

Electricity Market Research Group EMReG KTH Royal Institute of Technology

Optimal Long-Term Generation-Transmission Planning in the Context of Multiple TSOs

Based on the Work of:

Yaser Tohidi,
Post Doctoral Researcher,
TU Eindhoven, The Netherlands
Yaser.tohidi@gmail.com

Dr Mohammad Reza Hesamzadeh
Associate Professor
Electricity Market Research Group
Electric Power Systems Department
KTH Royal Institute of Technology, Sweden
www.hesamzadeh.com

Presented by:

Sambuddha Chakrabarti,
Post Doctoral Researcher,
Electricity Market Research Group
Electric Power Systems Department
KTH Royal Institute of Technology, Sweden
samcha@kth.se

Contents

- > Introduction
- ➤ Horizontal Coordination
- Vertical Coordination
- > Future Work

The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% when compared to 1990 levels by 2050 [1]:

- DG and Smart Grid
- Renewables
- Cross-border Lines

Economical issues:

- ☐ TSOs are reluctant to act in a cooperative solution.
- ☐ TSO transmission investment should be coordinated with GENCOs generation investments.

^{[1] 2050} Energy Strategy, European Commission.

Motivation

Emerging Need for Investments in Electric Power System:

increase of demand (South America's countries, South Africa, China, India) cross-border market integration, RES integration security of supply improvement

Motivation

From Vertically Integrated
Utilities to the Multi-player
and Complex Power Systems

- Emerging technologies
- Belief in market mechanisms

Questiones

- How is the option of cooperative TSOs as compared to non-cooperative TSOs?
- How transmission and generation planning are coordinated in a deregulated environment?
- What mechanism can improve the planning result in a deregulated power system with multiple regions?

Toward the Answers

- Evaluate the differences between the two cooperative and non-cooperative approaches (horizontal coordination).
- Comparing different market designs for coordination of transmission and generation planning (vertical coordination).
- Solving an efficient transmission-generation planning model in the context of multi-TSO multi-GENCO (computational difficulties and mechanism design).

Objectives

- Analyzing the transmission and generation investment in a multi-player environment.
- Evaluating the result in each study as compared to the ideal result
- Analyzing different ways of changing the situation in order to become closer to the ideal situation.
- Improving the semantics

Assumptions:

- Network constraints modelled using DC power flow
 - Power balance constraint
 - Generation capacity limits
 - Transmission capacity limits
- In the dispatch level, the operation cost of the whole system is minimized.
- Nodal prices are derived from the dispatch level (endogenously).
- Expansion planning is static and for a certain period in the future.
- Transmission system is planned by an entity minimizing the social cost of its region (TSO)
- Generation units are planned by profit maximizing companies (Gencos)

Definitions

- **Coordination** is the task of designing/modifying the situation in order to become closer to the desired result while being fair/just. This is done by a higher body (ACER in Europe and FERC in US).
- Horizontal coordination relates to transmission investment of neighbouring regions/countries.
- **Vertical coordination** relates to generation and transmission investment of a network.
- Centralized planning (benchmark) is the theoretical planning scheme by minimizing the social cost of the whole system.

Horizontal coordination

- **Issue:** The decision of one entity minimizing the total social cost of the whole inter-connected system *cause looser and winners*.
- Example:
 - "cap and floor" contracts of transmission investment provides Ofgem with a mechanism to reflect the cost that the project imposes on the rest of the network
- Contribution: Modelling of non-cooperative transmission planning of TSOs considering a simple mechanism for coordination.

Horizontal coordination Method

An optimisation problem:

- Equivalent Karush-Kuhn-Tucker (KKT) optimality condition
- Linearisation techniques

Multiple Nash equilibria:

Wost Nash equilibrium

Y. Tohidi and M. R. Hesamzadeh, "Multi-regional Transmission Planning as a Non-cooperative Decision-Making," IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2662–2671, Nov. 2014.

Horizontal coordination Results (Three-area IEEE-RTS96)

Owner	From-To (Name)	TCap (MW)
TP1	113-215 (u1)	50
TP2	123-217 (u2)	50
TP2	107-203 (u3)	50
TP3	223-318 (u4)	100
TP3	323-121 (u5)	100
TP1	114-124 (u6)	75
TP2	214-224 (u7)	75
TP2	211-220 (u8)	75
TP3	311-320 (u9)	75

TP: Transmission Planner TCap: Transmission Capacity

Y. Tohidi and M. R. Hesamzadeh, "Multi-regional Transmission Planning as a Non-cooperative Decision-Making," IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2662–2671, Nov. 2014.

