. Observational operators for assimilation of the distributed 
SWE, SD, and fractional snow cover data in HYPE, 3. Objective criteria functions 
for calibration of snow distribution using high resolution snow survey SWE data,  

Outcome: 1. a lumped and distributed setup of the HYPE model for the Lake 
Överuman catchment, calibrated with the local runoff data and the GPR snow 
survey data (Clemenzi et al, in prep.), 2. New knowledge about the relative 
importance for simulation of snow melt runoff of a. how snow distribution is 
represented in hydrological models,  b. how snow distribution is taken into 
account in the model calibration, and c. by preserving spatial distribution in the 
meteorological data versus aggregating to the catchment scale (Clemenzi et al, in 
prep.)  

Evaluation/comments: Anticipated improvements in snow distribution modelling 
and utilization of distributed snow data for model calibration and for data 
assimilation were achieved according to plan. Direct assimilation of raw 
microwave emission observations in the snow hydrological models are still 
limited by the simplified representation of the land surface physical processes in 
our models, and need further developments to be completed as initially planned. 

Introduction 

Accurate predictions of water volumes stored in snow and released during the 
spring flood are fundamental in regulated catchment for hydropower production. 
In order to improve the predictions of snow water equivalent and spring flood 
volumes in the Överuman catchment, we developed a novel approach to represent 
the spatial distribution of snow produced by precipitation, topography and wind at 
catchment scale. This modelling approach was included in the semi-distributed 
hydrological HYPE model (Lindström et al., 2010).  

The HYPE model consists of several routines where the different hydrological 
processes, e.g., snow accumulation and melt, soil processes, evaporation, and 
runoff, are described. The landscape can be divided in different units (sub-basins) 
and each unit into sub-units which represent different soil and land use classes 
(e.g., forest, open land), linking the landscape characteristics to the physical 
processes by means of the model parameters.  



  23 (42)  
  

  
  

 

 

In the standard HYPE snow distribution is implicitly represented in the function 
used to calculate fractional snow cover, the snow depletion curve by Samuelsson 
et al (2006). The snow depletion curve predicts how the fraction of snow-covered 
area within a sub-unit changes as a function of the snow water equivalent (Figure 
11 c). In the new approach the snow spatial variability was explicitly modelled 
with a function, which distributed snowfall rates between the different model land 
use classes based on wind direction and topography (Figure 11 a,b,d). 

To calibrate the HYPE model, i.e. to select a set of model parameters properly 
describing the hydrological behaviour of the catchment, we used different type of 
observations. In addition to the traditional method with runoff data, we included 
information provided by the GPR snow observations.  

The added value of including a new snow modelling and calibration approach was 
assessed comparing modelled snow distribution and runoff for four different cases 
when using the: 1) snowfall distribution function, 2) the snow depletion function, 
3) the combination of snowfall distribution and depletion functions and 4) without 
snow distribution functions at all. 

The value of the different snow distribution representations for modelling snow 
distribution and runoff was, in addition, assessed in relation to the spatial 
discretization used in the HYPE model and the spatial variability of the 
meteorological data. For this we consider two configurations consisting of both 
one (lumped) and multiple sub-basins (gridded) for the Överuman.  

Data 

Meteorological forcing consisting of precipitation, air temperature and wind 
direction was used to force the HYPE model in the period 2015-2020. 
Precipitation was provided by the gridded products PTHBV at the spatial 
resolution of 4x4 km2 (Johansson and Chen, 2003). Hourly wind direction and air 
temperature data was available with spatial resolutions 2,5x2,5 km2 from SMHI’s 
MESAN analysis (Häggmark et al., 2000), both available at SMHI. Data were 
used at daily time scale and at the resolution of 2.5x2.5 km2. 

Snow surveys were provided by WP1 and resampled at the spatial resolution of 25 
m. They were used for model calibration and validation of the simulated snow 
water equivalent distributions. Daily average values of observed outflow from the 
Överuman lake were provided by Vattenregleringsföretagen. 

Model setup 

The lumped configuration consisted of one model basin covering the Överuman 
catchment (Figure 1), and the gridded configuration consisted in 2.5x2.5 km2 sub-
basins. The HYPE model units (basin or sub-basin) were further divided into 38 
sub-units representing combinations of 3 elevation zones, 4 aspect zones (north, 
east, south, and west facing slopes), 5 land use classes (water, bare soil, shrubs, 
forest, and glacier) and 1 soil class. The hydrological processes were simulated in 
the sub-units within each model unit. 
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The sfdmax is a maximum value with which the snowfall distribution function 
will be truncated before the normalization and wN is a set of wind shelter weights 
calculated for each sub-unit and sub-basin so that the negative and positive 
snowfall corrections add up to zero within each sub-basin. 

