Deactivation of Cu/SAPO-34 During Low-Temperature NH$_3$-SCR

Kirsten Leistner1 and Louise Olsson1

1Chemical Engineering (KRT), Competence Centre for Catalysis (KCK), Chalmers University of Technology

April 2016
Introduction

zeolite deactivation

- low-temperature
 - NH$_3$ / H$_2$O inhibition
 - reversible

- high-temperature and H$_2$O
 - Breakdown of crystal lattice
 - irreversible

Small-pore zeolites less prone to HT collapse of lattice.

Is the Cu/SAPO-34 structure stable at low T?
Exposure to SCR conditions and water vapour

SAPO-34: hydrothermal synthesis

Aqueous ion exchange

Cu/SAPO-34 1.27 wt.% Cu

Cu/SAPO-34 2.60 wt.% Cu

Exposure to SCR conditions and water vapour

Degreening: 700 °C
3500 ml/min
400 ppm NH₃ / NO
5% H₂O (φ=16%)
8% O₂
T: 70-200 °C

Characterisation of Cu/SAPO-34 before (powder) and after (scraped off monolith) experiments
Experiments Performed in Order

- Ads 400ppm NH$_3$
- 400ppm NH$_3$, 400ppm NO, 8% O$_2$, 5% H$_2$O
- 400ppm NH$_3$, 400ppm NO, 8% O$_2$

- 70°C: 5% H$_2$O
- Other T: 400ppm NH$_3$, 400ppm NO, 8% O$_2$, 5% H$_2$O

- Ads 400ppm NH$_3$
- Ads 400ppm NH$_3$, 5% H$_2$O

... Characterisation
SCR over Cu/SAPO-34 (2.60 wt.%Cu)

SCR+H$_2$O

SCR
SCR over Cu/SAPO-34 (2.60 wt.%Cu)

Loss of activity: from 87 to 66%

No H₂O: Loss of activity smaller

Experiments Performed in Order

Ads 400ppm NH₃

400ppm NH₃, 400ppm NO, 8% O₂, 5% H₂O

400ppm NH₃, 400ppm NO, 8% O₂

70°C: 5% H₂O
Other T: 400ppm NH₃, 400ppm NO, 8% O₂, 5% H₂O

Ads 400ppm NH₃

Ads 400ppm NH₃, 5% H₂O

... Characterisation
SCR over Cu/SAPO-34 (2.60 wt.%Cu)
Only water vapour at 70 °C
Experiments Performed in Order

- Ads 400ppm NH$_3$
- 400ppm NH$_3$, 400ppm NO, 8% O$_2$, 5% H$_2$O
- 400ppm NH$_3$, 400ppm NO, 8% O$_2$
- 70°C: 5% H$_2$O
 Other T: 400ppm NH$_3$, 400ppm NO, 8% O$_2$, 5% H$_2$O
- Ads 400ppm NH$_3$
- Ads 400ppm NH$_3$, 5% H$_2$O
- Characterisation
Loss of Activity Over Time
(2.60 wt.%Cu)

Experiments Performed in Order

- Ads 400ppm NH₃
- 400ppm NH₃, 400ppm NO, 8% O₂, 5% H₂O
- 400ppm NH₃, 400ppm NO, 8% O₂
- 70°C: 5% H₂O
 Other T: 400ppm NH₃, 400ppm NO, 8% O₂, 5% H₂O
- Ads 400ppm NH₃
- Ads 400ppm NH₃, 5% H₂O
- Characterisation
Loss of Crystallinity?

XRD

- 2.60 wt.% Cu, after
- 2.60 wt.% Cu, before
- 1.27 wt.% Cu, after
- 1.27 wt.% Cu, before

BET

- 544 m2/g
- 473 m2/g
- 582 m2/g
- 420 m2/g

Experiments Performed in Order

400ppm NH₃, 400ppm NO, 8% O₂, 5% H₂O

400ppm NH₃, 400ppm NO, 8% O₂

70°C: 5% H₂O
Other T: 400ppm NH₃, 400ppm NO, 8% O₂, 5% H₂O

Ads 400ppm NH₃

Ads 400ppm NH₃, 5% H₂O

...
NH₃ Adsorption over Cu/SAPO-34 (2.60 wt.%Cu)

NH₃ storage identical after ca. 4.5h exposure to water vapour at 70 °C.
Hydrogen consumption decreased by 26 and 38\% (or less: up to 13\% binder in “after” samples) - small compared to loss of activity
Conclusions

• Synthesis of 1.27 wt.% Cu and 2.60 wt.% Cu Cu/SAPO-34
• 14 h enough for complete deactivation
• 600 °C treatment does not reverse deact.
• Plugging of pores and blocking of sites ruled out
• Breakage of crystal framework not dominating

→ transformation of copper sites
Acknowledgements

This study was performed at Chemical Reaction Engineering and within the Competence Centre for Catalysis at Chalmers University of Technology.

The financial support from the Swedish Research Council is gratefully acknowledged.