Horizontal coordination Results (Three-area IEEE-RTS96)

Region	Status quo	Cooperative	Non-cooperative	- -
	IC = 0	IC=586	IC=456	_
All-three	OC = 1,385,891	OC=1, 385, 248	OC=1, 385, 401	
	Total = $1,385,891$	Total=1, 385, 834	Total=1, 385, 857	
	IC = 0	IC=130	IC=130	_
Region 1	OC = 462,057	OC=461,722	OC=461,865	
	Total = 462,057	Total=461, 930	Total=461, 995	
	IC = 0	IC=130	IC=0	
Region 2	OC = 230,951	OC=230, 951	OC=230, 951	• •
	Total = 230,951	Total=231, 081	Total=230, 951	
	IC = 0	IC=326	IC=326	_
Region 3	OC = 692,883	OC=692, 575	OC=692, 585	
	Total = 692,883	Total=692, 901	Total=692, 911	

IC: Investment Cost (\$)
OC: Operation Cost (\$)

Y. Tohidi and M. R. Hesamzadeh, "Multi-regional Transmission Planning as a Non-cooperative Decision-Making," IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2662–2671, Nov. 2014.

Horizontal coordination Results (Three-area IEEE-RTS96)

Compensation mechanisms is a system of payment between TPs based on a percentage (α) of the maximum flow in the connecting lines.

	(1,0,0,1,1,0,0,0,1)	(1,0,0,1,1,0,0,0,1)	(1,0,1,1,1,0,0,0,1)
Region	$\alpha = 0.02$	$\alpha = 0.04$	$\alpha = 0.06$
	IC=456	IC=456	IC=586
All-three	OC=1,385,401	OC=1, 385, 401	OC=1, 385, 248
	Total=1, 385, 857	Total=1, 385, 857	Total=1, 385, 834
	IC=130	IC=130	IC=130
Region 1	OC=462,075	OC=462, 160	OC=462, 124
	Total=462, 205	Total=462, 290	Total=462, 254
	IC=0	IC=0	IC=130
Region 2	OC=230,294	OC=230,017	OC=229, 681
	Total=230, 294	Total=230, 017	Total=229, 811
	IC=326	IC=326	IC=326
Region 3	OC=693,022	OC=693, 224	OC=693, 443
	Total=693, 348	Total=693, 550	Total=693, 769
ΔSC	0	0	23

IC: Investment Cost (\$)

OC: Operation Cost (\$)

 Δ SC: economic benefit of compensation mechanisms (Δ SC= SC - SC₀)

SC₀: social cost of non-cooperative solution without compensation

SC: social cost of non-cooperative solution with compensation

Y. Tohidi and M. R. Hesamzadeh, "Multi-regional Transmission Planning as a Non-cooperative Decision-Making," IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2662–2671, Nov. 2014.

Horizontal coordination Conclusion

- The paper proposes a mathematical model for multi-TSO transmission planning.
- Without proper compensation mechanism, the non-cooperative transmission planning leads to inefficient results as compared to the cooperative solution.
- The paper also proposes a measure which can quantify the economic efficiency of a compensation mechanism.

Vertical Coordination

 Issue: Substantial sunk investments on generation and transmission are done by different entities in liberalized power markets. How should such sunk investments be vertically coordinated?

• Examples:

- In Germany, the regulator decides where in the Baltic or North Sea wind parks are to be built and which connection line is to be built (centralized regime).
- A decentralized regime in Great Britain is implemented.
- RTE publishes a network development plan which includes the potentially available capacity for new generation (a proactive approach).
- Contribution: Modelling of generation and transmission investment planning problems in different levels of decision making

Vertical Coordination

Structure of the game

Vertical coordination Method

Y. Tohidi, M. Hesamzadeh, and F. Regairaz, "Sequential Coordination of Transmission Expansion Planning with Strategic Generation Investments," under revision by IEEE Transactions on Power Systems.

Vertical coordination Results (3-node)

The investment cost of expansion of transmission system is 200 \$/MWy for all of the lines.

	EGC (MW)		ETC (MW)			SC
	U1	U2	AB	AC	BC	(M\$)
SQ	-	-	-	-	-	3.15
EC	30	0	0	10	15	2.02
RC	0	0	0	6.67	8.33	2.81
PC	20	0	0	10	7.5	2.30

- with reduced generation capacity (by half)

	EGC (MW)		E'	ETC (MW)		
	U1	U2	AB	AC	BC	(M\$)
SQ	-	-	-	-	-	4.86
EC	15	11.25	5	0	0	3.42
RC	5	7.5	5	0	0	4.05
PC	5	0	5	0	0	4.16

SQ: Status-quo

EC: Efficient Coordination

RC: Reactive Coordination

PC: Proactive Coordination

SC: Social Cost

EGC: Expanded Generation Capacity ETC: Expanded Transmission Capacity

Y. Tohidi, M. Hesamzadeh, and F. Regairaz, "Sequential Coordination of Transmission Expansion Planning with Strategic Generation Investments," under revision by IEEE Transactions on Power Systems.