HYPE calibration and validation 

The HYPE model with the two spatial configurations was calibrated using inflow 
and snow water equivalent observations. A number of 10,000 simulations were 
performed with a Monte Carlo sampling from a feasible parameter space with 
uniform distribution for both the lumped and the gridded HYPE models. Model 
parameters and their ranges were defined on previous applications of HYPE in 
cold environments (e.g., Gelfan et al., 2017; Strömqvist et al., 2012). Different 
criteria were considered: Nash-Sutcliffe efficiency (nseq), volume error of local 
inflow (req) and catchment SWE mean (reswe)and Pearson-correlation coefficient 
between the computed and observed SWE spatial distribution (ccswe pdf). The four-
years study period was divided in sub-periods of two years, the hydrological years 
2016-2018 and 2018-2020, over which these criteria were calculated. Based on 
the GLUE approach (Beven and Binley, 1992, Beven et al., 2000) a likelihood 
function was defined for each criterion. Solutions were selected by choosing a 
threshold on the likelihood function. The different likelihood functions were then 
combined in multi-likelihood functions with regard to inflow and snow water 
equivalent. The posterior parameter distribution and model realizations were then 
resampled based on the relative weights of each parameter set or simulated value. 
The Nash-Sutcliffe efficiency (NSE Q) and the Pearson-correlation coefficient 
(CC SWE PDF) were used to evaluate model performances in relation to inflow 
and snow water equivalent distribution for the different criteria with a cross-
validation. In this way parameters realizations selected in the first calibration 
period by the different criteria were used to select model realizations in the second 
period and the other way around. 

Results  

The results of the HYPE model performance in simulating inflow and snow water 
equivalent simulations with and without snow distribution representations and for 
the two model configurations (lumped and gridded) are showed in Figure 12. 
Improved model simulations of the catchment inflow were achieved when the 
new snowfall distribution function was included in the HYPE model (Figure 12; 
upper panel). This result was found both for lumped and gridded configuration, 
showing that improved inflow simulations could be obtained with the simplest 
hydrological process representation by calibrating with snow distributed 
observations in addition to inflow data. Improvements in the simulations of the 
snow water equivalent distribution in the catchment were also achieved when the 
snowfall distribution function was used (Figure 12; lower panel). In this case, 
higher model performances were found with the gridded configuration. This result 
suggests that the use of distributed meteorological forcing with the snowfall 
distribution function had an added value to model the snow distribution in the 
catchment.   
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Figure 12. Boxplot of the model performance indicators for inflow (NSE Q) and 
snow water equivalent distributions (CC SWE PDF) before (prio) and after the 
weighting likelihood selection for the different criteria. Model performance 
indicators are reported for model realizations with (SF: snowfall distribution; 
DC: depletion curve) and without (-) snow distribution representation and for the 
lumped and gridded HYPE configurations. 

 

WP3 Data assimilation and assessment of forecast skill 

improvement 

Methods: Semi-distributed dynamic hydrological simulation models (HBV and 
HYPE), seasonal reservoir inflow forecasting, data assimilation, Ensemble 
Kalman Filter 

Frequency: Daily, Monthly, Seasonal 

Method developments: Seasonal forecast skill evaluation methods using the 
Continuously Ranked Probability Skill Score; Perturbation of meteorological data 
for Ensemble Kalman Filter data assimilation including spatial and temporal 
correlation; observational functions for local runoff data and in-situ snow depth 
data, in addition to the functions developed for distributed snow data in WP2.  

Outcomes: 1. Calibration of hydrological models using distributed snow data 
improved the reservoir forecasting skill compared to calibration with runoff data 
alone. 2. Assimilation of snow data improves hydrological model forecasts, also 
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with poorly calibrated models. 3. Comparison of snow data assimilation with the 
HBV model using direct replacement and the HYPE model using Ensemble 
Kalman Filter provided similar improvements of the reservoir inflow forecasting 
skill. 4. Additional improvement of reservoir inflow forecasting skill was 
achieved by assimilation of snow data extrapolated by the machine learning 
approach compared to assimilation of the original snow survey data.   

Methods 

Hydrological models HBV and HYPE 

The HBV model (Bergström, 1976) is a conceptual hydrological model developed 
at SMHI to support hydropower reservoir management in the early 1970s’. It is 
used operationally by VRF and many other hydropower reservoir managers in 
their daily operation, to provide analysis of the current hydrological conditions, 
and short and long-term forecasts of reservoir inflow. As already mentioned under 
WP2, the HYPE model (Lindström et al, 2010) is another hydrological model 
developed at SMHI for simulation of water fluxes, temperature, nutrients, 
sediments, and other aspects of water quality. The HYPE model is an open-source 
project, with a special data assimilation module based on the Ensemble Kalman 
Filter (EnKF) method (Evensen, 1994; Musuuza et al, 2020), which provides 
more options for data assimilation experiments than the version of the HBV 
model currently used in the hydropower industry.  

SNODDAS contributions: The conceptual similarities and discrepancies of the 
HBV and HYPE models with regard to snow modelling were assessed by 
Reynolds et al (2021).  

Data assimilation with the Ensemble Kalman filter 

The EnKF method can be used to assimilate any observation that can be predicted 
by the model, even observations that are not part of the model state variables. 
Thus, both SWE, SD, FSC and inflow data can be assimilated individually or in 
combination, which enables consistent assessment of the added value of different 
types of data products. Assumptions of model and observational error variances 
and spatial/temporal correlations for the meteorological forcing data are critical 
input parameters to the method.  

SNODDAS contribution: EnKF parameters were established for assimilation of 
the various snow and inflow observations, and for generation of random 
perturbations to the necessary meteorological forcing data (air temperature, 
precipitation, and wind speed). Developments to include temporal correlation in 
addition to the spatial for perturbing the meteorological conditions (Gustafsson et 
al, in prep.).  

Data assimilation and spring flood forecasting experiments 

Spring flood reservoir inflow forecast were generated using the so-called 
Extended Streamflow Prediction method - which is the standard method used by 
VRF and SMHI for hydropower reservoir management. The essence of that 
method is to 1) initialize the forecast models by a spin-up simulation covering the 
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time period before and up to the forecast issue dates (in our case the 1st of each 
month from January to July were used as forecast issue dates) using the current  

Figure 13. Impact of data assimilation on simulated inflow, snow water 
equivalent, fractional snow cover, and the meteorological conditions for lake 
Överuman in the winter and spring 2020 in the HYPE model. Obs are observed 
reservoir inflow, and catchment mean fractional snow cover and SWE, 
resepectively, Det is deterministic model without EnKF data assimilation, and 
enkf is model with EnKF. 

year´s meteorological data as input, and 2) to generate a forecast ensemble by 
simulating the forecast period from the initial state (in our case until 31st of July) 
with the meteorological input data taken from each of the historical years 
available in the database (in our case all years between 1998 and 2020). In this 
context, data assimilation is used to improve the initialization of the forecast 
models, by assimilating the different available observations during the spin-up 
simulation. An example of assimilating a combination of observed reservoir 
inflow, SWE from the snow surveys, and satellite-based fractional snow cover in 



  29 (42)  
  

  
  

 

 

the HYPE model is shown in Figure 13 – the impact of assimilating the single 
snow survey data point is clearly seen as a drop in the simulated SWE. 
Corresponding impacts can also be seen by the assimilation of the fractional snow 
cover data, and the reservoir inflow data. 

SNODDAS contribution: A series of spring flood forecasting and data assimilation 
experiments were performed with the HBV and HYPE models to investigate the 
impact on forecast skill of a) the spatial model configuration, b) the representation 
of snow distribution processes, c) the model calibration strategies, and d) data 
assimilation of one or several types of observations. The study by Reynolds et al 
(2021) also assessed the conceptual similarities and discrepancies in the EnKF 
data assimilation method compared to the corresponding methods available in the 
HBV model. 

Climatological reference forecasts and assessment of forecast skill 

Spring flood forecast experiments were conducted for the first 4 years with snow 
survey data in Överuman 2017–2020. In all experiments, the spring flood period 
was defined as the period from the forecast issue date (1st of each month from 
January to July) until the 31st of July. The 4 years in the study period represented 
a large variation in snow conditions and spring flood inflow volumes - the 
observed reservoir inflows from 1st April–31st July in 2018 and 2020 were the 
3rd lowest and 3rd highest, respectively during the available data period 1965–
2020.  