Vertical Coordination

Parallelized Moore-Bard algorithm

SC(7), SC(8) > SC(6) SC(10), SC(11), SC(14), SC(15) > SC(9)

- Can be parallelized by dividing the tree between the computing cores (Done!)
- The performance improves if the best solution can be communicated between cores (Future work).

Vertical coordination Results (IEEE-RTS96)

Parallel Moore-Bard Algorithm (P-MBA)

The P-MBA on 4 cores.

Number of Cores	Run time (hours)
1	*
2	63
4	43
8	23

^{*} Not found after three days of simulation.

	EGC (MW)			TEGC	GIC	TETC	TIC
	U1	U2	U3	(MW)	(M\$)	(MW)	(M\$)
EC	0	300	147.75	447.75	0.045	393.75	1.47
RC	0	300	98.5	398.5	0.040	1066.22	3.03
PC	57	300	98.5	455.5	0.045	0	0

	Profit (M\$)			Average Price	SC
	U1	U2	U3	(\$/MWh)	(M\$)
SQ	1.19	2.32	0.68	21	76.28
EC	0	8.54	0.57	5.4	63.48
RC	0.29	8.12	0.82	5.8	67.77
PC	0.61	8.75	0.69	6.9	74.28

SQ: Status-quo

EC: Efficient Coordination RC: Reactive Coordination PC: Proactive Coordination

SC: Social Cost

EGC: Expanded Generation Capacity

TEGC: Total Expanded Generation Capacity

GIC: Generation Investment Cost

TETC: Total Expanded Transmission Capacity

TIC: Transmission Investment Cost

Y. Tohidi, M. Hesamzadeh, and F. Regairaz, "Sequential Coordination of Transmission Expansion Planning with Strategic Generation Investments," under revision by IEEE Transactions on Power Systems.

Vertical coordination Results (IEEE 118-bus)

Number of Cores	Algorithm	Run time (hours)
	P-MBA	*
1	Heuristic Technique A	*
	Heuristic Technique B	*
	P-MBA	*
2	Heuristic Technique A	71
	Heuristic Technique B	*
	P-MBA	*
4	Heuristic Technique A	46
	Heuristic Technique B	57
	P-MBA	*
8	Heuristic Technique A	33
	Heuristic Technique B	44

^{*} Not found after three days of simulation.

Vertical coordination Results (IEEE 118-bus)

	EGC (MW)			TEGC	GIC	TETC	TIC
	U1	U2	U3	(MW)	(M\$)	(MW)	(M\$)
EC	337.5	98	387.3	822.8	0.4115	4251.34	10.4
RC	225	0	258.2	483.2	0.2416	3759.54	8.3
PC	*	*	*	*	*	*	*
PC (4A)	225	0	387.3	612.3	0.3061	4656.74	10.6
PC (4B)	225	0	387.3	612.3	0.3061	4656.74	10.6

^{*} Not found after three days of simulation.

	Profit (M\$)			Average Price	SC
	U1	U2	U3	(\$/MWh)	(M\$)
SQ	9.79	3.95	4.48	20	1174.1
EC	5.64	0	3.94	12	406.84
RC	5.98	0	2.31	15.4	522.32
PC	*	*	*	*	*
PC (4A)	5.88	0	2.47	15.1	483.19
PC (4B)	5.88	0	2.47	15.1	483.19

^{*} Not found after three days of simulation.

SQ: Status-quo

EC: Efficient Coordination RC: Reactive Coordination PC: Proactive Coordination

SC: Social Cost

EGC: Expanded Generation Capacity

TEGC: Total Expanded Generation Capacity

GIC: Generation Investment Cost

TETC: Total Expanded Transmission Capacity

TIC: Transmission Investment Cost

Y. Tohidi, M. Hesamzadeh, and F. Regairaz, "Sequential Coordination of Transmission Expansion Planning with Strategic Generation Investments," under revision by IEEE Transactions on Power Systems.

Vertical coordination Conclusion

- Modeling the proactive and reactive coordinations as MIBLP and MILP.
- Comparing the results of reactive and proactive coordinations to the efficient coordination result.
- Proposing a parallelized Moore-Bard algorithm (P-MBA) to solve the MIBLP model with discrete variables in both levels.
- The numerical results clearly show the **importance of sequence of investments** in transmission and generation sectors.

Future Work

- Expanding the previous models and develop a transmission-generation planning model in the context of multi-TSO multi-Genco
- ☐ Designing coordination mechanisms for this model
- Improving the computational performance