Figure 14. Observed local inflow in Överuman from 1st of each month until 31st 
July for the months January–July 2017–2020 (black dots) compared to the 
climatological reference forecast based on all previous recorded inflow 
observations since 1965 (black dotted line/shaded area) and since 1998 (red 
dotted line/shaded area). Spring flood volumes are in day equivalent units (DE= 
86,400 m3). 

The observed inflows of all previous years since 1965 were used to generate a 
climatological reference forecast (Figure 14). As already noted, 3 years out of the 
4 in the study period had either close to record low or record high recorded 
inflows, and consequently the reference forecast largely failed for these years. 
2019 on the other hand, the reservoir inflows were close to the climatological 
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mean. As a consequence of these conditions, it will be more difficult to improve 
upon the reference forecast during 2019, and relatively easy to improve during the 
other years. The bias and the variance of the reference forecast is later used to 
assess the relative improvement in the hydrological model forecasting skill using 
the so-called Continuously Ranked Probability Skill Score (CRPSS; Hersbach, 
2000): CRPSS>0 indicate an improvement in forecasting skill compared to the 
reference forecast, and CRPSS=1 indicate a perfect forecast with zero bias and 
zero variance. 

Results 

Spring flood forecasting and snow data assimilation in the HBV and HYPE 
models 

As a joint effort of tSNODDAS and a project funded by Energiforsk, a 
comparison of the HBV and HYPE models were made with regard to the ability to 
assimilate snow data in calibration and to improve spring flood forecasts 
(Reynolds et al, 2021). The main outcome of this study was that 1) the HBV and 
HYPE models responded similarly when including the manual snow survey SWE 
data from WP1 in calibration and in assimilation, and 2) assimilation of the SWE 
data consistently improved the spring flood forecast skill compared to forecasts 
based on deterministic model initialization (Table 2). This was a major outcome 
for the SNODDAS project, since it showed first of all, that snow observations do 
have the potential to improve hydropower reservoir inflow forecasting, and 
secondly that the snow data developed by the project can be used in combination 
with the data assimilation methods currently available in the HBV modelling tool, 
which is commonly used by the hydropower industry. In addition, it was 
demonstrated that the explicit snowfall distribution model developed within the 
SNODDAS project (see WP2) has a corresponding representation in the HBV 
model through the so-called snow accumulation classes. As an outcome, it would 
thus be possible to tune the empirical snow distribution parameters in HBV by a 
topographic analysis using the same physically based wind-shelter 
parameterization as developed for the HYPE model. 

Spring flood forecasting assimilating the SNODDAS snow products 

The final set of spring flood experiments focused on investigating the potential 
forecast skill improvements by assimilation of the SWE products developed in 
WP2 compared to SWE data from other satellite projects, as well as the snow data 
from WP1 and other ground-based data sources. These experiments were made 
with the HYPE model and the EnKF data assimilation method only.  

An initial comparison of simulated catchment average snow water equivalent to 
the full range of available SWE data illustrates challenge of state-of-the-art 
satellite-based microwave retrieval products to estimate SWE in the mountainous 
Överuman catchment (Figure 15). The ESA CCI SWE products (v1.0 and v1.2) as 
well as the WP2 downscaling product provide SWE estimates that largely 
underestimate the SWE estimates of the WP1 ground-based GPR snow survey 
data. On the other hand, both the WP2 Machine learning product and the WP2 
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distributed snow model – which both have been calibrated towards the GPR data 
– provided much higher and more realistic estimates of SWE.   

Table 2. (Results from Reynolds et al, 2021) Average Continuously Ranked Probability 
Skill Score (CRPSS) for spring flood forecasts issued 1st of April, May, and June for 
different calibrations and data assimilation configurations of the HBV and HYPE models 
for the Överuman reservoir. Green color indicates improved forecast skill by data 
assimilation compared to the deterministic initialization run with the same 
model/calibration method. Underscore marks the forecast initialization with highest 
CRPSS for the particular model/calibration configuration, and bold underscore marks the 
forecasts with overall highest CRPSS scores. Curr stands for the current or established 
operational HBV model at Överuman. Calibration strategy F1, F2, F3, and F4 
corresponds to calibration using inflow only, inflow and SWE, inflow and FSC, and 
inflow, SWE and FSC, respectively. HYPE label on/off corresponds to models with and 
without the snow cover depletion curve (See WP2 for details). 

Mode

l 

Varia-

bles 

used in 

calibre-

tion 

Label Data-assimilation approach for forecast initialization 

Det Open Q SW

E 

Q 

SW

E 

FSC Q 

FSC 

Q 

SW

E 

FSC 

SW

E 

FSC 

HBV 

Q 

(Curr) 

Curr -0,50  -0,67 0,52 0,50     

Q F1 0,39  0,65 0,65 0,72     

Q, SWE F2,F4 0,14  0,43 0,53 0,67     

Q, 

SWE, 

FSC 

Q, FSC F3 0,28  0,59 0,61 0,72     

HYP

E 

Q F1,off 0,54 0,52 0,58 0,66 0,72 0,57 0,55 0,70 0,68 

Q, SWE F2,off 0,50 0,49 0,61 0,68 0,73 0,52 0,60 0,73 0,68 

Q, 

SWE, 

FSC 

F2,on 0,55 0,45 0,54 0,45 0,55 0,64 0,60 0,56 0,57 

Q, FSC F1,on 0,54 0,46 0,58 0,51 0,60 0,63 0,63 0,60 0,61 

 

The improvement in the hydrological model forecast skill when assimilating the 
different data products depends a lot on the performance of the climatological 
reference model and the deterministic calibrated hydrological model for each 
particular year as well as on the forecast issue month, as illustrated in Figure 16: 
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showing the spring flood forecasts and forecast skill scores for the lumped HYPE 
model with explicit snow fall distribution, calibrated with inflow and relative error 
of SWE, and assimilation of inflow and the SWE estimates from GPR data and 
the Machine learning method. There is a general increase in forecast skill by data 
assimilation for forecasts issued after the onset of snowmelt in April/May, which 
is logical since the information from the inflow signal as well as the estimate 
snow storage cannot influence the forecasts until the snow starts to melt.  

 

 

Figure 15. Comparison of mean SWE [mm] in the Lake Överuman catchment, as 
simulated by the calibrated HYPE model with the snowfall distribution and snow 
depletion curve (lumped SF+DC), by the satellite products from ESA SNOW CCI, 
the satellite product developed in the SNODDAS project (downscaling and 
machine learning), as well as the ground based GPR surveys.  

The largest forecast skill scores were found in the years 2017, 2018, and 2020; 
which were years with extremely large or low snow accumulation and 
accumulated spring flood volumes. For these years, the calibrated hydrological 
model without data assimilation provided a large improvement in forecast skill in 
relation to the climatological reference. There is also a general increase in forecast 
skill over the course of the winter as a result of more and more information from 
the current meteorological conditions integrated into the forecasts. The added 
value of assimilating SWE observations was relatively low even though small 
improvement can be seen in forecasts issued in May, June and July. However, the 
improvement of assimilating the SWE estimates was largest in 2019, where 
deterministic model was worse than the climatological reference for all forecast 
issue dates except 1st July. It should be noted that the Swe-ML data were only 
available for 2019 and 2020, so improvements seen in the results for 2017 and 
2018 are just an effect of the ensemble perturbations compared to the 
deterministic model. The overall improvements generated by the Swe-ML data 
were thus mainly related to 2019. 
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Figure 16. Spring-flood inflow forecasts for Lake Överuman 2017–2020 with the 
lumped HYPE model configured with explicit snowfall distribution and calibrated 
with inflow and relative error in SWE (SF-Q-S1), without (black hashed area) and 
with assimilation of reservoir inflow (blue shade/line, top panel), mean of the 
original SWE survey data (red shade/line, second panel) and mean of the machine 
learning SWE estimates (deep pink shade/line, third panel) compared to 
climatological reference forecast (based on all observations since 1965) and the 
observed inflow volumes for each respective year (black dots). Bottom panel: 
Continuous Ranked Probability Skill Score (CRPSS) for the different HYPE model 
forecasts, using the climatological forecasts as reference. Spring flood volumes 
for each month are defined as the total reservoir inflow volumes between the 1st 
of each month until the 31 July (in day equivalent units, DE= 86,400 m3). Mean, 
min and max values are shown for each ensemble. 

The same analysis was repeated for all snow distribution and calibration 
configurations, as well as combination of assimilation variables but not shown 
here. A summary of the improved forecast skill for the years 2019-2020 is 
presented in Table 2 and 3, where the mean absolute relative error for the forecast 
issued in April-July are given for all models and a selection of data assimilation 
experiments. Several interesting results can be seen in Table 3: 

• The overall improvement in forecast skill compared to the climatological 
reference SF-Q1-S1 model (explicit snowfall calibrated with inflow and 
mean catchment SWE) 
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• Assimilation of the reservoir inflow data and/or the SWE-ML data reduced 
the mean absolute volume error to 5% or better, and assimilation of either 
inflow, SWE-GPR, SWE-ML and in some cases also FSC reduced the 
mean absolute volume error to 5% or better.  

• Similar analyses were made for all years and will be presented further in 
Gustafsson et al (in prep.).  

Table 3. Mean absolute relative error in spring flood forecasts 1 April-1 July 2019-2020 
for different configuration of snow distribution models: none (-), depletion curve (DC), 
snowfall distribution (SF); hydrological model calibration: inflow only (Q), inflow and 
mean SWE (Q+S1), inflow+mean SWE+SWE distribution (Q-S1-S2), for the 
climatological reference (Ref), the deterministic (lumped) HYPE models, and with 
different data assimilation configurations: inflow (Inf), SWE GPR or Machine learning, 
fractional snow cover from Cryoland and AI4Arctic projects, and combinations of inflow 
and SWE, and inflow+SWE+FSC.   
     

SWE FSC Inflow+ 

SWEML 

Inflow+ 

SWEML+ 

FSCCryo 
Dist Cal Ref Det Inf GPR ML Cryo AI4A 

- Q 23 18 10 13 11 24 22 9 13 

- Q-S1 23 17 10 14 11 22 19 8 14 

- Q-S1-S2 23 25 12 15 12 27 23 9 12 

DC Q 23 14 5 9 5 15 11 4 6 

DC Q-S1 23 12 5 9 5 13 11 4 7 

DC Q-S1-S2 23 23 6 12 8 19 16 5 7 

SF Q 23 13 8 8 5 14 15 4 5 

SF Q-S1 23 12 10 8 4 15 15 3 5 

SF Q-S1-S2 23 11 13 8 6 9 15 4 9 

DC+SF Q 23 13 9 9 7 10 17 6 6 

DC+SF Q-S1 23 10 10 9 7 9 15 6 6 

DC+SF Q-S1-S2 23 11 12 10 9 10 17 7 6 

 

Our results can be generalized as above to serve as goals for future work, but it is 
also important to study the details of our results such the fact that every year has 
its character and the generalized improvement cannot be expected every year. At 
first, it might even look as a contradiction, that the added value of the snow 
measurements for the spring flood forecast skill were lowest in the years with 
extremely high or extremely low snow amounts (Figure 16), such as the year 
2017, 2018, and 2020, and highest during years with snow conditions close to 
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normal, such as in 2019. However, in these cases we must also remember that the 
snow model itself – calibrated by runoff and snow data – provided the added 
value in relation to the climatological reference forecasts during the extreme 
snow-rich and snow-poor years. 

The result of the distributed snow model development and calibration show the 
importance of representing the spatial distribution of snow in hydrological 
modelling. While this is not new knowledge per se, we investigated thoroughly 
the difference of using an explicit snowfall distribution model driven by wind-
direction and wind-shelter factors derived from topographical data and a more 
traditional snow depletion curve formulation, where the snow distribution is only 
implicitly represented in the model. The results both of the calibration exercise, 
and the forecast data assimilation experiments show that it is essential to represent 
snow distribution – either by the snow depletion curve or by the snowfall 
distribution. So far, our results indicate that the combination of the two methods 
rather contributed to a lower model performance and forecast skill – but this 
might be a result of not including fractional snow cover data in the calibration.  

WP4 Economic assessment 

The simplified economic model developed in the previous EU FP7 IMPREX 
project was planned to be used to assess the potential economic gain from the 
improved reservoir inflow forecasting. The SNODDAS contribution was mainly 
to update the necessary input data to the current period, and contribute to the 
scientific evaluation and publication of the method. This work is still in progress, 
and a publication is planned to be completed later this year (Gustafsson et al, in 
prep.). This assessment method is built around the formulation of a ‘forecast cost’ 
equal to the production value of water that would have to be released as 
‘unproductive spill’ at the end of the spring flood period as a consequence of the 
difference in forecasted reservoir inflow and the real observed inflow in the same 
period. The maximum forecast gain is set to the forecast cost of a reference 
forecast, and the forecast gain is then given by the reduction in cost from the 
reference forecast. The main limitation of the current method is that it is 
dependent on data about the reservoir filling level at the time of the forecast issue 
date, which is a function of the reservoir management decisions made based on 
the forecasts and electricity market data available at that time. The assessment 
methods could thus be improved if it would include a simulation of adjustments in 
reservoir management based on improved inflow forecasts.  

An alternative assessment is to use the data from Umeälven of water discharge 
and of hydropower production since that exists from 1993 and forwards to assess 
the production / loss of potential production ratio in the Umeälven river system 
over those 27 years. With the improved prognostic capacity from this work 
lowering the uncertainty in the filling rates to 5 % we can speculate in a somewhat 
contrafactual way how the SNODDAS prognostic tools could have increased the 
freedom to plan hydropower production in the past. 

We know a total of 4 TWh of production in Umeälven was not used for 
production due to spill from the hydropower dams between 1993-2020 (spill is the 
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term used to overflow the water in the dam in a spillway outside the turbine chute 
to drain the stage of safety or environmental cause). This spill was caused by a 
number of different reasons, and the larger part of that spill would never have 
been able to use for production. A normal number used in the hydropower 
industry of the uncertainties of the filling rates due to water from snow storage in 
mountain terrain is 20%. If we assume we could have lowered that uncertainty to 
5 % using SNODDAS methodology in the past, then 75 % of those 4 TWh would 
have become available for hydropower planning purposes. This is of course not 
realistic, since the spill is due to a number of factors, where only a part is the 
uncertainty of the predicted filling rates. If we moderate this calculation by 
assuming only 10 % of the spill in that period was due to the uncertainty of the 
forecast of the filling rates (400 GWh), we then find 300 GWh could have been 
saved using the SNODDAS methodology, and expressed as 300 GWh/ 27 years = 
11 GWh per year. This compares to ca 3.5 Mkr in gained production per year for 
that period using the average normal energy price for Umeälven. 
 

WP5 Deliverance 

This work package is the dissemination of our results, including scientific 
publications, dissemination and discussion of our results with the scientific 
society and the hydropower industry as well as our reporting to 
Energimyndigheten. government research environment. Selected parts of our 
collected data and results will be open to the public in open archives. Active data 
that contains information about the current year's production will not be open to 
the public. 

Dissemination 

We have disseminated our work in a number of different ways, that can be 
grouped within these four items: a) internal meetings within the consortia, b) 
external meetings with the industry through our reference group and with HUVA, 
c) direct contacts with the industry on specific tasks, c) attending international 
conferences and workshops. 

a) Internal meetings: We have had totally 25 meetings to discuss our progress 
and following our goals and deliverables for the project. Björn Norrell 
from Vattenregleringsföretagen have been integrated in SNODDAS, and 
such the hydropower industry has been present in these meetings, and 
granted the industry perspective in the development and implementation of 
the project.  

b) External meetings: We had an ambition with SNODDAS to disseminate 
and discuss the progress and results with the hydropower industry. This 
was done in two different ways: i) forming a reference group with 
members from both industry and science, and having an annual workshop 
with them to present our results and plans, and, ii) presenting our results in 
the wider forum HUVA (Hydrologiskt utvecklingsarbete) run by 
Energiforsk. We had one workshop with our reference group per year (the 
first organized by Statkraft in Oslo, to bring a good start-up of our project, 
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and to set the scene), and we were asked to have three presentations to 
HUVA. Both these activities were important to us to test our ideas and 
results, and to communicate them. See further details in Appendix 5.   

c) Direct industrial contacts: We got material from our industrial partners of 
their snow taxation campaigns we used to test our models. The data from 
Vattenregleringsföretagen from Överuman was included in our plan, but in 
addition we got data from Uniper and Vattenfall. We have not, yet, been 
able to work on the data from Vattenfall, but with our satellite module we 
were able to produce results similar to Figure 9 of Ankarvattnet/Blåsjön 
for Uniper. We were further co-supervising two master students from 
Chalmers with Uniper to test how to use different SWE products to 
reconstruct the SWE distribution in one of their catchments. 

d) International scientific meetings. 1. The International Glaciological 
Society (IGS) Nordic Branch Meeting, Rovaniemi, October 2018; 2. AGU 
Fall meeting, San Francisco, December 2019; 3. Northern Research Basins 
Symposium and Workshop, Yellowknife, Canada, August 2019; 4. 
International Conference on Snow Hydrology, Bolzano, Italy, January 
2020; 5. 9th EARSeL workshop on Land Ice and Snow, Bern, 
Switzerland, February 2020; 6. Virtual IGS Nordic Branch Meeting, 
November 2020. 

Deliverance  

Our deliverance is so far included in the bullets a-d above, the annual reports to 
Energimyndigheten, including this report, and two scientific publications, Zhang 
et al, in press, Appendix 6, and Clemenzi et al, and Gustavsson et al, in prep, with 
the preliminary title “Evaluating a snow modelling approach to predict snowmelt 
runoff” to be submitted to Hydrology Research. We are further planning for a 
manuscript describing the general work flow of SNODDAS, to be submitted to 
Water Resources Research, or similar outlet. 

Diskussion 

The overall results of the project show that consistent improvements of 
hydropower reservoir inflow forecasting down to about 5% or better is possible by 
assimilating the snow observations and distributed snow water equivalent 
estimates based on the methods and models developed in the project. As such, our 
suggested improvements in methodology show a good potential to contribute to 
the development of an improved sustainable energy system. Figure 4 show an 
example. The average uncertainty of estimating the inflow using HBV model with 
no snow correction is ca 10% over the period 2001-2020. Our methodology would 
half that uncertainty, and in the period 2013-2020 cut the uncertainty by ca 2/3, 
and such increase the potential to use that water for planning purposes in 
hydropower production. The uncertainties with the estimation are larger during 
years with anomalous snow amounts.  
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If similar snow monitoring systems were implemented for all major hydropower 
reservoirs situated in similar high mountain catchment areas we could add as 
much as 35/350/1000 GWh of hydropower production a normal/ anomalous/ 
extreme year, on basis of course estimations made by use of historic discharges 
during the spring flood in Umeälven. That is a substantial addendum of green/blue 
power and contributes to a fossil-free national energy production. A more 
elaborated cost-benefit analysis comparing the cost of implementing such snow 
monitoring program in a larger scale to the potential gain in hydropower 
production and water use efficiency accumulated over multiple years would be 
needed to do a full assessment of this question. We had in mind doing so within 
SNODDAS WP4, but we did not manage to satisfy this ambition fully. The reason 
for this was firstly that we used more time for the hydrological 
modeling/assimilation in WP 2 and WP3 than anticipated. Secondly, and more 
important, is that we made a choice to contribute to a comparison of the two 
models HBV and HYPE requested by the hydropower hydrology reference group 
at the Swedish energy research and knowledge institute Energiforsk, which was 
not initially planned (Table 2). This work brought us closer to the objective in 
WP3 to test our methodologies with both the HBV and the HYPE model, to better 
understand the differences and similarities of these two models, and to reach out 
to the hydropower industry with our findings in WP5, since the HBV model is the 
favored model in industrial production. 

We have shown the potential to reduce the uncertainties of the inflow into a 
hydropower reservoir to be below 5% in mountain regions where the volumes of 
the snow water storages generally pose a problem to make prognostic work of the 
water routing. In our methodology we use ground observations of snow properties 
as a reference material, which we distribute over the catchment using satellite 
images or wind distribution models as input for assimilation into our routing 
model. The reference data from the ground observation is labor intensive, but 
probably cost effective when finding the large reduction in inflow model 
uncertainty. Although, with the use of drones as tested one of the years, we 
believe we can cut the costs substantially by implementing drone measurements to 
replace / complement the manual ground truthing part of our methodology. This, 
we hope, will be the focus of a forthcoming study, and a further development of 
our SNODDAS methodology. 

Publikationslista  

Clemenzi, I., Gustafsson, D., Zhang, J., Norell, B., Marchand, W.D., Pettersson, R., Pohjola, V., in 
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Bilagor 

• Administrativ bilaga  

1. Measured snow depths along the eight snowlines at Överuman 2017-2020. 

2. Calculated SWE along the eight snowlines at Överuman 2017-2021 (mm 
SWE)  

3. Improved characterization of snow dynamics in Sweden using Google Earth 
Engine (This work has been presented at 2020 IGS Nordic Branch Meeting).  

4. Spatial heterogeneity of AMSR2 brightness temperature for characterizing 
snow depth across Sweden (This work has been presented at 9th EARSeL 
Workshop on Land Ice and Snow).  

5. List of SNODDAS workshops, HUVA presentations and our reference group.  

6. Snow courses and bulk density observations points.  

7. Tables snow courses snow statistics. 

8. The publication in press, Zhang et al 2021.  

 

 


